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Chapter 1

Cyclic Inequalities

1.1 Applications

1.1. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

ab?+ bc? +ca® <4.

1.2. If a, b, ¢ are positive real numbers such that a + b + ¢ = 3, then

(ab+ bc +ca)(ab? + bc? +ca®) <9.

1.3. If a, b, c are nonnegative real numbers such that a® + b2 + ¢? = 3, then

(a) ab?+ bc? +ca? <abc+2;
a b c
b + + <1.
() b+2 c¢c+2 a+2
1.4. If a,b,c > 1, then
(a) 2(ab?+ bc? +ca?) +3 > 3(ab + bc +ca);
(b) ab?+bc?+ca’?+6>3(a+b+c).
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1.5. If a, b, c are nonnegative real numbers such that

a+b+c=3, a>b>c,

then
(a) a?b + b%c +c%a > ab + bc +ca;
(b) 8(ab? + bc? + ca?) + 3abc < 27;
1 1
(c) 8 < + 5.

a?b + b2c +c2a ~ abc

1.6. If a, b, c are nonnegative real numbers such that
a’+b%+c¢%2=3, a>b>c,

then 3
ab?+ bc%+ca® < Z(ab +bc+ca+1).

1.7. If a, b, c are nonnegative real numbers such that a® + b? + ¢ = 3, then

a’b® + b%c® +c?a® < 3.

1.8. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

a*b?+b*c? +c*a® +4> B3+ b33 + 32ad.

1.9. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

(a) ab?+ bc? +ca® + abc < 4;
a b C
b + + <1;
®) 4—b 4—c 4—a-
(©) ab®+ bc® +ca®+ (ab + bc+ca)* < 12;
2 2 2
@ ab bc ca <1

+ +
l1+a+b 1+b+c 1+4+c+a

1.10. If a, b, c are positive real numbers, then

1 1 1 3
+ + > .
a(a+2b) b(b+2c) c(c+2a) ab+bc+ca
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1.11. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

a N b N c S
b24+2¢c c¢2+2a a2+2b

1.

1.12. If a, b, c are positive real numbers such that a + b + ¢ > 3, then

a—1 b—1 c¢c—1
>

> 0.
b+1 c¢+1 a+1

1.13. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

1 1 1
a + + =>1;
@) 2ab2+1 2bc2+1 2ca?2+1
1 1 1
(b) > 1.

+ - >
ab2+2 bc2+2 caz+2

1.14. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

ab bc ca 3
+ + <=
9—4bc 9—4ca 9—4ab 5

1.15. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

a2 bZ C2
a + + =>1;
@) 2a+ b2 2b+c2 2c+a?
2 b2 2
(b) - C >

+ +
a+2b%2 b+2c?2 ¢+ 2a?

1.16. Let a, b, ¢ be positive real numbers such that a + b + ¢ = 3. Then,

1 1 1
+ +
a+b2+c® b+c?2+a® c+a?+b3

<I.

1.17. If a, b, c are positive real numbers, then

1+ a? 1+ b2 14 c?
+ + >
1+b+c2 14+c+a?2 1+4+a+b2
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1.18. If a, b, c are nonnegative real numbers, then

a b c 1
+ + <-.
4a+4b+c 4b+4c+a 4c+4a+b 3
1.19. If a, b, c are positive real numbers, then
a+b b+c c+a 2
+ + > -
a+7b+c b+7c+a c+7a+b 3
1.20. If a, b, c are positive real numbers, then

a+b b+c c+a 6
+ + >—.
a+3b+c b+3c+a c¢c+3a+b 5

1.21. If a, b, c are positive real numbers, then

2a+b 2b+4+c 2c+a
+ + > 3.
2a+c 2b+a 2c+b

1.22. If a, b, c are positive real numbers, then

al(a+b) bb+c) clc+a) _3(a*>+b*>+c?)
+ + < :
a+c b+a c+b a+b+c

1.23. If a, b, ¢ are real numbers, then

a?—bc N b%—ca N c2—ab
4a2+ b2 +4c?  4b2+c2+4a?  4c2+a?+4b2

1.24. If a, b, c are real numbers, then

(a) ala+bP+b(b+c)P+c(c+a)>0;

(b) a(a+b)’+b(b+c)°+c(c+a)’>0.

1.25. If a, b, ¢ are real numbers, then

3(a*+b*+cH+4(a®b + b3c+ca)>0.
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1.26.

1.27.

1.28.

1.29.

1.30.

1.31.

1.32.

1.33.

then

If a, b, ¢ are positive real numbers, then

(a—b)(2a+b) N (b—c)(2b+c¢) N (c—a)(2c+a) S
(a+ b)2 (b+c)? (c+a)?

If a, b, ¢ are positive real numbers, then

(a—b)(2a+b) 4 (b—c)(2b+¢) N (c—a)(2c+a) S0
a2+ ab + b2 b2+ bc +c2 c2+ca+a?

If a, b, ¢ are positive real numbers, then

(a=—b)(Ba+b) (b—c)@Bb+c) 4 (c—a)(3¢c+a) >0
a2+ b2 b2 + c2 c2+a2

Let a, b, c be positive real numbers such that abc = 1. Then,

1 1 1
+ + <
1+a+b2 1+b+c2 1+c+a?

Let a, b, c be positive real numbers such that abc = 1. Then,

a b C
(a+1)(b+2)+(b+1)(c+2)+(c+1)(a+2)

1
> —.
2
If a, b, ¢ are positive real numbers such that ab + bc + ca = 3, then

(a+2b)(b+2c)(c +2a) = 27.

If a, b, ¢ are positive real numbers such that ab + bc + ca = 3, then

a b c
+ + <
a+ad3+b b+b34+c c+c3+a

If a, b, ¢ are positive real numbers such thata > b > ¢ and ab + bc +ca = 3,

1 1 1
+ + >
a+2b b4+2c c+2a
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1.34. If a,b,c € [0, 1], then
a N b N C S 1
4b2+5  4c¢2+5 4a2+5 3
1
1.35. If a,b,c € [5,3], then
a + b + c_ o Z
a+b b+c c+a 5
1.36. If a, b ce[i ﬁ] then
. . b b ﬁ’ b
3 + 3 N 3 S 2 N 2 2
a+2b b+2c c+2a a+b b+c c+a
1.37. If a, b, c are nonnegative real numbers, no two of which are zero, then
4abc N a?+ b%+c?
ab2+ bc2+ca?+abc ab+bc+ca
1.38. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then
1 4 1 + 1 > 1
ab2+8  bc2+8 ca?+8 3
1.39. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then
ab bc ca 3
- + < -
bc+3 ca+3 ab+3 4
1.40. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then
@ a + b + c_ o §
b2+3  ¢2+3 a2+3 4
a b c 3
b + + > —.
() b3+1 341 a3+1" 2
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1.41. Let a, b, c be positive real numbers, and let

1 1 1
x=a+—-—1, y=b+—-——1, z2=c+——1.
b C a

Prove that
Xy +yz+zx=3.

1.42. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that

(a—%—ﬁ)2+(b—%—\/§)2+(c—%—ﬁ)226.

1.43. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that

1
1+c——|>2.

a

1 1
l+a——|+|1+b——|+
b c

1.44. 1f a, b, c are different positive real numbers, then

b

c—a

a
b—c

1+ ¢

‘1+ ‘+ +‘1+ ‘>2.
a—>b

1.45. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that
1 1) 1 1)? 1 1\*_ 3
20—=—=| +[{2b—=—=) +[2c—=—=) ==,
b 2 c 2 a 2 4

1 5 1 5 1 5
x=a+—-—-=, y=b+—-———, z=c+—-——-,
b 4 c 4 a 4

where a > b > ¢ > 0. Prove that

1.46. Let

Xy + z+zx>§
y y —16'

1.47. Let a, b, ¢ be positive real numbers, and let
1 1 1
E:(a+——\/§)(b+g—\/§)(c+——«/§);
a c

F=(a+%—«/§)(b+l—\/§)(c+l—\/§).

c a
Prove that E>F.
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a c
1.48. If a, b, c are positive real numbers such that 3 +—+ —=5, then
c a

b ¢ a_ 17

e
a b ¢ 4

1.49. If a, b, c are positive real numbers, then

(a) 1+E+é+£22\l1+9+£+5;
b ¢ a a b c
(b) 1+2(5+2+5)2 1+16(é+5+9);
b ¢ a a b c
1 1 1
(©) 34842450 m+b+@(—+_+_)
b ¢ a a b c

1.50. If a, b, c are positive real numbers, then

a_2+b_2+i+1s(é+£+e)>16(2+9+£)
b2 2 @2 a b ¢/ \b ¢ a)

1.51. If a, b, c are positive real numbers such that abc =1, then

(a) E+é+£2a+b+c;
b ¢ a
b 3
(b) E+—+52—(a+b+c—1);
b ¢ a 2
b
(© g+—+5+22§(a+b+c).
b ¢ a 3

1.52. If a, b, c are positive real numbers such that a® + b? + ¢? = 3, then

(a) a b oy 3
b ¢ a_ ab+bc+ca’
a b ¢ 9
b o>
(®) b ¢ a a+b+c

1.53. If a, b, ¢ are positive real numbers such that a® + b% + ¢ = 3, then

6(2+9+£)+5(ab+bc+ca)233.
b ¢ a
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1.54. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

b
(a) 6(g+—+£)+327(a2+b2+c2);
b ¢ a
(b) E+é+£2a2+b2+c2.
b ¢ a

1.55. If a, b, c are positive real numbers, then

g+2+£+2>14(a2+b2+62)
b ¢ a ~ (a+b+c)

1.56. Let a, b, c be positive real numbers such that a + b+ ¢ = 3, and let
1 1 1
x=3a+—-, y=3b+—-, 2=3c+-—.

b c a

Prove that
Xy +yz+zx =48.

1.57. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

a+1 b+1 c+1
+

+ > 2(a®+ b* +c?).
b c

1.58. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

2 b2 2
L S 13>+ b2+ D).
b ¢ a

1.59. If a, b, c are positive real numbers, then

a® b® B 5 o o
3+?+—+2(ab+bc+ca)23(a + b* +c*).
a

1.60. If a, b, c are positive real numbers such that a* + b* + ¢* = 3, then

a? b*> c?
(@) —+—+—2=3;
b C a
a’ b2 c2 3
b + + >
(®) b+c c¢c+a a+b 2
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1.61. If a, b, c are positive real numbers, then

a> b* c®_ 3(a®+b3+c?)
>
b c a az+ b2 +c2

1.62. If a, b, c are positive real numbers, then

2 2 2
a—+b—+c—+a+b+c22\j(a2+b2+c2)(2+2+£).
b ¢ a b ¢ a

1.63. If a, b, c are positive real numbers, then

a b ¢ a b c
FH oo +32 - +

> 51.

c a a+b b+c c+a

1.64. Find the greatest positive real number K such that the inequalities below
hold for any positive real numbers a, b, c:

(a) 3+9+5—3>K(a L b §}

b ¢ a - b+c c+a a+b 2
(b) E+9+£—3+K( T4 b +— —1)>0
b ¢ a 2a+b 2b+c 2c+a -

1.65. Ifa,b,c € [%,2], then

b b
(@) 8(E+—+£)25(—+5+9)+9;
b ¢ a a b ¢
(b) 20(2+E+£)217(9+£+E)'
b ¢ a a b ¢

1.66. If a, b, c are positive real numbers such that a < b < c, then

a b ¢ 2a 2b 2c
—+—+=—> - + :
b ¢ a b+c c+a a+b
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1.67. Let a, b, c be positive real numbers such that abc = 1.

(@) Ifa < b <c, then

@ b s ey on
b ¢ a ’

(b)Ifa<1<b<c,then

a b ¢
—+—+->a”+b+ "
b ¢ a

1.68. If k and a, b, ¢ are positive real numbers, then

1 1 1 1 1 1
+ + > + + .
(k+1)a+b (k+1)b+c (k+1)c+a  ka+b+c kb+c+a kc+a+b

1.69. If a, b, c are positive real numbers, then

(a) R b T <+Vva+b+cg;
v2a+b V2b+c V2c+a
(b) a b ¢ >+va+b+ec.

+ +
va+2b vVb+2c +Vc+2a

1.70. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that
a+2b b+2c c+2a
a +b +c <3
3 3 3

1.71. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

avV1+b3+bV1+c3+cV1+ad<5b.

1.72. If a, b, c are positive real numbers such that abc = 1, then

@ y R LY A
b+3 \c+3 a+3 2’

a b c 3

b 13/ + + ¢ > —.
(®) b+7 \C+7 a+7 2
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1.73. If a, b, c are positive real numbers, then
4a \? 4b \? 4c )
(1+ d ) +(1+—) +(1+ < ) > 27.
a+b b+c c+a
1.74. 1f a, b, c are positive real numbers, then
2a 2b 2c
+ + <3.
a+b b+c c+a
1.75. If a, b, c are nonnegative real numbers, then

[ a 1I b [ ¢
+ + <l1.
4a +5b 4b + 5¢ 4c + 5a

1.76. If a, b, c are positive real numbers, then

a b c

+ + <1.
Va4a2+ab+4b2  VAb2+bc+4c2  VAc2+ca+4az

1.77. If a, b, c are positive real numbers, then

N b tyf——r =1
a+b+7c b+c+7a c+a+7b

1.78. If a, b, c are nonnegative real numbers, no two of which are zero, then

@ o\ [ 2
3b+c 3c+a 3a+b 2’
b) e\ b t oy = VB
2b+c 2c+a 2a+b

1.79. If a, b, c are positive real numbers such that ab + bc + ca = 3, then

1 1 1 3
@) @1 b)Batb)  btoBbTo)  Ccta)Beta)- 8
) 1 1 1 1

> —.
(2a + b)>2 * (2b +¢)? * (2c+a)? — 3
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1.80. If a, b, c are nonnegative real numbers, then

a*+ b*+c*+15(a®b + bic+c2a) > %(azb2 + b2%c? + c%a?).

1.81. If a, b, c are nonnegative real numbers such that a + b + ¢ = 4, then

a®b+b3c+cca<27.

1.82. Let a, b, c be nonnegative real numbers such that
2 2 2 10
a‘+b+c* = ?(ab+bc+ca).
Prove that

82
a*+ b*+c* > 2—7(a3b + b3c +c2a).

1.83. If a, b, c are positive real numbers, then

a’ N b3 N c3 >a+b+c
2a2+ b2 2b2+c¢2  2c¢2+4a? 3

1.84. If a, b, c are positive real numbers, then

a* b* c* a+b+c
+ + > .
at+b3 b3+c® c2+ad 2

1.85. If a, b, c are positive real numbers such that abc =1, then

2 2 2
(@) 3(a—+b—+c—)+4(b

b2

— + )2 7(a?+ b% +c?);
b c a

3 b3 3 b

(b) 8(a—+—+c—)+5( + <4 )213(a3+b3+c3).
b c a b3

1.86. If a, b, c are positive real numbers, then

ab bc ca a’+ b%+c?
+ + < .
b2+ bc+c%2 c24+ca+a? a?+ab+b2 " ab+bc+ca
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1.87. If a, b, c are positive real numbers, then

a—>b N b—c N c—a >0
b(2b+¢) c(2c+a) a(2a+b)

1.88. If a, b, c are positive real numbers, then

a’+6bc b*+6ca c*>+6ab
+ + > 7;
ab+2bc bc+2ca ca+2ab

(a)

a’?+7bc b*+7ca c*+7ab
b + + >12.
(®) ab + bc bc+ca ca+ab

1.89. If a, b, c are positive real numbers, then

@ ab N bc L@ a®+b*+c*
2b+c 2c+a 2a+b~ a+b+c’
2 2 2
®) ab N bc N ca S3(a +b°+c );
b+c c¢c+a a+b 2(a+b+c)
ab bc ca a?+b*+c?
() <

+ + < .
4b+5c 4c+5a 4a+5b  3(a+b+c)

1.90. If a, b, c are positive real numbers, then

(a) avb2+8c2+b+v/c2+8a%2+cva2+8b2<(a+b+c)

(b) avb2+3c2+bv/c2+3a2+cva+3b2<a’*+b%>+c*+ab+ bc+ca.

1.91. If a, b, c are positive real numbers, then

(@) ! + ! + 1 > 3.
ava+2b bvb+2c cvc+2a Vabc’

1 1 1 1
(b) + + z\/ )
ava+8b bvb+8c cvc+8a abc

1.92. If a, b, c are positive real numbers, then

a b c a+b+c
+ + < .
V5a+4b +5b+4c /5¢c+4a \J 3




Cyclic Inequalities 15

1.93. If a, b, c are positive real numbers, then

@ a N b N c 21/5+\/F+\/E;
va+b +Vb+c Vc+a V2
®) a N b N c S ‘j 27(ab+bc+ca).
va+b +vb+c +c+a 4

1.94. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

\/3a+b2+\/3b+c2+\/3c+a226.

1.95. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

\/a2+b2+2bc+\/b2+c2+20a+\/c2+a2+2ab22(a+b+c).

1.96. If a, b, c are nonnegative real numbers, then

\/a2+b2+7bc+\/b2+c2+7ca+\/c2+a2+7ab23\/3(ab+bc+ca).

1.97. If a, b, c are positive real numbers, then

a’+3ab b*>+3bc c*+3ca
+ + >
(b+c)? (c+a)? (a+b)?

1.98. If a, b, c are positive real numbers, then

a’b+1 b%+1 c%a+1
+ + > 3.
a(b+1) b(c+1) cla+1)

1.99. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

Vad+3b+vVb3+3c+Vc3+3a>6.

1.100. If a, b, c are positive real numbers such that abc =1, then

/ a 1I b / c
a+6b+2bc b+ 6c+2ca c+6a+2ab
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1.101. If a, b, c are positive real numbers such that abc = 1, then
1)? 1)? 1)?
(a+g) +(b+—) +(c+—) >6(a+b+c—1).
c a

1.102. If a, b, c are positive real numbers, then

a b C a+b+c
+ + > 3 .
a+b b+c c+a a+b+c—+vabc

1.103. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

avbh2+b+1+bvVc2+c+1+cva2+a+1<3v3.

1.104. If a, b, c are positive real numbers, then

1 1 1 1
+ + < :
b(a+2b+3c)? c(b+2c+3a)? a(c+2a+3b)2~ 12abc

1.105. Let a, b, ¢ be positive real numbers such that a + b + ¢ = 3. Prove that

a?+9b b* +9 c*+9a
(a) + + > 15;
b+c c+a a+b

a?+3b b>+3c c%+3a
>6

b + +
(®) a+b b+c c+a

1.106. If a,b,c €[0, 1], then

@ bc N ca + ab <1
2ab+1 2bc+1 2ca+1~
a b c 3
b + + < -.
(®) ab+1 bc+1 ca+1 2

1.107. If a, b, c are nonnegative real numbers, then

a* +b*+c*+5(a®b + b3c + c2a) > 6(a?b? + b?c? + c%a?).
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1.108. If a, b, c are positive real numbers, then
a®+b>+c®>—a*b—b*c—c*a>2abc(a®+ b*+c*>—ab—bc—ca).

1.109. If a, b, ¢ are positive real numbers such that a® + b? + ¢ = 3, then

a b c

3
- + > -
1+b 14c¢ 1+4+a 2
1.110. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then
ava+b+bvVb+c+cvec+a=3v2.
1.111.

If a, b, ¢ are positive real numbers such that a + b + ¢ = 3, then

a N b N c > 1
2b24+c¢  2c2+a 2a2+b

1.112. If a, b, c are positive real numbers such that a + b +c =ab + bc + ca, then
1 + 1 + 1 <1
a2+b+1 b2+c+1 c24+a+1"
1.113.

If a, b, ¢ are positive real numbers, then
1 1 1 1
+ + < .
(a+2b+3c)>? (b+2c+3a)> (c+2a+3b)2  4(ab+ bc+ca)

1.114. If a, b, c are positive real numbers, then

a b C 3
\/ +\ +4/ <-.
a+b+2c b+c+2a c+a+2b 2

1.115. If a, b, c are positive real numbers, then

\J 5q \j 5b \J 5¢
+ +
a+b+3c

<3
b+c+3a c+a+3b
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1.116. If a, b, c € [0, 1], then

5
ab2+bc2+ca2+22a+b+c.

1.117. If a, b, c are nonnegative real numbers such that
a+b+c=3, a<b<1<cg,

then
a’b + b%c+c%a < 3.

1.118. Let a, b, ¢ be nonnegative real numbers such that

a+b+c=3, a<l<b<c.

Prove that
(a) a’b + b%c + c?a > ab + bc + ca;
(b) a’b + b?c + c?a > abc + 2;
9
_ > .
© abc ~ a?b + b2c +c2a’
(d ab?+ bc? +ca? > 3.

1.119. If a, b, c are nonnegative real numbers such that

a+b+c=3, a<l1<b<c,

then
5—2a 5—-2b 5—2¢c 9
(a) + + > =
1+b 1+¢c 1+a 2
3—2b 3-2 3—2 3
(b) p2e 2T
1+a 1+b 1+c 2

1.120. If a, b, c are nonnegative real numbers such that
ab+bc+ca=3, a<l1l<b<c,

then
(a) a’b + b%c + c%a > 3;

(b) ab?+ bc? +ca® +3(v/3 —1)abc > 3+/3.
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1.121. If a, b, c are nonnegative real numbers such that
a*+b*+c*=3, a<1<b<g,

then
(a) a?b + b%c +c%2a > 2abc+1;

(b) 2(ab?+ bc? +ca?) > 3abc + 3.

1.122. If a, b, c are nonnegative real numbers such that
ab+bc+ca=3, a<b<1<cg,

then
ab? + bc? + ca?® + 3abc > 6.

1.123. If a, b, c are nonnegative real numbers such that
a+b*+c*=3, a<b<l1<g,

then
2(a®b + b%c + c%a) < 3abc + 3.

1.124. If a, b, c are nonnegative real numbers such that
a*+b*+c*=3, a<b<1<yg,

then
2(a®b + b3c + c2a) < abc +5.

1.125. If q, b, ¢ are real numbers, then

(a®+ b%+c?)* > 3(a®b + b3c + c2a).

1.126. If a, b, ¢ are real numbers, then

a*+ b*+c*+ab® + b +ca® > 2(a®b + b3c + c2a).
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1.127. If a, b, c are positive real numbers, then

a? b? c?
a + + >1;
@) ab+2c2 bc+2a2 ca+2b2

3 bS 3
(b) - < >,

+ +
alb+2c3  b2c+2a3 c2a+2b3

1.128. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

a b c 3
+ + > -
ab+1 bc+1 ca+1 2

1.129. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

a b c 3
<

+ + < -.
3a+b2 3b+c2 3c+az” 2

1.130. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

a 4 b N c >3
b2+c¢ c¢24a a2+b 2

1.131. If a, b, c are positive real numbers such that abc =1, then

a N b 4 C S
b3+2 ¢34+2 a34+2 "

1.132. Let a, b, ¢ be positive real numbers such that
a™+bm+c" =3,

where m > 0. Prove that

1.133. If a, b, c are positive real numbers, then

@) 1+1+1+1+1+1>3(1+1+1)‘
4a 4b 4 a+b b4+c c+a  \Ba+b 3b+c 3c+al)’

(b)i+i+l+1+1+1>2(1+1+1)
4a 4b 4c a+3b b+3c c¢c+3a \3a+b 3b+c 3c+a)’
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1.134. If a, b, ¢ are positive real numbers such that a® + b® + ¢® = 3, then

a® b> c°
—+—+—2>3,
b c a

1.135. If a, b, ¢ are positive real numbers such that a® + b? + ¢ = 3, then

a’ b3 c3

+ -
a+b> b+c® c+ad

3
= —.
2

1.136. If a, b, ¢ are real numbers such that a® + b% + ¢? = 3, then

a’b+b*c+c2a+9>4(a+b+0).

1.137. If a, b, ¢ are real numbers such that a® + b? + ¢? = 3, then

a’b+b*c+cla+3>a+b+c+ab+bc+ca.

1.138. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

12
<3+
azb + b2c + c2a abc

1.139. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

24 1

+ > 0.
a2b+ b2c +c2a abc

1.140. Let a, b, c be nonnegative real numbers such that
2(a?+ b2 +c?) =5(ab + bc + ca).
Prove that
(a) 8(a*+ b*+c*) > 17(a®b + b3c + c3a);

(b) 16(a* + b* + ¢*) > 34(a®b + b3c + c3a) + 8labc(a + b +c¢).
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1.141. Let a, b, c be nonnegative real numbers such that

2(a®+ b2 +c?) =5(ab + bc + ca).

Prove that
(a) 2(a®b + b3c +c3a) > a®b? + b%c? + c2a® + abc(a+ b +¢);
(b) 11(a*+ b*+c*) > 17(a®b + b3c + ca) + 129abc(a + b +¢);
(@) ab+b3c+cla< 14+8f1\/ﬁ(a2b2 + b%c? + c2a?).

1.142. If a, b, ¢ are real numbers such that

a’b+b3c+c2a <0,

then
a?+ b?+c?>> k(ab + bc +ca),
where
1++v21
k=T - 897 37468,

1.143. If a, b, ¢ are real numbers such that

a’b+b3c+c2a>0,

then
a’+b2+c?+k(ab+bc+ca)=>0,
where
—14+v21+8
k= il 2 + ﬁ%2.7468.

1.144. If a, b, ¢ are real numbers such that

k(a®+ b%+c*)=ab+ bc +ca, ke(_—l,l),

2
then
< a®b+ b3c+¢3 <p
KT @+ b2+ T
where
]__
27a;, =1+ 13k —5k*—2(1—k)(1+ 2k)\ 71( " 2;?,
1—k
27B, = 1+ 13k —5k* + 2(1 —k)(1 +2k)\ 71(+2k).




Cyclic Inequalities 23

1.145. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

a’ b? c2 3
>

4a+b2+4b+c2+4c+a2 -5

1.146. If a, b, c are positive real numbers, then

a’+bc b +ca c2+ab< (a+b+c)
a+b b+c c+a ~ 3(ab+bc+ca)

1.147. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

v ab? +bc2+ v/ bc2+ca? + v ca? +ab? < 3v2.

1.148. If a, b, ¢ are positive real numbers such that a® + b> + ¢®> = 3, then

a®? b*> c?
—+—+—2>3.
b C a

1.149. Let P(a, b,c) be a cyclic homogeneous polynomial of degree three. The
inequality
P(a,b,c)=>0

holds for all a, b,c > 0 if and only if the following two conditions are fulfilled:
(a) P(1,1,1)=>0;
(b) P(0,b,c)=>0 forall b,c>0.

1.150. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

8(a?b + b%*c +c?a)+ 9> 11(ab + bc + ca).

1.151. If a, b, c are nonnegative real numbers such that a + b + ¢ = 6, then

a’® + b3+ ¢ +8(a?b + b%c + c%a) > 166.

1.152. If a, b, c are nonnegative real numbers, then

a®+b%+c®—3abc > V9+6v3(a—b)(b—c)c—a).
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1.153. If a, b, c are nonnegative real numbers, no two of which are zero, then

a b c 17( a b C )
+ + +7>— + + :
b+c c¢c+a a+b 3\a+b b+c c+a

1.154. Let a, b, c be nonnegative real numbers, no two of which are zero. If 0 <
k <5, then
ka+b kb+ ke + 3
O T T s 2k + 1),

a+c b+a c+b 2

23
1.155. Leta, b, c be nonnegative real numbers, no two of which are zero. If k < rE

then

ka+b kb+c kc+a
+ + >k+1.
2a+c¢c 2b+a 2c+b

1.156. Let a, b, c be nonnegative real numbers. Prove that

2
(a)if k<1———, then
545

ka+b kb+c kc+a 3
+ + > —(k+1).
2a+b+c a+2b+c a+b+2c 4

2
(b)if k> 1+ ——, then
545

ka+b N kb+c 4 kc+a g
2a+b+c¢c a+2b+c a+b+2c 4

1.157. If a, b, c are positive real numbers such that a < b < ¢, then

a

b

b ¢ a+b b+c c+a
+—+-+3>2 :
c a

+ +
b+c c¢c+a a+b

1.158. Ifa>b >c >0, then

3a+b 3b+c 3c+a
+ > 4.
2a+c 2b+a 2c+b
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1.159. Let a, b, c be nonnegative real numbers such that
a>b>1>c¢c, a+b+c=3.
Prove that

1 + 1 + 1
az+3 b2+3 c2+3

3
<-.
4

1.160. Let a, b, c be nonnegative real numbers such that
a>1>b>c, a+b+c=3.
Prove that

1 + 1 + 1 > 1
az+2 b2+2 2427

1.161. Let a, b, ¢ be real numbers such that
a>b>1>c>-5 a+b+c=3.
Prove that

6 8
- tlz .
a3+ b3+c3 a2+ b2 +c?

1.162. If a>1> b > c > —3 such that ab + bc + ca = 3, then

1 1 1
+ + >1
az+ab+b2 b2+4+bc+c2 c2+ca+a?
1.163. Ifa>b>1>c>0suchthata+ b+ c =3, then
1 1 1 3
<

+ - < :
az+ab+b%2 b24+bc+c2 c24ca+a?  ab+bc+ca

1.164. If a, b, c are positive real numbers such that
a=>1>b=>c, abc=1,
then
l1—a 4 1-b + 1—c S
3+a2 3+b%2 3+4+c2
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1.165. If a, b, c are positive real numbers such that

a>1>b>c, abc=1,

then
1 1 1 3
+ + >
V3a+1 v/3b+1 +3c+1 2
1.166. If a, b, c are positive real numbers such that
a=>1>b>c, abc=1,
then
1 1 1

1
+ + = .
az+4ab+ b2 b2+4bc+c?2 c24+4ca+a? 2
1.167. Leta>1> b > c > 0 such that

a+b+c=3, ab+bc+ca=q,

where q € [0, 3] is a fixed number. Prove that the product r = abc is maximal for
b = ¢, and minimal for b=1 or ¢ = 0.

1.168. Let p and q be fixed real numbers such that there exist three real numbers
a, b, ¢ satisfying

a>1>b>c>0, a+b+c=p, ab+bc+ca=q.

Prove that
(a) the product r = abc is maximal for b = c;

(b) the product r = abc is minimal fora=1or b =1 or c =0.

1.169. Let p and q be fixed real numbers such that there exist three real numbers
a, b, ¢ satisfying

a>b>c>1, a+b+c=p, ab+bc+ca=q.

Prove that
(a) the product r = abc is maximal for b = c;

(b) the product r = abc is minimal for a = b or c = 1.
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1.170. Leta > b > 1 > ¢ > 0 such that
a+b+c=3, ab+bc+ca=q,

where q € [0,3] is a fixed number. Prove that the product r = abc is maximal for
b =1, and minimal fora = b or ¢ = 0.

1.171. Let p and q be fixed real numbers such that there exist three real numbers
a, b, ¢ satisfying

a>b>1>c¢>0, a+b+c=p, ab+bc+ca=q.
Prove that

(a) the product r = abc is maximal for b=1orc=1;

(b) the product r = abc is minimal for a = b or ¢ = 0.

1.172. Let p and q be fixed real numbers such that there exist three real numbers
a, b, ¢ satisfying

1>a>b>c>0, a+b+c=p, ab+bc+ca=q.
Prove that

(a) the product r = abc is maximal for b=cora=1;

(b) the product r = abc is minimal for a = b or ¢ = 0.

1.173. Ifa>1> b >c>0such thata+ b+ c =3, then

9

abc+ —— >
ab+ bc+ca

1.174. Ifa>1>b >c>0such thata+ b+ c =3, then

2 5
>

abc + > .
ab+bc+ca  az+b2+c2

1.175. Ifa>b>1>c > 0such thata+ b+ c =3, then

+2>2 —M8M.
abc ab+ bc+ca
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1.176. Ifa>b >1>c > 0 such that a+ b + ¢ = 3, then
1 1 1
—+—+-+11=4(a*+b*+?).
a b c
1.177. Ifa>b>1>c > 0such thata+ b+ c = 3, then
1 2 5
+ > .
abc a2+b2+c2  ab+bc+ca
1.178. Ifa>b>1>c>0such thata+ b+ c =3, then
9 15
—_—+2< —.
a®+ b3 +c3 a?+ b2 +c2?
1.179. Ifa>b >1>c >0 such thata+ b+ c = 3, then
36 +9< 65
a3+b3+c3 T T a2+ b2+c?
1.180. If a>b>c>0 and ab+ bc+ca=2, then
va+ab++vVb+bc+vc+ca>3.
1.181. If a > b > ¢ are nonnegative numbers such that ab+ bc +ca =3, then
vVa+2ab+ vV b+2bc+vc+2ca >4
1.182. If a, b, c are nonnegative real numbers such that ab + bc + ca = 3, then
Va+3b+vb+3c+Vc+3a>6.
1.183. If a, b, c are the lengths of the sides of a triangle, then

10(9+9+5)>9(9+5+9).
b ¢ a a b ¢
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1.184. If a, b, c are the lengths of the sides of a triangle, then

a N b 4 C > 1
3a+b—c¢c 3b+4+c—a 3c+a—b

1.185. If a, b, c are the lengths of the sides of a triangle, then

a?—b> b*—c* c*—a?
+ + <0.
at+bc b2+ca c2+ab

1.186. If a, b, c are the lengths of the sides of a triangle, then

a?(a+b)b—c)+ b3 (b+c)c—a)+c*(c+a)a—b)=>0.

1.187. If a, b, c are the lengths of the sides of a triangle, then

a’b + b*c +c%a > \/abc(a + b +c)(a?+ b2 +c2).

1.188. If a, b, c are the lengths of the sides of a triangle, then
oD 5[ C S a

a?(=—1)+b (——1)+c (——1)20.
c a b

1.189. If a, b, c are the lengths of the sides of a triangle, then
(a) a®b+ b3c +c3a > a®b? + b%c? + c2a?;

(b) 3(a®b + b3c +c2a) > (ab + bc + ca)(a? + b% + ¢2);

()

a®b + b3c+¢? >(a+b+c)4
3 - 3 )

1.190. If a, b, c are the lengths of the sides of a triangle, then

a? b*> 2 b2 ¢* a2
2(§+C_2+E)2;+§+6_2+3.
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1.191. If a, b, c are the lengths of the sides of a triangle such that a < b < c, then
a® b? c?
a2 — b2 + h2 —c2 + c2—q2 <0.
1.192. If a, b, c are the lengths of the sides of a triangle, then
a b c a+b b+c c+a
—+—+—+3>2 + + :
b ¢ a b+c c+a a+b
1.193. Let a, b, ¢ be the lengths of the sides of a triangle. If k > 2, then
a*b(a—Db) + b*c(b—c) +cka(c—a) > 0.
1.194. Let a, b, ¢ be the lengths of the sides of a triangle. If k > 1, then
3(a*™'b + b*e + ¢ la) > (a + b + ¢)(a*b + brc + cka).
1.195. Let a, b, c,d be positive real numbers such that a+ b +c+d = 4. Prove that
a b c d
+ + + >
3+b 3+c 3+d 3+a
1.196. Let a, b, c,d be positive real numbers such that a+b+c+d = 4. Prove that
a + b 4 c + d
1+b2 1+4c¢2 14d2 1+4a%"~
1.197. If a, b, c,d are nonnegative real numbers such that a + b + c + d = 4, then
a’bc + b%cd + c*>da + d?ab < 4.
1.198. If a, b, c,d are nonnegative real numbers such that a + b +c+d =4, then

a(b+c)?+b(c+d)?+c(d+a)*+d(a+b) < 16.
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1.199. If a, b, c,d are positive real numbers, then
a—>b N b—c+ c—d +d—a >0
b+c c¢+d d+a a+b
1.200. If a, b, c,d are positive real numbers, then
@ a—b>b 4 b—c 4 c—d N d—a >0
a+2b+c b+2c+d c+2d+a d+2a+b
a b c d
b + + + <1.
(b) 2a+b+c 2b+c+d 2c+d+a 2d+a+b
1.201. If a, b, c,d are positive real numbers such that abcd = 1, then
1 + 1 + 1 + 1 S
al(a+b) bb+c) clc+d) d(d+a)
1.202. If a, b, c,d are positive real numbers, then
1 1 1 1 16
+ + + = .
a(l1+b) b(l+c) c(1+d) d(l+a)  1+8+vabcd
1.203. If a, b, c,d are nonnegative real numbers such that a + b% + ¢ + d? = 4,

then
(a) 3(a+b+c+d)=2(ab+ bc+cd+da)+4;

(b) a+b+c+d—4>(2—+2)(ab+bc+cd+da—4).

1.204. Let a, b, c, d be positive real numbers.

(a) Ifa,b,c,d > 1, then

1 1 1 1 1 1 1 1
_ —_ _ 1> [ I I T
(a+b)(b+C)(c+d)(d+a)_(a+b+c+d)(a+b+c+d),

(b) If abcd =1, then

(a+%)(b+%)(c+%)(d+%)2(a+b+c+d)(%+%+%+%).
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1.205. If a, b, c,d are positive real numbers, then
a 2 b )\? c 2 d \?
1+ )+ 1+ +(1+ )+(1+ ) > 7.
( a+b ( b +c) c+d d+a

1.206. If a, b, c,d are positive real numbers, then

a’®—bd N b%—ca N c2—db N d?—ac
b+2c+d c¢c+2d+a d+2a+b a+2b+c

1.207. If a, b, c, d are positive real numbers such that a < b < ¢ < d, then
\J 2a +\J 2b +\J 2c +\J 2d _,
a+b b+c c+d d+a

1.208. Let a, b, c,d be nonnegative real numbers, and let

Y= a b o (= d
" b+c y_c-l—d’ “d+a’  a+b
Prove that
(@) Vxz+ Jyt <1;
(b) x+y+z+t+4(xz+yt)=>4.

1.209. If a, b, c,d are nonnegative real numbers, then
2a 2b 2c 2d
1+ 1+ 1+ 1+ >0.
( b+c)( c+d)( d+a)( a+b)
1.210. Let a, b, ¢, d be nonnegative real numbers. If k > 0, then

ka kb kc kd
> 2,
(1+b+c)(1+c+d)(1+d+a)(1+a+b)_(1+k)

1.211. If a, b, c,d are positive real numbers such that a + b + ¢ + d = 4, then

1 1 1 1
—+—+—=+—=a*+b*+c*+d%
ab bc c¢d da
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1.212. If a, b, c,d are positive real numbers, then

a? N b* N c? N d? _4
(a+b+c)2 (b+c+d)? (c+d+a)? (d+a+b)?2 9

1.213. If a, b, c,d are positive real numbers such that a + b + ¢+ d = 3, then

ab(b+c)+bc(c+d)+cd(d+a)+dala+b) <4.

1.214. Ifa>b>c>d>0anda+b+c+d =2, then

ab(b+c)+bc(c+d)+cd(d+a)+dala+b) <1.

1.215. Let a, b, c,d be nonnegative real numbers such thata+b+c+d = 4. If

3
k > 37 , then
27

ab(b + kc) + be(c + kd) + cd(d + ka) + da(a + kb) < 4(1 + k).

1.216. If a, b, c,d are nonnegative real numbers such that a + b + c + d = 4, then
3a 3b 3c 3d
+ + + <4
b+2 c+2 d+2 a+2
1.217. Let a, b, ¢, d be positive real numbers such that a < b < ¢ < d. Prove that

2(2+2+£+§)>4+2+£+§+§
b ¢ d aJ- ¢ a d b

1.218. Let a, b, c,d be positive real numbers such that
a<b<c<d, abcd = 1.

Prove that 5 p
g+—+£+—2ab+bc+cd+da.
b ¢ d a
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1.219. Let a, b, c, d be positive real numbers such that
a<b<c<d, abcd = 1.

Prove that

a

4+
b

b ¢ d
+—+—-+—=>2(a+b+c+d).
c d a
1.220. Let A= {a,,a,,a;,a,} be a set of real numbers such that
a; +a,+as+a,=0.
Prove that there exists a permutation {a, b, c,d} of A such that

a’+b*+c?+d*+3(ab+bc+cd+da)>0.

1.221. If a, b, c,d are nonnegative real numbers such that
a>b>1>c>d, a+b+c+d=3,

then
a’+ b2+ c2+d?+ 10abcd < 5.

1.222. If a, b, c,d are nonnegative real numbers such that
a>b>1>c>d, a+b+c+d=6,

then
a?+ b%+c? +d? + 4abcd < 26.

1.223. Let a, b, c,d be nonnegative real numbers such that

a>b>1>c>d, a+b+c+d=p, p>2.

Prove that
p*—4p+8

5 <a?+b2+c2+d><p*—-2p+2.

1.224. leta>b>1>c >d = 0 such that

a+b+c+d=4, a*+b*+c*+d*=q,

where g € [4,10] is a fixed number. Prove that the product r = abcd is maximal

when b=1and c =d.
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1.225. If a, b, c,d are nonnegative real numbers such that
a>b>1>c>d, a+b+c+d=4,

then
a®+ b% +c? +d?+ 6abcd < 10.

1.226. If a, b, c,d are nonnegative real numbers such that
a>b>1>c>d, a+b+c+d=4,

then
a?+b%+c®+d?+64abcd < 10.

1.227. If a, b, c,d, e are positive real numbers, then

a b c d e
+ + + + > 1.
a+2b+2c b+2c+2d c+2d+2e d+2e+2a e+2a+2b

1.228. Leta, b, c, d, e be positive real numbers such that a+b+c+d+e = 5. Prove

that
a bpegdie gy
b ¢ d e a_ abcde’

1.229. If a, b, c,d, e are real numbers such thata+ b+c+d + e =0, then

—v/5—-1 <ab+bc+cd+de+ea< V5—1
4 T a2+b2+c2+d2+e2 T 4

1.230. Let a, b, c, d, e be positive real numbers such that
a’*+b*+c*+d*+e*=5.
Prove that

a? b? c? d? e?

+ + + +
b+c+d c¢c+d+e d+e+a e+a+b a+b+c

5
= -
3

1.231. Leta, b, c,d, e be nonnegative real numbers such thata+b+c+d+e =>5.

Prove that

(a4 b2)(b? +c2)(c® +d>)(d* +e?)(e* +a?®) < %
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1.232. If a,b,c,d,e €[1,5], then
a—b+b—c c—d+d—e+e—a>0
b+c c¢c+d d+e e+a a+b

1.233. If a,b,c,d,e, f €[1,3], then
a—b+b—c+c—d+d—e+e—f f—a2 '
b+c c¢c+d d+e e+f f+a a+b

1.234. If a,, a,, ..., a, (n > 3) are positive real numbers, then

n
a; n
< )
a,_;+2a,+a;,, 4

i=1

where a, =a, and q,,; = a;.

1.235. Let ay, a,, ..., a, (n = 3) be positive real numbers such that a,a,---a, = 1.
Prove that

1 1 1
+ 4+t <1.
n—2+a,+a, n—2+a,+ada, n—2+a,+a;

1.236. If a;,a,,...,a, = 1, then

1 1 1 1
l_[(a1+—+n—2)Zn”_z(a1+a2+---+an)(—+—+---+—);

a, a a a

1.237. If ay,a,,...,a, = 1, then
1 1 1 N a, a, a,
a+—|laa+— | |lag+— |+2"22({1+— |(1+—)--- |1+ —|.
a, a a a, as a

1.238. Let k and n be positive integers, and let a,, a,, ..., a, be real numbers such
that

Consider the inequality
(a1 +ay+ - +a,)* = n(a; a1 + Qa0 + -+ + Q)

where a,,; = a; for any positive integer i. Prove this inequality for
(a) n=2k;
(b) n =4k.
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1.239. If a;,a,,...,a, are real numbers, then

2
a,(a; +a,) +ay(a,+as)+---+a,(a, +a;)>=(a, +a,+---+a,)>
n

1.240. If a,, a,, ..., a, €[1, 2], then

n

3
Z a; +2a;, =

i=1

n

2
>

1=

where a,,; = q;.

1.241. Let aq,q,,...,a, (n > 3) be real numbers such that a; +a, +---+a, =n.

@If a;>21>a,>--->a,, then
3 3 3 2 2 2y.
a;+a,+---+a +2n=>3(a; +a;+---+a);
M If a;<£1<a,<---<a,, then

3 3 3 2 2 2
a;+a,+---+a, +2n<3(aj ta; +---+a;).

1.242. Let ay,a,,...,a, (n = 3) be nonnegative real numbers such that a; + a, +
et a,=n.

@If a;>21>a,>--->a,, then
al+aj+--+al+5n=6(al+ad+---+ad);
(b) If alﬁlﬁazﬁ"'ﬁan,then

4 4 4 2 2 2
aj+a;+---+a +6n<7(aj+a;+--+a,).

1.243. If ay,a,,...,a, are positive real numbers such that

1 1 1
w  —F— e+ —=n,
a; a a

a1212a2>"‘ a

v

then
a@+a+-+a+2n>3(a; +a,+-+ay).
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1.244. If a,,a,,...,a, are real numbers such that

a,<1<a,<---<qa,, a+a,+---+a,=n,

then
a+1 a,+1 a,+1
a;+1 a3+1 az+1
1 1 1 n
(b) 3 +— tet = <-.
a;+3 a;+3 a;+3 4
1.245. If a;,a,,...,a, are nonnegative real numbers such that
alslsa2s"'san, a1+a2+'.'+an:n5
then
a’—1 az—1 a’—1 -0
+ 4+ ———>0.
(a; +3)*  (a,+3)? (a, +3)?
1.246. If a,,a,,...,a, are nonnegative real numbers such that
a,=z21>2ay,2+--2qa,, aq+tay+---+a,=n,
then
1 1 1 n
— e+t > .
3a;+4 3a;+4 3a3+4 7
1.247. If ay,a,, ..., a, are nonnegative real numbers such that
a,<1<a,<---<qa,, aqtay+---+a,=n,
then
3a 3a 3a
L+ b4 - <n.
4_a1 4_a2 4_an
1.248. If a,,a,,...,a, are nonnegative real numbers such that
a,<1<a,<:---<a a+a’+..-+d>=n
1=+="2= = rn 1 2 n— D
then
1 1 1 n
ot <-.
3—a; 3—a, 3—a 2
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1.249. If ay,a,,...,a, are real numbers such that

a,<1<a,<---<qa,, a+a,+---+a,=n,

then

2 2 2 n
(I1+a))(1+ay)---(1+a;))=2"

1.250. If a;,a,,...,qa, are positive real numbers such that

a]_Z].ZazZ”'Zan, alaz”'anzl’

then
1 N 1 R 1 _n
(a; +1)2  (a,+1)2 (a,+1)2 4
1.251. If a;,a,,...,qa, are positive real numbers such that
a1212a22"'2an, alaz”'anzl,
then
1 N 1 P 1 _n
(a; +2)2  (a,+2)2 (a,+2)2 9
1.252. If ay,a,,...,a, are positive real numbers such that
a1212a22"'2an, alaz”'an:lJ
then
1 1 1
a§+ag+---+a,’;—n2nz(—+—+---+——n)
a; a an

1.253. If a;,a,,...,a, (n > 3) are real numbers such that

a, +a,+---+a,=n, a,=2a,=21=2a3;=2---=a

> a,,
then

14
4 4 4 2 2 2
a1+a2+...+an_n>_(a1+a2+...+an_n).
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1.254. Let a,,a,,...,a, be positive real numbers such that

a,=z21>2ay2--->a,, aqay---a,=1.

Prove that

l—a; 1—aqa, o 1—a,

2 2 =

3+aj 3+a; 3+ a2

1.255. Let a;,a,,...,a, (n > 3) be nonnegative real numbers such that
alz-'-Zak212ak+12"'Zan, ]-Sksn_]-:
and
a1+a2+"'+an:p.

Prove that

(a) if p >k, then
cCt+a+-+ad<(p—k+1)+k—1;
(b) if k <p <n, then

2o p2—2kp+kn_

24 42
a;ta;+--+a = ;
1 2 n n—k

(c)if p>=n, then

2—2(n—k)p+n(n—k
af+a§+---+a§2p ( I)cp ( ).
1.256. Let a;,a,,...,a, (n > 3) be nonnegative real numbers such that

Gz zqgqzlzaqn=--=a, 1<k<n-—1,

and
a+a,+---+a,=n, af+a§+~~-+arzl=q,

where q is a fixed number. Prove that the product r = a;a, - - - a,, is maximal when

GQ==q=1, QG ==a,

1.257. If a;,a,,...,a, are nonnegative real numbers such that
a,<1<aq,<---<qa,, aqtay,+---+a,=n,

then .
(qay---a)i(ai+ai+---+a>) <n.
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1.258. Let a;,a,,...,a, (n > 3) be nonnegative real numbers such that

= z2q=2lz2aqg,==a 1<k<n-—1,

n»

and
a+ay+--+a,=p, ad+a+---+a’=gq,

where p and q are fixed numbers.

(a) For p < n, the product r = a,a,---a, is maximal whena, =---=q, =1
and gy = -+ = ay;

(b) For p > nand q > n—1+(p—n+1)?, the product r = a,a, - - - a, is maximal
whena,=---=q,=1and q,,; = =aq,;

(c) For p > nand q < n—1+(p—n+1)?, the product r = a,a, - - - a,, is maximal
whena,=---=aqrand qj,; =---=a,=1.
1.259. If a;,a,,...,a, (n > 3) are nonnegative real numbers such that

a;<a,<1<a;<---<a ata,+---+a,=n—1,

n»

then
a@+ai+---+a’+10a,a,-a, <n+1.

1.260. If a, b, c,d, e are nonnegative real numbers such that
a<b<1<c<d<e, a+b+c+d+e=38,

then
a’+ b2+ c2+d?+e*+3abcde < 38.
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1.2 Solutions

P 1.1. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then
ab®+ bc? +ca® < 4.
(Canada, 1999)

First Solution. Assume that a = max{a, b,c}. Since

_ a(a+ b)(b+ 2c)
5 >

a+b
ab2+bc2+ca23ab-T+abc+ca2

it suffices to show that
a(a+ b)(b+2c)<8.

By the AM-GM inequality, we have

b)+(b+20)7 b+c)?
a(a+b)(b +2¢) < [a+(a+ )+(b+ C)] =8(u) —8.
3 3
The equality holds for a =2, b =0, ¢ =1 (or any cyclic permutation).
Second Solution. Let (x,y,z) be a permutation of (a, b, ¢) such that

X2y =z.

Since
Xy =>2x > yz,
by the rearrangement inequality, we have
ab*+bc*+ca*=b-ab+c-bc+a-ca
<x-xy+y-2zx+z-yz
= y(x* + xz +2%).
Using this result and the AM-GM inequality, we get

X+2z x+32

ab*+bc*+ca’* < y(x+z)*=4y-

2 2
3
3
x+y+z\3
(23~

Third Solution. Without loss of generality, assume that b is between a and c; that
is,
(b—a)(b—c)<0, b*+ac<b(a+c).
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Since

ab?+ bc? 4 ca® = a(b? +ac) + be? < ab(a+c¢)+ bc? = b(a® + ac + ¢?)
< b(a+c)*=b(3—-b)?

it suffices to show that
b(3—b)*> < 4.

Indeed,
b(3—b)*—4=(b—1)*(b—4)<(b—1)*(b—3)=—(b—1)*(a+c) <0.
Fourth Solution. Write the inequality in the homogeneous form
4(a+b+c)®>27(ab?+ bc? + ca?),
which is equivalent to

4@+ b3+ c®)+12(a+ b)(b+c)(c+a)>27(ab? + be? + ca?),

4Z:a3 +12 (Zazb +Z:ab2 +2abc) > 27Zab2,
4> a*+12> a?b+24abc > 15 ) ab’.

On the other hand, the obvious inequality

Za(Za—pb —qc)*=0
is equivalent to
4Z:a3 +(q*— 4p)Za2b + 6pgabc > (4q —pz)z ab®.
Setting p = 1 and q = 4 leads to the desired inequality; in addition,

4(a+b+c)*—27(ab?®+ bc*+ca®) = Za(Za —b—4c)*>0.

P 1.2. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

(ab+ bc +ca)(ab? + bc? +ca®) <9.
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Solution. Let (x, y,z) be a permutation of (a, b, ¢) such that x > y > z. As shown
in the second solution of P 1.1,

ab®+ bc? +ca® < y(x? + xz + 22).
Consequently; it suffices to show that
y(xy +yz+2zx)(xc*+xz +2%) <9.
By the AM-GM inequality, we get
Axy +yz+zx)(x*+xz+2%) < (xy + ¥z +2x + x* + x2 + 2%)?

=(x+2)*(x+y+2)*=9(x +2)°

Thus, we still have to show that
y(x +2)* <4

This follows from the AM-GM inequality, as follows:

2y +(x +2)+ (x +z)]3:8.

2y(x +2)* < [ 3

The equality holds fora=b =c =1.

P 1.3. If a, b, c are nonnegative real numbers such that a® + b% + ¢ = 3, then
(@) ab?+ bc? +ca? <abc+2;

a b c
b + + <
®) b+2 c¢c+2 a+2

(Vasile C., 2005)

Solution. (a) First Solution. Without loss of generality, assume that b is between
a and c; that is,
(b—a)(b—c)<0, b*+ac<b(a+c).

Since
ab?+ bc? + ca® = a(b® +ac) + bc* < ab(a+c¢)+ bc* = b(a* + ¢*) + abe,

it suffices to show that
b(a®+c?) < 2.

We have
2—b(a*+c*)=2—-b(3-b>)=(b—1)*(b+2)>0.
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The equality holds fora =b =c =1, and also fora = 0, b = 1, ¢ = /2 (or any
cyclic permutation).

Second Solution. Let (x,y,z) be a permutation of (a, b,c) such that x > y > z. As
shown in the second solution of P 1.1,

ab?+ bc? +ca® < y(x*+ xz + 22).
Therefore, it suffices to show that
y(x?+xz+2*) <xyz+2,

which can be written as
y(x*+2%) <2

Indeed,
2—y(x*+2*)=2—y(B—y)=(y—10(y +2)=0.

(b) Write the inequality as follows:

Z ala+2)(c+2) < (a+2)(b+2)c+2),

ab?+ bc? +ca®+2(a®+ b%>+c?) < abc + 8,
ab?®+ bc? + ca® < abc + 2.

The last inequality is just the inequality in (a).

P 1.4. Ifa,b,c > 1, then
(® 2(ab? + bc? + ca®) +3 > 3(ab + bc +ca);

(b) ab?+bc2+ca’?+6>3(a+b+o).

Solution. (a) First Solution. From
a(b—12+b(c—1)+c(a—1)*>0,

we get
ab?+ bc?+ca®>2(ab+ bc+ca)—(a+b+c).

Using this inequality gives
2(ab®+ bc*+ca*)+3—3(ab+ bc+ca) > (ab+bc+ca)—2(a+b+c)+3

=(@-1)b-1)+0b-1)(c—1)+(c—1)(a—1)=0.
The equality holds fora=b =c =1.
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Second Solution. From
> bla—1)(b—1)>0,

we get
ab?+ bc*+ca*>a*+b*+c*+ab+bc+ca—(a+b+c).

Thus, it suffices to show that
2(a®*+b*+c*)+2(ab+bc+ca)—2(a+b+c)+3>3(ab + bc + ca),
which is equivalent to
2(a®+b*+c>)—2(a+b+c)+3>ab+bc+ca,

(a—12+(b—-12+(c—12+(a®>+b*+c>—ab—bc—ca) >0,
2@—12+2(b—1+2(c—1P +(a—b)+(b—c)*+(c—a)*>0.

(b) The inequality in (b) follows by summing the inequality in (a) and the
obvious inequality

(a—1)(b—1)+3(b—1)(c—1)+3(c—1)(a—1)=0.

The equality holds fora =b =c =1.

P 1.5. If a, b, c are nonnegative real numbers such that

a+b+c=3, a>b=>c,

then
(@) a?b + b%c +c%2a > ab + bc +ca;
(b) 8(ab? + bc? + ca?) + 3abc < 27;
1 1
(©) 8 < + 5.

a2b + b2c +c%2a = abc

Solution. (a) Write the inequality in the homogeneous form
3(a®b + b%*c+c%a) > (a+ b +c)(ab+ bc +ca),
which is equivalent to
a’b + b?c + c*a—3abc > ab? + bc? + ca® — a®b — b*c — c?a.
This inequality is true because

a’b + b%c+c2a—3abc>0
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(by the AM-GM inequality) and
ab®+ bc*+ca?—a*b—b*c—c*a=(a—b)(b—c)(c—a) <0.

The equality holds fora=b=c =1, and also fora=3 and b =c =0.

(b) Write the inequality in the homogeneous form

(a+ b +c)®>8(ab?+ bc? + ca®) + 3abe,

Za3+3abc+32azb2 SZabz,
Za3+3abc—(2ab2+2azb)24(Zab2—2a2b),

Za3 + 3abc —Zab(a +b)>4(a—b)(b—c)(c—a).

The inequality is true since
(a=b)(b—c)(c—a)<O0

and, by Schur’s inequality of degree three,

Za3 +3abc—Zab(a +b)>0.
The equality holds fora =b =c =1, and also fora = b =3/2 and ¢ = 0.
(c) Since
ab?+bc?+ca’*—a’b—b*c—c?a=(a—b)(b—c)(c—a) <0,
it suffices to prove the symmetric inequality

36 1
<
(a2b+ b2c +c2a)+ (ab? + bc?2+ca?) ~— abc

+5,

which is equivalent to

36 1
<
(a+b+c)(ab+ bc+ca)—3abc ~ abc

+5,

12 < 1
ab+ bc+ca—abc  abc
12 1
<
a(b+c)—(a—1)bc ~ a-bc
12 1
<
a(3—a)—(a—1)bc ~ a-bc

+5,

+5,

+5.

Sincea—1 >0 and
4bc < (b+c)*=(3—a)?,
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it suffices to show that

48 < 4 45
4a(3—a)—(a—1)3—a)? " a(3—a)>

which is equivalent to

48 4
< +
(3—a)(83+a?) ~ a(3—a)?

3,

5a° —30a* + 60a® —38a%?—9a + 12> 0,
(a—1)*(5a®—20a%+ 15a + 12) > 9.

We need to show that 1 < a < 3 involves
5a®>—20a*+15a + 12 > 0.
If 1 <a<2, then
5a®> —20a*+ 15a + 12 = 5a(a —2)* + (12 —5a) > 0.
If 2<a <3, then

5a® —20a* + 15a + 12 = 5(a — 2)* + 10a® — 45a + 52 > 10a* — 45a + 52 > 0

9}? 11
=10{a—2) +—=>0.
4 8

The equality holds fora=b =c=1.

P 1.6. If a, b, c are nonnegative real numbers such that
a’+b%+c¢%2=3, a>b>c,

then 3
ab?+ bc? +ca* < Z(ab +bc+ca+1).

Solution. Let us denote
p=a+b+c, qg=ab+bc+ca.
From a? + b? + ¢2 = 3, it follows that

2q =p*—3.
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In addition, from the known inequalities

(a+b+c)*>a*+b*+c?

and
3(@®+b*+c*)>(a+b+c)
we get
V/3<p<3.
Since

ab?+bc?+ca’*—a’b—b*c—c?a=(a—b)(b—c)(c—a) <0,

it suffices to show that
3
ab?+ bc? +ca® + (a®b + b*c +c%a) < E(ab +bc+ca+1).

which is equivalent to
3
pq < 3abc+ E(q +1),
6abc +3(qg+1) = 2pq.

12 12
Consider two cases: /3 <p < = and = <p<3.

12
Case 1: V/3<p< < Since

6abe+3(q-+1)—2pg = 3(q+1)—~2pq =3—(2p—3)q = 5[6—(2p —3)(p* —3)},

it suffices to show that
(2p—3)(p*—3) <6.

Indeed, we have

24 144 621
2p—3)(p?—-3)<|=—-3|| ——-3]|=—<6.
(2p=3)(p )—(5 )(25 ) 125

12
Case 2: 5 < p < 3. According to Schur’s inequality of degree three, we have

p® +9abc > 4pq.
Thus, it suffices to prove that
2(4pq—p*) +9(q +1) = 6pq,

which is equivalent to
(2p+9)q—2p°+9 =0,
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(2p+9)(p*—3)—4p*+18 =0,
—2p®+9p*—6p—9 >0,
(3—p)(2p*—3p—3)=0.
This inequality is true since 3—p > 0 and

24 9 9
2p*—3p—3>—p—-3p—3==p-3==-
p~—3p zP—3p P 5

The equality holds fora=b=c=1.

P 1.7. If a, b, c are nonnegative real numbers such that a*> + b* + ¢ = 3, then
a’b?® + b%c® + c*a® < 3.
(Vasile C., 2005)
Solution. Let (x,y,z) be a permutation of (a, b, c) such that
xX2y=2z2.

Since
x2y? > 22x? > y222,
the rearrangement inequality yields

a?b* + b3 +c*a® =b-a?b*+c-b**+a-c*a® < x-x y*+y-2*x*+z- y*®

x?+y? 2442
=y(x3y+zzx2+yzg)Sy(x2-—y +zzx2+zz-—y 2

Y2+ +y*+27)  3y(x*+2?)
B 2 B 2 '

Thus, it suffices to show that
y(x?+2?) <2

for x* + y* + 2z = 3. By the AM-GM inequality, we get
6 =2y +(x%+22) + (x2 +2%) > 3y/2y2(x2 + 22)2.

The equality holds fora=b=c=1.

P 1.8. If a, b, ¢ are nonnegative real numbers such that a + b +c = 3, then

a*b?+b*c? +c*a® +4> a3+ b33 + 3ad.
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Solution. Write the inequality as
a*(a*b*+c*—ab®—ac®) + 4 > b%*c*(bc — b?).
Since
ZZ(aZbZ +c*t—ab®—ac®) = Z:[a4 + b* +2a?b? —2ab(a® + b?)]
=> (a®+b)(a—b? >0,
we may assume (without loss of generality) that
a*b?+c*—ab*—ac* > 0.
Thus, it suffices to show that

4> b2c2(bc — b).

Since
C2
bc—b*>< —,
4
it is enough to prove that
16 > b*c".

From

2
3=a+b+c2b+£+£23§ b(f),
2 2 2

the conclusion follows. The equality holds for a = 0, b = 1, ¢ = 2 (or any cyclic
permutation).
O

P 1.9. If a, b, ¢ are nonnegative real numbers such that a + b + c = 3, then

(@) ab®+ bc? +ca® + abc < 4;
a b c
b + + <1
® 4—b 4—c 4—a
(c) ab®+ bc® +ca®+ (ab + bc+ca)? < 12;
(d) ab’ bc? ca?

+ + <1
l+a+b 1+b+c 1l4+c+a
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Solution. (a) First Solution. Let (x,y,z) be a permutation of (a, b, ¢) such that
xX2y=2z2.
As shown in the second solution of P 1.1,
ab®+ bc? +ca® < y(x?* + xz +2%);

hence
ab®+ bc? +ca?+abc < y(x +2)%

Thus, it suffices to show that x + y + 2 = 3 involves
y(x +2)* <4
According to the AM-GM inequality, we have
x+z x+z53
X+z X +2z Y 2 + 2

1
_ +2)2=v- < =1.
4y(x 2 Y 2 2 3

The equality holds fora = b =c =1, and also fora =0, b =1, ¢ = 2 (or any cyclic
permutation).

Second Solution. Without loss of generality, assume that b is between a and c;
that is,
(b—a)(b—c)<0, b*+ca<b(c+a).

Therefore,
ab? + bc? 4 ca? + abc = a(b?+ ca) + bc® + abc < ab(c +a) + bc? + abe

=bla+c)*=b(B8—-b)>=4+(b>—6b>+9b—4)=4—(1—Db)*(4—Db) < 4.

Third Solution. Write the inequality in the homogeneous form
4(a+b+c)®*>27(ab?+ bc? + ca® + abe).

Without loss of generality, suppose that a = min{a, b,c}. Putting b = a + x and
¢ =a+ Yy, where x,y > 0, the inequality can be restated as

9(x?—xy+yHa+(2x—y)(x+4y) >0,

which is obviously true.

(b) First Solution. Write the inequality in the homogeneous form

> :
—S_.
4a+b+4c 3
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Multiplying by a + b + ¢, the inequality becomes as follows:

Za2+ab+ac <a+b+c
4a+b+4c ~ 3 7’

Z(a2+ab+ac_g)<a+b+c
4a+b+4c 4) 12’

Z&Sa+b+c.

4a+b+4c
Since
9 9 1 1 1
= < + +
4a+b+4c (a+c)+QRa+c)+(2c+b) 2a+c 2a+c 2c+b
2 1
= —+ N
2a+c 2c+b
we have

9ab 2ab 2ab bc
Z4a+b+4CSZZa+c Z:2c+b Z:2a+c Z:2a+c
_Zzgz:fc_2b=a+b+c.

The equality holds fora = b =c =1, and also fora =0, b =1, ¢ = 2 (or any cyclic
permutation).

Second Solution. Write the inequality as follows:

D> lad—a)4—c) < (4—a)(4—b)4—c),

32+Zab2+abcs4(2a +22ab)
32+Zab2+abc<4(z ) ,

ab®+ bc* +ca®* +abc < 4.
The last inequality is just the inequality in (a).

(c) Using the inequality in (a), we get
(a+b+c)(ab?+ bc? +ca? +abc) <12,
which is equivalent to the desired inequality
ab® + bc® +ca® + (ab + bc + ca)® < 12.

(d) Let g =ab + bc + ca. Since

Zab2(1+b+c)(1+c+a)=Zab2(4+q+c+c2):(4+q)Zab2+(3+q)abc
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and
[[a+a+b)=1+>(a+b)+ > (b+c)c+a)+]| [(a+b)
=7+3q+Zcz+(3q—abc)= 16 +4q —abc,
the inequality is equivalent to

(4+q)Zab2 +(3+q)abc <16+ 4q—abc,

(4+q)(Zab2+abc—4) <0.

According to (a), the desired inequality is clearly true.
Remark. The following statement is also valid:
e If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

ab®+ bc* +ca*+abc+ (a—1)*(b—1)*(c—1)* < 4,

with equality fora = b =c =1, and also fora = 0, b = 1, ¢ = 2 (or any cyclic
permutation).

Having in view the second solution of (a), it is enough to show that
(a—1)*(b—1)*(c—1)* < (4—b)(1—b)?,
where b is between a and c. This is true if

[(a—1)(c—1)| < vV4—b.

Assuming that a < ¢ (hence a < b < ¢, a <1, c > 1), the inequality can be written

as follows:
(1—a)(c—1)<vV4—b,
a+c—1<ac++v4—b,
2—b<ac++vV4—b.

2—b<+v4—D.

This is true if

Indeed,

— 4—b—(2—b)*  b(3—D)
—(2- by_v___+2 b VA—b+2—b

. b(a+c¢)
V4—b+2—-b"
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P 1.10. If a, b, c are positive real numbers, then

1 + 1 + 1 > 3 .
a(a+2b) b(b+2c) c(c+2a)  ab+bc+ca

First Solution. Write the inequality as

Za(b+c)+bc >3
a(a+ 2b)

b+c bc
+ > 3.
Za+2b Za(a+2b)_
Z b+c >9
a+2b

bc
)L
a(a+ 2b)

By the Cauchy-Schwarz inequality, we have

s ote , [X0+o] 4(Za)

a+2b ~ D(b+c)(a+2b) - 2>a2+4> ab -

It suffices to show that

and

2

and

ala+2b) ~ abcd(a+2b) 3abcdla 6abc >, a

b (Xbe) (Xbe) _, Xab—c)

The equality holds for a = b =c.

Second Solution. We apply the Cauchy-Schwarz inequality in the following way

Ll (Ze) (Za)’

a(a+2b) ~ Dlac%(a+2b) N >la2b2+2abcy.a’

Thus, it suffices to show that

(Za” 3
>la2b2+2abcy.a  D.ab’

which is equivalent to
(Zab)(2a2+22ab) > 32a2b2+6abc2a,
Z:ab(a2 +b?) > Z:azb2 + acha.
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The last inequality follows by summing the obvious inequalities

Z:ab(a2 +b%) > ZZ:azb2
Z:azb2 > acha.

and

P 1.11. If a, b, c are positive real numbers such that a+ b+ ¢ = 3, then

a N b N c > 1
b2+2c c¢2+2a a2+2b

Solution. Using the Cauchy-Schwarz inequality, we get

Z a_ (Za)z B >a*—>ab?

= =1+ .
b2+2c ~ Dla(b%+2c) > ab2+2> ab

Thus, it suffices to show that
Z a*— Z ab® > 0.
Write this inequality in the homogeneous form
(a+b+c)(a®+ b%+c?) > 3(ab®+ bc? +ca?),
which is equivalent to the obvious inequality
ala—c)*+b(b—a)*+c(c—b)*>0.

The equality holds fora=b=c=1.

P 1.12. If a, b, c are positive real numbers such that a+ b+ ¢ > 3, then

a—1 b—1 c¢—1
+ + =0
b+1 c¢+1 a+1
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Solution. Write the inequality as
(@®—D(c+D)+B*—D(a+1D)+(c*=1)(b+1)>0,

ab>+ bc® +ca®?+a®+b>+c*>>a+b+c+3.

From
a(b—1)*+b(c—1)*+c(a—1)*>0,

we get
ab*+ bc*+ca*>2(ab+ bc+ca)—(a+b+c).

Using this inequality yields
ab®*+bc*+ca*+a*+b*+c*—a—b—c—3>(a+b+c)*—2(a+b+c)—3

=(a+b+c—3)a+b+c+1)=>0.
The equality holds fora=b =c =1.

P 1.13. If a, b, c are positive real numbers such that a + b + ¢ = 3, then
1 1 1

a + + =1
@ 2ab?2+1 2bc2+1 2ca?+1
1 1
b + + >1.
®) ab24+2  bc2+2 ca2+2
Solution. By the AM-GM inequality, we have
(a +b+c )3
= > abc
3
(a) Since
2b+
2ab?+1< 2 4+1=2225
c c
it suffices to show that
C a b

+ + > 1.
2b+c 2c+a 2a+b

Using the Cauchy-Schwarz inequality, we get

Z c_ o (Ze) _(a+b+c)2_1

2b+c Sc(@b+c) (a+b+c)?

The equality holds fora=b =c =1.
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(b) By expanding, the inequality can be restated as

a’b3c® + abc(a®b + b%c + c%a) < 4.

Applying the AM-GM inequality gives

(a+b+c) =Za3+6abc+32ab2+32a2b
> 3abc+6abc+9abc+32a2b,

i.e.

a’b + b?c + c2a < 9—6abc.

Therefore, it suffices to show that

which is equivalent to the obvious inequality

a’b3c® + abc(9—6abc) < 4,

(abc —1)*(abc—4) <0.

The equality holds fora=b =c=1.

P 1.14. If a, b, c are positive real numbers such that a+ b+ ¢ = 3, then

Solution. We have

2.

ab bc ca 3
+ —_
9—4bc 9—4ca 9 4ab 5
ab ab b b
< = —
9—4bc_Z:9—(b+c)2 Z:3+b+c a+2b+2c
__Z[ a+2c ]_E_lz a+2c
B a+2b+2c] 2 24da+2b+2c

Thus, it suffices to show that

Z a+2c S
a+2b+2c

Using the Cauchy-Schwarz inequality, we get

2.

a+2c

[>:(a+2c)]?

9

c

_9a+b+c) 9

a+2b+2c

The equality holds fora=b =c=1.

~(a+2c)a+2b+2c)

5(a+b+c)2 5
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P 1.15. If a, b, c are positive real numbers such that a + b + c = 3, then

a’ b? c2
a + + =>1;
(@ 2a+ b2 2b+c?2 2c+a?

a? b? c2
(b)

+ + >
a+2b2 b+2c2 c+2a2

Solution. (a) By the Cauchy-Schwarz inequality, we have

Z a? - (Zaz)z _2iat+2>a%b?

2a+b27 Yla2(2a+b2) 23 a3+ > a2b?’

Thus, it suffices to prove that
>lat+> a?h?>2>
which is equivalent to the homogeneous inequalities
3 a*+3> a?b?>2(> ) (D),
D> lat+3> a?b?—2 ab(a®+b?) >0,
> (a—b)*>o0.

The equality holds fora=b =c =1.
(b) By the Cauchy-Schwarz inequality, we get

s ¢, _(E _zeoser

a+2b2 " Y a(a+2b2)  Dlad+2 a2b?

Thus, it suffices to prove that

Za422a3.
We have
Za4—Za3 =Z(a4—a3—a+1):Z(a—1)(a3—1)20.

The equality holds fora=b=c=1.

P 1.16. Let a, b, c be positive real numbers such that a+ b + ¢ = 3. Then,

1 1 1
+ + <1
a+b2+c® b+c2+a® c+a?+b3

(Vasile C., 2009)
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Solution (by Vo Quoc Ba Can). By the Cauchy-Schwarz inequality, we have

3 2 3 2
Z 1 <Z a@+b*+c D ad®+>ad*+3
(

a+b>+c3 a2+b2+c2)2 (a2+b2+c2)2
Therefore, it suffices to show that

(@+ b2+ >a®+ b3+ +(a®>+b*+c*) +3,
or, equivalently,

(a®+ b? + ¢?)? +Za2(3—a) > 4(a®+ b* +c*) + 3.

Let us denote t = a® + b? + c?. Applying again the Cauchy-Schwarz inequality, we

get
S ooy 5 BHOOF _0-a'— b
- Y)B-a) 6 '
Thus, it is enough to show that
)2
t?+ -0 >4t +3.

This inequality reduces to (t —3)? > 0. The equality occurs fora=b=c=1.

P 1.17. If a, b, c are positive real numbers, then

1+ a? N 1+ b? N 14 c?
1+b+c2 14+c+a?2 1+4+a+b%2"—

Solution. From
1+b>
+c2,

1+b+c2<1+

we have
1+ a? . 2(1+a?)
1+b+c2 1+b2+2(1+c2)

Thus, it suffices to show that

X y Z
+ + >1
y+2z z+2x x+2y

2

where
x=1+a*> y=1+0b% z=1+c>

]
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Using the Cauchy-Schwarz inequality gives

S A S (x+y+2)?
y+2z z+4+2x x+2y x(y+22)+y(+2x)+z(x+2y)
2
_ (x+y+2) >1.
3(xy +yz+zx)

The equality occurs fora=b =c=1.

P 1.18. If a, b, c are nonnegative real numbers, then

a b c 1
+ + <-.
4a+4b+c 4b+4c+a 4c+4a+b 3

(Pham Kim Hung, 2007)

Solution. If two of a, b, c are zero, then the inequality is trivial. Otherwise, multi-
plying by 4(a + b + ¢), the inequality becomes as follows:

4a+4b+c 3
4a(a+Db+ 1
Z[M—a]s—(a+b+c),
4a+4b+c 3
ca 1
—— < —(a+b+c).
Z4a+4b+c_9(a ‘)
By the Cauchy-Schwarz inequality, we get
9 9 < 1 2

= + )
4a+4b+c (2b+c)+2(2a+b)  2b+c 2a+b

Z ca < EZCa( 1 + 2 )
4a+4b+c 9 2b+c 2a+b
1 ca 2ab 1
= — + = — s
9(22b+c Z:2b+c) 52.°
as desired. The equality occurs for a = b = ¢, and also for a = 2b and ¢ = 0 (or
any cyclic permutation).

Therefore,

]

P 1.19. If a, b, c are positive real numbers, then

a+b b+c c+a
+ +
a+7b+c b+7c+a c+7a+b

2
= —.
3
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Solution. Write the inequality as
a+b 1 2 3
—_— = |>=—=, k>0
Z(a+7b+c k)_B k’ ’
Z(k—l)a+(k—7)b—c>2k—9
a+7b+c -3

Consider that all fractions in the left hand side are nonnegative and apply the
Cauchy-Schwarz inequality, as follows:

Z(k—l)a+(k—7)b—c - [(k—=1)Dla+(k—=7)Db—>D.c]?
a+7b+c " DN(a+7b+)(k—1)a+(k—7)b—c]
~ (2k—9)*(2a)’
(8k—51)> a2 +2(5k—15)> ab’
We choose k = 12 to have 8k —51 = 5k — 15, hence

(8k—51)> a2 +2(5k—15)> ab = 45(> a) .

For this value of k, the desired inequality

Z(k—l)a+(k—7)b—c S 2k—9
a+7b+c - 3

can be restated as
1la+5b—c
S Marshoe s
a+7b+c
Without loss of generality, assume that a = max{a, b,c}. Consider further two

cases.
Case 1: 11b + 5¢ —a > 0. By the Cauchy-Schwarz inequality, we have

Z 1la+5b—c [2.(11a+5b—c)] 225 (Za)’ _
a+7b+c ~ S(a+7b+c)(1la+5b—c) 45(3a)’ B

Case 2: 11b + 5¢ —a < 0. We have

a+b a+b 2 a—11b—2c
Z > =4 —>
a+7b+c a+7b+c 3 3(a+7b+c)

2
>

Thus, the proof is completed. The equality holds for a = b =c.

P 1.20. If a, b, c are positive real numbers, then

a+b b+c c+a 6
+ + > -,
a+3b+c b+3c+a c+3a+b 5

(Vasile C., 2007)
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Solution. Due to homogeneity, we may assume that
a+b+c=1,

when the inequality becomes

5> (1—c)(1+2c)(1+2a) > 6(2a + 1)(2b + 1)(2c + 1),

5(4+6> ab—4> ab)=6(3+4 > ab+8abc),
1+32ab > 1OZa2b+24abc,

(a+b+c)P+3(a+b+c)ab+bc+ca)>10(a’b + b%c +c*) + 24abc,
> a®+6> ab?>4> a’b+9abc,
[2>1a®~> ab(a+b)]+3[ > ab(a+b)—6abc|+10(> ab*~ > a?b) >0,
D(a+b)a—by+3> cla—bP+10(> ab>— > a®h) >0,

Z(a +b+3c)(a—b)?+10(a—b)(b—c)(c—a) = 0.

Assume that
a =min{a, b, c},

and use the substitution
b=a+x, c=a+y, x,y = 0.
The inequality becomes
(Ga+x+3y)x*+Ga+x+y)x—y)+(5a+3x+y)y*—10xy(x —y) > 0.
Clearly, it suffices to consider the case a = 0, when the inequality becomes
x®—4x*y +6xy*+y*>0.
Indeed, we have
x*—4x’y +6xy*+y? =x(x—2y)*+2xy*+y*>0.

The equality holds for a = b =c.
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P 1.21. If a, b, c are positive real numbers, then

2a+b 2b+c 2c+a
+ > 3.
2a+c 2b+a 2c+b

(Pham Kim Hung, 2007)

Solution. Without loss of generality, assume that a = max{a, b, c}. There are two
cases to consider.

Case 1: a < 2b + 2c. Write the inequality as
Z(2a+b 1) 3
— — 2_’
2a+c 2 2
Z:2a+2b—c23
2a+c

2a+2b—c>0, 2b+2c—a=>0, 2c+2a—b>0,

Since

we may apply the Cauchy-Schwarz inequality to get

2 2
gr2atzboc, [Y@a+20—-a _9(Za) _,
2a+c _Z(2a+2b—c)(2a+c)_3(za)2_'
Case 2: a > 2b + 2c. Since
2a+c—(2b+a)=(a—2b—2c)+3c >0,
we have
2a+b 2b+c _2a+b 2b+c 3b -1

+ > + =1+
2a+c 2b+a 2a+c 2a+c 2a+c
Therefore, it suffices to show that

2c+a
2c+b

Indeed,
2c+a _ 2c+2b+2c

>
2c+b 2c+b
Thus, the proof is completed. The equality holds for a = b =c.

P 1.22. If a, b, c are positive real numbers, then
al(a+b) b(b+c) clc+a) _3(a*>+b*>+c?)
+ + < .
a+c b+a c+b a+b+c
(Pham Huu Duc, 2007)




66 Vasile Cirtoaje

Solution. Write the inequality as

Za(a+b)(a+b+c)

< 3(a*+b*+c?),
a+c

< 3(a*+ b*+c?),

Z ab(a+b)+a(a+b)(a+c)

a+c

SE@HD) a2 4 b2 4 c?)— (ab+ be +ca)
a+c

Let (x, y,2) be a permutation of (a, b, ¢) such that x > y > z. Since
X+y=z2z+x=>2y+z

and
xy(x+y)=zx(z+x)=yz(y +2),

by the rearrangement inequality, we have

Z ab(a + b) < xy(x+y) +zx(z+x) N vz(y +2)
atc =~ y+sz z+ X x+y

Consequently; it suffices to show that

xy(x+y) N yz(y +2)

n " <2(x*+y*+2*)—xy—yz—2zx.
y+z X+y

Write this inequality as follows:

xy(u—1)+yz(y+z —1) <2(x*+y*+22—xy —yz—2X),
y+sz x+y
xy(x—z2) N yz(z—x)
yY+sz x+y
y(x+y+2)(z—x)
(x+y)(y +2)

<(x—yP+Q—2P+(E—x),

<(x—y)P+(y—2)7+(=z—x)~

Since
Y +y+z)<(x+y)y+2),
the last inequality is clearly true. The equality holds fora = b =c.

P 1.23. If a, b, c are real numbers, then

a’—bc N b%—ca N c>—ab
4a2+ b2 +4c2  4b%2+c2+4a?  4c2+a2+4b2
(Vasile C., 2006)
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Solution. Since
4(a®*—bc) 1 (b + 2c)?

4a2 + b2 + 4¢2 4a2 + b2 + 4¢2’
we may rewrite the inequality as

(b + 2c)? (c +2a)? (a +2b)?
4a%+ b2 +4c2 ' 4b2+c2+4a>  4c2+ a2+ 4b?

<3.

Using the Cauchy-Schwarz inequality gives

(b+2c)* (b +2¢)? < b2 N 2c2
4a2+b2+4c2 (2a2+b2)+2(2c2+a?) ~ 2a2+b2  2c2+a?’

Therefore,

(b + 2c)? b? 2c2 b2 2a>
— <y ———+y ——— = + =3
Z4a2+b2+4c2 Zza2+b2 ZZCZ-I-QZ 22a2+b2 22a2+b2

The equality occurs when

a(2b? + c?) = b(2c¢? + a?) = c(2a® + b?);
that is, when a = b = ¢, and also when a = 2b = 4c¢ (or any cyclic permutation).
Remark. Similarly, we can prove the following generalization.

e Let a,b,c be real numbers. If k > 0, then

a®—bc N b%—ca N c>—ab
2ka? + b2 +k2c2  2kb?+c2+k2a?  2kc?+a?+ k2b?

>0,

with equality for a = b = ¢, and also for a = kb = k*c (or any cyclic permutation).
U

P 1.24. If a, b, c are real numbers, then

(v ala+ b2 +b(b+c)+c(c+a)d>0;

(b) a(a+b)> +b(b+c)’+c(c+a) >0.
(Vasile C., 1989)

Solution. (a) Using the substitution
b+c=2x, c+a=2y, a+b=2gz
which are equivalent to

a=y+z—x, b=z4+x—y, c=x+y—gzg,
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the inequality becomes in succession
xt+yt+trxyi+y2 e > 3y + ¥+ 23x,
Z:(x4 +2xy®—2x3y + yH) >0,
Z(x2 —xy—y*)’+ szyz >0,
the last being clearly true. The equality occurs fora=b =c=0.

(b) Using the same substitution, the inequality turns into
x®+y0+28+xy® +yz® +2x° > x°y + ¥’z +2°x,
which is equivalent to
D> IxC+yo—2xy(x* =y =0,
z:[(x2 + ¥t = x?y* + yH) —2xy (x> + y)(x*—yH] >0,

D () —xy —y*) 2 0.

The equality occurs fora =b =c =0.

P 1.25. If a, b, c are real numbers, then
3(a*+b*+cH+4(a*b + b3c+ca)>0.
(Vasile C., 2005)

Solution. If a, b, c are nonnegative, then the inequality is trivial. Since the inequal-
ity remains unchanged by replacing a, b, c with —a, —b, —c, respectively, it suffices
to consider the case when only one of a, b, ¢ is negative; let c < 0. Replacing now
¢ with —c, the inequality can be restated as

3(a* + b*+cM) +4a®b > 4(b3c + ca),
where a, b,c > 0. It is enough to prove that
3(a*+b*+c*+a®b) > 4(b3c + ca).
Case 1: a < b. Since a®b > a*, it suffices to show that
6a* +3b* +3c* > 4(b%c + ac®).
Using the AM-GM inequality yields

3b* +¢* > 44/ b12c4 = 4b3¢.
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Therefore, it suffices to show that
6a* +2c* > 4acd.
Indeed, we have

1 1 1 atcl2 4
3a4+c4:3a4+§c4+§c4+—c424 = —ac® > 2ac’.

3 9 V3

Case 2: a > b. Since 3a®b > 3b%, it suffices to show that

3a*+6b* +3c* > 4(b%c + ac®).
By the AM-GM inequality, we get

c4

4
60+ 5 = 2b% +2b* +2b* + % > 4v/b12c4 = 4b°c.
Thus, we still have to show that
23
3a*+ —c* > 4ac’.
8
We will prove the sharper inequality
4, ° 4 3
3a” + EC = 4ac”.
Indeed, we have

125g4c12
a4+ 2ct = 30+ D¢t 4 et 4 Dt > 4 2220CT

> > 4acd.
2 6 6 6 72

The equality occurs fora=b =c =0.

P 1.26. If a, b, c are positive real numbers, then

(a—b)2a+b) (b—c)2b+c) (c—a)2c+a)

> 0.
(a+ b)2 (b+c)? (c+a)?

(Vasile C., 2006)

Solution. Since

(a=b)(2a+b) 2a°—b(a+b) 24> b
(a+b)2  (a+b)2  (a+b)2 a+b’
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we can write the inequality as
a \? b
2> (=) - >0,
Z a+b Za+b
According to P 1.1 in Volume 2, we have
a \? a )2 b \?
23 () ~2(5) 26
Z a+b Z a+b +Z b+c
_Z[ 1 4 1 :|
(1+b/a)? (1+c/b)?

1 a b
ZZ:1+c/a:Z:a+c:Z:b+a'

Therefore,

a )2 b b b
ZZ:(a+b) _Za+bzzb+a_za+b:0'

The equality holds for a = b =c.

P 1.27. If a, b, c are positive real numbers, then

(a—b)(2a+b) N (b—c)(2b+c¢) N (c—a)(2c+a) >0
a2+ ab + b2 b2+ bc +c2 c24+ca+a2

(Vasile C., 2006)

Solution. Since

a2+ ab + b2 az+ab + b2 _a2+ab+b2_

(a—Db)(2a+Db) 3a®*—(a®*+ab+b?) 3a?

5

we can write the inequality as

2

Za—ZL
az+ab + b2

>, L >1
1+b/a+(b/a)?

Clearly, this inequality follows immediately from P 1.45 in Volume 2. The equality
holds fora=b =c.
O
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P 1.28. If a, b, c are positive real numbers, then

(a=b)(Ba+b) (b—c)Bb+c) (c—a)B8c+a)
+ +
a?+ b? b2 +¢2 c2+a?

= 0.

(Vasile C., 2006)

Solution. Since
(a—Db)(3a+b)=(a—b)*+2(a*—b?),

we can write the inequality as
(a—b)? a?—b?
Zaz_,_bz Zaz_l_bzzo'

a? —b? a? —b?
Za2+b2+l—[a2+b2:0’

Using the identity

the inequality becomes

(a—b)? a’ — b?
Za2+b2_ l_[a2+b2'
By the AM-GM inequality, we have
(a—b)? (a—b)?
Za2+b223 l_[a2+b2'

Thus, it suffices to show that

(a—Db)?
>2 ,
a?+ b2 a?+ b2
which is equivalent to

(a— b)2 (a®>—b?)®
271_[ az+b2 = l_[ (a2 + b2)3’
This inequality is true if
27[ J(a®+ 2?2 = | J(a—b)(a+bY.

Assume that a = max{a, b, c}. For the nontrivial case a > ¢ > b, we can get this
inequality by multiplying the inequalities

3(a®*+b%)?>2(a—Db)(a+ D)3,
3(c?+ b?)?> > 2(c — b)(c + b)®,
3(a®+c?)?* > 2(a—c)(a +c).
These inequalities are true because
3(a*+ b*)*—2(a—Db)(a+ b)® = a*(a —2b)* + b*(2a* + 4ab + 5b*) > 0.
The equality holds for a = b =c.
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P 1.29. Let a, b, c be positive real numbers such that abc = 1. Then,

1 1 1
+ + <1
l1+a+b2 1+4+b+c2 14c+a?

(Vasile C., 2005)

Solution. Using the substitution

we have to show that xyz = 1 involves

1 1 1
+ + <1
1+x3+y® 1+4+y3+25 1+4+23+x6

By the Cauchy-Schwarz inequality, we have

Z 1 <Z 2t +x+y? Z(z4+x2yz+xzzz)-

T+x3+y0 = & (22+x2+y2)2 (x2+y2+22)2

So, it remains to show that
(2 +y*+2%)* > Zx“ +xysz +Zx2y2,
which is equivalent to the known inequality
szyz > xysz.
The equality occurs fora=b=c=1.
Remark. Actually, the following generalization holds:

e Let a, b, c be positive real numbers such that abc = 1. If k > 0, then

1 1
+ + <
l1+a+bk 1+b+ck 1+c+ak

P 1.30. Let a, b, ¢ be positive real numbers such that abc = 1. Then,

a b c

+ + >
(a+1)(b+2) (b+1)(c+2) (c+1)a+2)

1
3"
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Solution. Using the substitution

where x, y,z are positive real numbers, the inequality can be restated as

2X " Xy " yz
(x+y)y+22) (y+2)z+2x) (z+x)(x+2y)

1
= —.
2

By the Cauchy-Schwarz inequality, we have

Z ZX > (Z zx)

1
(x+ )y +22) ~ Dax(x+y)(y+22) 2

The equality occurs fora =b =c =1.

P 1.31. If a, b, c are positive real numbers such that ab + bc + ca = 3, then
(a+2b)(b+2c)(c+2a) = 27.

(Michael Rozenberg, 2007)

Solution. Write the inequality in the homogeneous form

A+B>0,
where
A=(a+2b)(b+2c)(c+2a)—3(a+b+c)(ab+ bc+ca)
=(a—=b)(b—c)(c—a)
and
B =3(ab+bc+ca)[a+b+c—\/B(ab+bc+ca)].
Since

_ 3(ab+bc+ca)[(a—b)?+(b—c) +(c—a)’]
- 2(a+b+c+ +/3(ab+ bc +ca)]

- 3(ab+bc+ca)[(a—b)*+(b—c)*+(c—a)?]
- 4(a+b+c)

B

>

it suffices to show that

4(a+b+c)a—b)(b—c)(c—a)+3(ab+bc+ca)[(a—b)*+(b—c)*+(c—a)*]>0.
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Consider ¢ = min{a, b, ¢}, and use the substitution
a=c+x, b=c+y, x,y =0.
The inequality becomes
—Axy(x—y)Bc+x+y)+6(x*—xy+y*)[3c*+2(x+y)c+xy]=>0,
which is equivalent to
9(x*—xy+y?*)c?+6Cc+D >0,

where
C=x]—x’y+xy*+y>>x(x*—xy +y?),
D =xy(x*+5y%—3xy)> (2v/5—3)x2y>.

Since C > 0 and D > 0, the inequality is obvious. The equality holds for a = b =
c=1.
O

P 1.32. If a, b, c are positive real numbers such that ab + bc + ca = 3, then

a b c
+ + <
a+ad+b b+b3+c c+c3+a

(Andrei Ciupan, 2005)

Solution. Write the inequality as

1 1 1
+ + <l1.
1+a2+b/a 1+b2+c¢c/b 1+c%2+a/c

By the Cauchy-Schwarz inequality, we have
2
D _ 1 D < +l+ab
14+a2+b/a (c+a+b)?

The equality holds fora=b =c=1.

P 1.33. If a, b, c are positive real numbers such that a > b > c and ab+ bc+ca = 3,
then

1 1 1
+ + >1
a+2b b+2c c+2a
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Solution. According to the well known inequality

X+y+z> \/B(xy+yz+zx),

where x, y, z are positive real numbers, it suffices to prove that

1 1 1

+ + >
(@+2b)(b+2c) (b+2c)(c+2a) (c+2a)a+2b)

1
3
This is equivalent to the following inequalities
9a+b+c)=(a+2b)(b+2c)(c+2a),
3(a+b+c)(ab+ bc+ca)=(a+2b)(b+2c)(c+2a),
a’b + b%c + c*a > ab® + bc? + ca?,
(a=b)(b—c)(a—c)=0.

The last inequality is clearly true for a > b > c. The equality occurs for a = b =
c=1.
O

P 1.34. Ifa,b,c €[0,1], then

a_ . b 4o 1
4b2+5 4c2+5 4a2+5° 3

Solution. Let

E(a,b,c) = a + b + ¢
P 4b245 0 4245 4a2+5
We have
a—1 1 1
E(a,b,c)—E(1,b,c) = + — =
(a,5,)=E(1.b,0) = 7575 C(4a2+5 9)
:(1_a)[4c(1+a)_ 1 ]
9(4a%2+5) 4b%2+5
4(1+a) 1]
<(1—q)| ——2= —=
<( a)[9(4a2+5) 9
_ _ _ 2
_ (1—a)(1—2a) <o,
9(4a2 +5)

and, similarly,

E(a,b,c)—E(a,1,c) <0, E(a,b,c)—E(a,b,1)<0.
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Therefore,
1
E(a,b,c) <E(1,b,c)<E(1,1,c)<E(1,1,1)= 3
1
The equality occurs fora = b = ¢ =1, and also for a = > and b =c =1 (or any

cyclic permutation).
O
1
P 1.35. Ifa,b,c € [g,?»], then

a + b + C
a+b b+c c+a

7
= —.
S5

Solution. Assume that a = max{a, b, c} and show that
E(a,b,c)>E(a,b,vab)> %,

where
a b C

+ + :
+b b+c c+a

E(a,b,c)=
a

We have
b c 2vb
E(a,b,c)—E(a,b,\/E)zb+c+c+a—ﬁ+ﬁ
_ (va-vB)(Vab—c)
_(b+c)(c+a)(1/a+\/3)

1 1
Substituting x = \/%, the hypothesis a, b,c € [g, 3] involves x € [g, 3]. Then,

2vb
E(a,b,\/ab)—z= S /b 7
5 a+b Ja++vb 5
x? 2 7
+ R

T x2+1 x+1 5
_ 3—7x+8x*—2x>
 5(x+1)(x2+1)
B=x)x*+(1—x)]
5+ 1)(x2+1)

> 0.

1
The equality holds fora =3, b = 3 and ¢ =1 (or any cyclic permutation).
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1
P 1.36. Ifa,b,c € [—,
d 72

3 + 3 + 3 > 2 4 2 2
a+2b b+2c c¢c+2a a+b b4+c cH+a

\/5], then

Solution. Write the inequality as

Z( 3 2 +i—i)>0 k>0
a+2b a+b ka kb))’ ’

Z —(a—Db)[a*—(k—3)ab + 2b?] -0
kab(a+2b)(a +b) -

Choosing k = 6, the inequality becomes

Z (a—b)*(2b—a)
6ab(a+2b)(a+b) ~

Since 9
2b—a>-——+v2=0,
V2

the conclusion follows. The equality holds for a = b =c.

P 1.37. If a, b, c are nonnegative real numbers, no two of which are zero, then

4abc N a’+ b%+c?
ab2+ bc?2+ca2+abc ab+bc+ca

(Vo Quoc Ba Can, 2009)

First Solution. Without loss of generality, assume that b is between a and c; that
is,
b%*+ca < b(c +a).

Then,
ab?+ bc* + ca®? + abc = a(b* + ca) + bc* + abe

<ab(c+a)+ bc*+abc
= b(a +c)?,

and it suffices to prove that

4ac +a2+b2+c2
(a+c¢)>? ab+bc+ca
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This inequality is equivalent to
[a’+c2—bla+c)]*>0.

The equality holds for a = b = ¢, and also for a = 0 and b = ¢ (or any cyclic
permutation).

Second Solution. Let (x,y,z) be a permutation of (a, b, c) such that x > y > z.
As we have shown in the second solution of P 1.1,

ab®+ bc? +ca® < y(x?* + xz +2%);

hence
ab®+ bc* +ca* +abc < y(x +2)%.

Thus, it suffices to prove that

4xyz x*+y?+ 22

> 2,
y(x+2)? xy+yz+zx

which is equivalent to

x4+ y? + 22 - 2(x? +2?)
xXy+yz+zx  x+z)>?

(x2+ 22 —2y(x +2)(x* +2*) + y*(x +2)*> 0,
(x?+22—xy—yz)*>0.

P 1.38. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

1 1 1

+ + >
ab2+8 bc2+8 ca?+8

1
3
(Vasile C., 2007)

Solution. By expanding, we can write the inequality as
64 > r®+ 16A+ 5rB,

64>r>+(16—5r)A+5r(A+B),

where
r=abc, A=ab*+bc*+ca®, B=a’b+ b’ +c3a.

By the AM-GM inequality, we have

(a+b+c)3
r<|———] =1.
3
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On the other hand, by the inequality (a) in P 1.9, we get
A<4-—r,
and by Schur’s inequality, we have
(a+b+c)*+9abc>4(a+Db+c)ab+ bc+ca),

which is equivalent to

2 _
A+B< 743r.

Therefore, it suffices to prove that

5r(27 —3r)

64>r3+(16—5r)(4—r)+ 2

We can write this inequality in the obvious form
r(1—r)(9+4r)=0.

The equality holds fora = b =c¢ =1, and also fora =0, b =1, ¢ = 2 (or any cyclic
permutation).
O]

P 1.39. If a, b, c are nonnegative real numbers such that a + b + c = 3, then

ab bc ca
+ +
bc+3 ca+3 ab+3

<2

4

(Vasile C., 2008)
Solution. Using the inequality (a) in P 1.9, namely
a’b + b%c +c?a < 4—abc,
we have
Zab(ca +3)(ab+3)= achazb +9abc + 3Z:a2b2 + 9Zab
< 13abc —a*b?*c* + SZ:azb2 + 92 ab.
On the other hand,
(ab+3)(bc +3)(ca+3) = a?b?c® +9abc + 92 ab +27.

Therefore, it suffices to prove that

4(13abc —a?b%c? + I%Z:azb2 + 9Zab) <3 (azbzc2 +9abc + 9Zab + 27) ,
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which is equivalent to
7a’b?c? + 81 > 25abc + 122 a’b? + 92 ab,

7r: +47r > 3(q +3)(4g—9),

where
gq=ab+bc+ca, r=abc, q<3, r<i.

Since
7r2 4+ 47r > 9r? + 45r,

it suffices to show that
3r+15r > (q+3)(4qg—9).
Consider the non-trivial case 9
2 <q<3
and apply the fourth degree Schur’s inequality

P’ —q)(4g—p*) _ O—9)(49=9)

rZ(
6p 18

It remains to show that
(9—q)*(49—9)° N 5(9—q)(49—9)
108 6

which is equivalent to

= (q+3)(49—9),

(49 —9)(3—q)(69q —4q>—81) > 0.
This is true because

699 —4q*—81=(3—q)(4g—9) +6(8q—9) > 0.

3
The equality holds fora =b =c =1, and also fora =0 and b =c = 3 (or any

cyclic permutation).
U

P 1.40. If a, b, c are nonnegative real numbers such that a + b + c = 3, then

@ a + b + c >§_
b2+3  ¢2+3 a2+3 4

a b c 3

b + + >
®) b3+1 ¢3+1 a34+1 2

(Vasile Cirtoaje and Bin Zhao, 2005)
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Solution. (a) By the AM-GM inequality, we have

B243=Db2+1+1+1>4vb2 13 =4b.

Therefore,
3a ab? ab? 1
=a— >q———=a—-abVb.
b2+3 ¢ b2+3 a 4/b a 4a
Taking account of this inequality and the similar ones, it suffices to prove that
abV/'b + bey/C +cava < 3.

This inequality follows immediately by replacing a, b, ¢ with /a, Vb, /¢ in the in-
equality in P 1.7. The equality holds fora=b=c=1.

(b) Using the AM-GM Inequality gives

3 3
1
a a ab >a ab =a——ab\/g,

B+l - B+1- " 2bvD 2
and, similarly,
b 1 c 1
ar12bTgbe g EeT eV
Thus, it suffices to show that
abv/'b+ bey/c +cava < 3,

which follows from the inequality in P 1.7. The equality holds fora =b =c =1.

Conjecture. Let a, b, c be nonnegative real numbers such that a+ b +c =3. If
0<k<3+2v3,

then
a b c 3

+ + > .
b2+k c2+k a?+k 14k
For k = 3 + 24/3, the equality occurs when a = b = ¢ = 1, and again when a = 0,
b =3—+/3 and c = v/3 (or any cyclic permutation thereof).

]

P 1.41. Let a, b, ¢ be positive real numbers, and let
1 1 1
x=a+—-—1, y=b+—--—1, g=c+——1.
b c a

Prove that
xy+yz+zx=>3.

(Vasile C., 1991)



82 Vasile Cirtoaje

First Solution. Among x, y,z, there are two numbers either less than or equal to
1, or greater than or equal to 1. Let y and z be these numbers; that is,

(y—1(=z—-1)=0.

Since
xy+yz+zx—3=(y—-1)E—-1D+x+1)(y+2)—4,

it suffices to show that

(x+1)(y +2) = 4.
Since
1 1 1
y+z=b+—-—+c+-—2>b+-,
a c a
we have

(x+1)(y+z)—42(x+1)(b+1)—4=ab+ib—220.
a a

The equality holds fora=b =c = 1.

Second Solution. Without loss of generality, assume that x = max{x, y,z}. Then,

x>1(x—l— +z)—1[(a+1)+(b+1)+(c+1)—3]
3 Y 3 a b c
2%(2+2+2—3)=1.

On the other hand, from

1 1 1 1
(x+D)(y+1)(z+1)=abc+—+a+b+c+—+—-+—
abc a c

1 1 1
>2+a+b+c+—+—+—
a b c
=5+x+y+z,
we get
Xyz+xy+yz+zx=4.
Since )
1 c—1
y+z=—+b+( ) >0,
a

c
two cases are possible: yz < 0 and y,z > 0.

Case 1: yz < 0. Since xyz < 0, it follows that
xy+yz+zx=4—xyz=4>3.

Case 2: y,z > 0. We need to show that d > 1, where

d= Xy +yz+szx
_‘/ 3 )
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By the AM-GM inequality, we have d® > xyz. Thus, from xyz +xy + yz +2x > 4,
we get
d®+3d* >4,

(d—1)(d+2)*>>0,

hence d > 1.

P 1.42. Let a, b, ¢ be positive real numbers such that abc = 1. Prove that
1 2 1 2 1 2
(a—g—ﬁ) +(b_-—¢§) +(c———\/§) > 6.
c a

Solution (by Nguyen Van Quy). Using the substitution

a==, b=—, c=—, x,y,2>0,
X Z y

the inequality becomes as follows:

(2 va) + (2 va) + (2 -va) 26,

x y Z

— o2 — v\2 —vN\2 — — —
(y Z) +(z x) +(x y) —2«/5(}/ z+z x+x y)ZO,
x y Z x y Z
N2 _ 2 — 2 922y — — —
(y Z) +(z x) +(x y) L2V =)=y
x y Z xXyz
Assume that x = max{x, y,z}. For x > z > y, the inequality is clearly true. Con-
sider further that x > y > z and write the desired inequality as

w?+v2+w? > 2vV2 uvw,

where

In addition, we have

4 4
uv=(1——)(1——)<1-1=1.
y X

According to the AM-GM inequality, we get
u? +v2+w? > 2uv +w? > 2utv? +w? > 2v2 uvw.

This completes the proof. The equality holds for a = b =c.
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P 1.43. Let a, b, c be positive real numbers such that abc = 1. Prove that

1
1+c——|>2.

a

1
1+b—=
c

1
l+a——|+ +
b

Solution. Using the substitution

a=z, bzf, c

Z
= —, x,y,z2>0,
X Z y

the inequality can be restated as

Y X~y

Z

Z2—X
1+——|>2.

y

Without loss of generality, assume that x = max{x, y,z}. We have

—2Z
R N I
X

‘1+y_z‘+’1+x_y‘+ 1+Z_x‘—22‘1+y_z)+‘1+x_y’—2
x z y x z
+y— +x— - — — - -

_Xty—z zhx-y ,_yoE Xoy yoz Xoy x—z
X Z X Z X X X

P 1.44. If a, b, c are different positive real numbers, then
b

c—a

a
b—c

1+ ¢

‘1-%- ‘-i-

+ |1+ ‘>2.
S

a —
(Vasile C., 2012)

Solution. Without loss of generality, assume that a = max{a, b, c}. It suffices to

show that c

a
1+ ‘+‘1+ ‘>2,
‘ b—c b

a —
which is equivalent to
a+b—c a—b+c

+
|b—c| a—b
For b > c, this inequality is true since

> 2.

a+b—c+a—b+c>a+b—c: a
|b—c| a—b>b |b—c| b—c
Also, for b < ¢, we have
a+b—c+a—b+c :a+b—c+a—b+c
|b—c| a—>b c—b a—b

+1>1+1=2.
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P 1.45. Let a, b, c be positive real numbers such that abc = 1. Prove that

1 1)\? 1 1)? 1 1} 3

2a—=—=| +(2b—=—==) +[2c—====| = =.

b 2 c 2 a 2 4
(Vasile C., 2012)

Solution. Using the substitution

1 1 1
x=2a——, y=2b——, z2=2c——,
b c a

we can write the inequality as

> +y*+22>x+y+z.

x+y+z=22a—2%
xyz=7—4Za+ZZ%,

2+ y+2z)+xyz=7.

From
and

it follows that

In addition, from

x|+ |yl + |zl
3

>2(x+y+2)+xyz=7,

3
2(|X|+|y|+|2|)+( ) 2 2(]x[+ |yl +[z]) + [xyz|

we get
|x|+ |y|+|z| = 3.

Therefore, we have
2 2 2 ]‘ 2
xX“+y‘+g 2§(|x|+|y|+|z|) > x|+ |yl+ Izl =2x+y+z.

The equality holds fora=b=c=1.

P 1.46. Let

where a > b > ¢ > 0. Prove that

Xy + z+zx>g
yrTy =16’

(Vasile C., 2011)
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Solution. Write the inequality as

Siavt )+ 2= (a4 1) w620,

Z Z (a—b)(b;C)(a—C)
Y=g = (X0 (1)

Thus, it suffices to prove the symmetric inequality

23 (ab+ )+ (Za)(22)-52 (a2 ) +9=0.

Since

\a

we have

Setting
p=a+b+c, g=ab+bc+ca, r=abc,

we need to show that
(2q—5p+9)r+pqg—59+2p =0
for all a, b,c > 0. For fixed p and g, the linear function
f(r)=(29—5p+9)r +pq—>5q+2p

is minimal when r is either minimal or maximal. Thus, according to P 3.57 in
Volume 1, it suffices to prove that f(r) > 0 for a =0 and for b =c.
For a = 0, we need to show that

(b+c)bc—5bc+2(b+c)=0.
Indeed, putting x = v/bc, we have
(b+c)bc—5bc+2(b+c) > 2x3—5x%+4x > 0.
For b = c, since
p=a+2b, q=2ab+b* r=ab?
the inequality f (r) > 0 becomes
(4ab +2b*—5a —10b + 9)ab® + (a + 2b)(2ab + b*) — 10ab — 5b* + 2a + 4b > 0;

that is,
Aa?+2Ba+C >0,
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where
A=b(4b>*—5b+2)>0, B=b*—5b>+7b>—5b+1, C=b(2b>*—5b+4)> 0.

Let
1
x=b+—, x>=2.
b
The inequality B > 0 is equivalent to
1 1
b2+——5(b+—)+720,
b2 b

x2—5x+5>0,

5+ +/5
R

X =
Consider two cases.

5+
Case 1: x >

5
. SinceA>0,B >0, C > 0, we have Aa® + 2Ba+ C > 0.

54+ 45
Case 2: 2<x < ‘/_. Since A>0,B<0,C>0and

Aa?+2Ba + C = (Aa® + C) + 2Ba > 2a(VAC + B),

we need to show that AC > B?, which is equivalent to

8(b2+i)—30(b+1)+45>[b2+l—5(b+l)+7]2
b2 b o b2 b ’
8x%—30x + 29 > (x*—5x + 5),

(x —2)*(x*—6x—1)<0.

This inequality is true for x < 3 + /10, therefore for x < (5 + +/5)/2. Thus, the
proof is completed. The equality holds fora=b=c=1.
O

P 1.47. Let a, b, ¢ be positive real numbers, and let

E=(a+1—\/§)(b+%—\/§)(c+l—x/§);

a C

1 1 1
F=(a+——«/§)(b+——\/§)(c+——«/§).
b c a
Prove that E > F.
(Vasile C., 2011)
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Solution. By expanding, the inequality becomes

Z:(a2 —bc) + Z bc(bc—a?) > ﬁz ab(b—c).

D> (a?—bc)= Y a*~> ab>0
Zbc(bc—az):Zazbz—acha >0,

by the AM-GM inequality, we have

Z:(a2 —bc)+ Z bc(bc—a*) > 2\/[Z(a2 — bc)] [Z be(be — az)].

Thus, it suffices to show that

2\/[Z(a2 — bc)] [Z be(bc— a2)] > \/EZ ab(b—c),

which is equivalent to

A0S (55|25 5 -2)
to s e sce-am[s(E-1) s (2-1-1)]

>2f( +— +——@

C a

Since

and

Applying the Cauchy-Schwarz inequality, it suffices to show that

1 1 2 1 1
(a+c—2b)(———)+(c—a)( ————— )22(2+é+£—3),
b ¢ a b ¢ b ¢ a

which is an identity. Thus, the proof is completed. The equality holds when the
following two equations are satisfied:

a?+b%+c*—ab—bc—ca =a?*b®+ b*c*+c*a*—abc(a+ b +¢)

and
abc(bca)
34+—+—+—=2(=-+—-+—.
b ¢ a a b ¢
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a b c
P 1.48. If a, b, c are positive real numbers such that 5 +—+ — =05, then
c a

b ¢ a_ 17
==
a b ¢ 4

(Vasile C., 2007)
Solution. Making the substitution
a b c

ngs y:E; Z:E’

we need to show that if x, y,z are positive real numbers satisfying

xyz=1, x+y+z=5,

then
1 1 1_ 17
Sr o4l
X y = 4
From (y +2)* > 4yz, we get
4
(5—x)*=—;
x

therefore,

(5—x)+(5—x)+§23;/(5—;«)22 >3,

which involves x < 4. We have
1 1 1 17 1 + 17 1 17
:_+y Z——=—+x(5—x)——
x y 2z 4 X yz 4 x 4
_4—17)c+20)c2—4363_(4—x)(1—2x)2>4

4x 4x

1
The equality holds when one of x, y, z is 4 and the others are 5; that is, when

a=4b=2c

(or any cyclic permutation).

P 1.49. If a, b, c are positive real numbers, then

(@) 1+g+2+522\J1+9+£+E;
b ¢ a a b c
(b) 1+2(2+9+5)2 ]ﬁ46(9+£+g);
b ¢ a a b c
1 1 1
© 34842485 m+b+®(—+—+—).
b ¢ a a b c

(Vasile C., 2007)
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Solution. Let

b
_’ Z:
c

_a —
Ty T a
and

p=x+y+3z q=xy+yz+szx.

By the AM-GM inequality, we have

p=3yxyz=3.

(a) We need to show that xyz = 1 involves

1+x+y+z>2y/1+xy+yz+zx,

which is equivalent to
(1+4p)*=4+4q

or
p+3=24/p+q+3.

First Solution. By Schur’s inequality of degree three, we have
p*+9 > 4pq.

Thus,

—-3)2p+3
(1+p)2—4—4qz1+p)2_4_(pz+§):(p )I()p ) 2o

The equality holds fora = b =c.

Second Solution. Without loss of generality, assume that b is between a and c. By
the AM-GM inequality, we have

2\/p+q+3=2\l(a+b+c)(1+%+%)sLm+b(l+l+1).
a

b a b ¢
Therefore,
1 1 1
p+3—2\/p+q+32E+B+E+B—Lb+c—b(—+—+—)
b ¢ a b a b c
:(a_b)(b_c)zo
ab

(b) We have to show that xyz = 1 involves

1+2(x+y+2)> \/1+16(xy+yz+zx),

which is equivalent to
p>+p=>4q.
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By Schur’s inequality of degree three, we have
p>+9=>4pq.

Thus,

—-3)(p+3
P2+p—4q2p2+p—(p”+g)=EB——gz——lzo.
The equality holds fora = b =c.

(c) Write the inequality as follows:
B+x+y+2)0>4@B+x+y+z+xy+yz+2X),

(x+y+2)l+2(x+y+2)>3+4(xy +yz+2x),
(1+x+y+2)?>41+xy+yz+2x),

1+x+y+2z>2y/1+xy+yz+zx,

a b ¢ b ¢ a
I+-+—+-—>2\[1+ -+ -+ -
b ¢ a a b ¢

Thus, the inequality is equivalent to the inequality in (a).

P 1.50. If a, b, c are positive real numbers, then

a_2+b_2+i+1s(é+£+ﬂ)>16(E+9+£)
b2 2 @2 a b ¢/J” \b ¢ a)

Solution. Making the substitution

x= = 5=
- bs _y - C, - a;
we have to show that x yz = 1 involves
X2+ y*+22+15(xy + yz +2x) > 16(x + y +2),
which is equivalent to
(x+y+2)2?—16(x+y+2)+13(xy + yz +2x) > 0.
According to P 3.58 in Volume 1, for fixed x + y + z and xyz = 1, the expression
Xy +yz+szx

is minimal when two of x, y,z are equal. Therefore, due to symmetry, it suffices to
consider that x = y. We need to show that

(2x +2)*—16(2x +2) + 13(x? + 2x2) > 0
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for x2z = 1. Write this inequality as
17x%—32x> +30x>—16x*+1 >0,

or
(x—1)?g(x)>0, g(x)=17x*+2x>—13x%*+2x +1.

Since
g(x) = (2x — 1)*+ x(x® + 34x* — 37x + 10),

it suffices to show that
x®+34x2—-37x+10> 0.

There are two cases to consider.
1 10
Casel: x€|0,— |[U| —, co |. We have
2 17
x%+34x%—37x +10 > 34x%—37x + 10 = (2x —1)(17x — 10) > 0.

1 10
Case 2: x €| —,— |. We have
2°17

1
2(x® 4+ 34x*—37x +10) > 2 (Exz +34x%—37x + 10) = 69x?* — 74x + 20.

Since 69x2—74x +20 > 0 for all real x, the proof is completed. The equality holds
fora=b=c.
O

P 1.51. If a, b, c are positive real numbers such that abc =1, then

b
(a) 2+—+£2a+b+c;
b ¢ a
b 3
(b) E+—+£2—(a+b+c—1);
b ¢ a 2
b 5
(0 2+—+5+22—(a+b+c).
b ¢ a 3

Solution. (a) We write the inequality as

(23+9)+(29+5)+(25+3)23(a+b+c).
b ¢ c a a b

In virtue of the AM-GM inequality, we get

a b b ¢ c a a2 b2 c?
2—+— |+ 2=+ - +(2—+—)23 —+3\|—+3\|—=3(a+b+c).
b ¢ c a a b bc ca ab
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The equality holds fora=b =c =1.

(b) Using the substitution

a=

where x, y,z > 0, the inequality can be restated as
20+ y* +2%) + 3xyz > 3(x%y + y*z + 2%x).

First Solution. We get the desired inequality by summing Schur’s inequality of
degree three

X} +y +2° +3xyz > (%y + y2z +2°x) + (xy? + yz* + 2x?)

and
P+ y}+22 +xy?+ yz? +2x? > 2(x%y + yiz + 2%x).

The last inequality is equivalent to
x(x—yP+y(y—2)P+z(z—x)*>0.
The equality holds fora=b =c =1.
Second Solution. Multiplying by x + y + z, the desired inequality in x, y, 2z turns
e 22x4—2x3y—32x2y2+22xy320.
Write this inequality as
Z[(l +k)x*—x3y —3x%y? +2xy* + (1—k)y*]1>0,
Z(x —y)x®=3xy* =y  +k(®* + x>y + xy*+ y*)] > 0.

3
Choosing k = 7 we get the obvious inequality

> (= ¥)*(7x* +10xy + y*) > 0.

(c) Making the substitution

we need to show that

30 +y> +2%) + 6xyz > 5(x%y + y*z + 2%x).
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Assuming that x = min{x, y,z} and substituting
y=x+p, z2=x+q, p,q=0,
the inequality turns into
(p*>—pq +q*)x +3p> +3¢*>—5p?q > 0.
This is true since, by the AM-GM inequality, we get
6p® +6q° = 3p° + 3p® + 6¢° > 3+/3p3 - 3p3 - 6¢° = 9v'2 pq > 10pq.

The equality holds fora=b=c=1.

P 1.52. If a, b, c are positive real numbers such that a®> + b® + ¢ = 3, then

(a) a by 3
b ¢ a ab+ bc+ca’
(b) E+B+£> 9

b ¢ a a+b+c

Solution. (a) By the Cauchy-Schwarz inequality, we have

a b c¢_ (a+b+c)? 3

—t—t—2—— o ———

b ¢ a ab+bc+ca ab+ bc+ca
The equality holds fora=b =c = 1.

(b) Using the inequality in (a), it suffices to show that

3 9
2+ > .
ab+bc+ca a+b+c
Let
a+b+c
t=—+—, t<1.
3
Since

2(ab+bc+ca)=(a+b+c)—(a®>+b*>+c>)=9t2-3,

the inequality becomes

3
2+ > -,
3t2—1 "t
(t—1)2(2t+1)>
The equality holds fora=b =c=1.

0.
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P 1.53. If a, b, c are positive real numbers such that a® + b? + ¢ = 3, then

6(2+9+5)+5(ab+bc+ca)233.
b ¢ a

Solution. Write the inequality in the homogeneous form

E+§+£_3>§(1_ab+bc+ca)
b ¢ a -2 a?+b24+c2 )’
We will prove the sharper inequality
g+§+£_3>m(1_ab+bc+ca)
b ¢ a - a2+ b2+c2 )’
where
5

Write this inequality as follows:

(Z az) (Z ab2) + machab —(m+ 3)acha2 >0,

Z:ab“-kZ:aSb2 +(m+ 1)ach:ab—(m+3)ach:a2 >0,
Z:ab“+zza3b2 +2(2«/§—1)achab—4«/§ abcz:a2 >0,
On the other hand, from
> ala—b)y(b—ke)* >0,

we get

Zab4+Za3b2+(k2—2)Za2b3+k(4—k)achab—4kacha2 > 0.

Choosing k = V2, we get the desired inequality. The equality holds for a = b =
c=1.
Ll

P 1.54. If a, b, c are positive real numbers such that a + b + c = 3, then

b
(@) 6(E+—+£)+327(a2+b2+c2);
b ¢ a
(b) E+9+£2a2+b2+02.

b ¢ a
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Solution. (a) Write the inequality in the homogeneous form

2 (Z a)z (Z abz) + abc (Z a)2 > 21ach a’

which is equivalent to

Zab4+2a3b2+22a2b3+4abc2ab—8abc2a2 > 0.

On the other hand, from

> ala—b)y(b—ke)* >0,

we get

D ab*+ > a®b? +(k?—2) > a*b® +k(4—k)abc »  ab—4kabc »_a? > 0.

Choosing k = 2, we get the desired inequality. The equality holds fora =b =c = 1.

(b) We get the desired inequality by adding the inequality in (a) and the obvi-
ous inequality
a®+b*+c*=>3.

The equality holds fora=b =c=1.

P 1.55. If a, b, c are positive real numbers, then

g+é+£+2>14(a2+b2+cz)
b ¢ a ~ (a+b+c)

(Vo Quoc Ba Can, 2010)

Solution. By expanding, the inequality becomes as follows:

(Z%) (Za2+22ab)+42ab > 122:a2

Z—+Z—+2 asz-l-7Zab21OZa2
A+BZlOZa2—1OZab,

where

A= Z Z——z %, B= 4Za—bz—3
b*  a’b _ 2ab’ b(a— b)>?
A Z( ac ):Z (aC )

Since
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and

4ca? c(2a —3b)?
B=Z( 5 —12ca+9bc)=ZT,

A"'B:Z[b(ac_b)z +c(2a—3b)2]

we get

b

>2> (a—b)(2a—3b)=10» a®—10 > ab.
Thus, the proof is completed. For a > b > c, the equality holds for
b(a—b)=c(2a—3b), c(b—c)=a(2b—3c), a(c—a)=b(2c—3a),
which are equivalent to

a b c

73 2 .
ﬁ—tan7 ﬁ—tan% \/7—tan477T

Notice that the equality conditions involve
a®+ b+ c? =2ab + 2bc + 2ca,

hence

va=+vb+ e

Remark. Using the inequality in P 1.55, we can prove the weaker inequality
a b ¢ 7(ab+ bc+ca) S 17

b ¢ a a?+b2+cz 2’
with equality for the same conditions. It suffices to show that

14(a® + b% + c?) s 17 7(ab+bc +ca)
(a+b+c)? T2 a?+ b2 +c2
which is equivalent to

(a®? + b%2+c?2—2ab—2bc—2ca)*> 0.

Actually, the following statement is valid.

If a, b, ¢ are positive real numbers, then

a b ¢ - 19(a? + b% +c?) + 2(ab + bc +ca)

b ¢ a  a?+b%2+c2+6(ab+ bc+ca)

with equality for a = b = ¢, and also for

a b c

s 2
ﬁ—tan; 1/7—tan77I ﬁ—tan47n

(or any cyclic permutation).

This inequality is stronger than the inequality in P 1.55.
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P 1.56. Let a, b, c be positive real numbers such that a+ b + c = 3, and let

1 1 1
x=3a+—, y=3b+—, 2=3c+—.
b c a

Prove that
Xy +yz+zx > 48.

Solution. Write the inequality as follows:

1 b
3(ab+bc+ca)+—+(—+£+g)213.
abc a b ¢

(Vasile C., 2007)

We get this inequality by adding the inequality P 1.54-(a), namely

b
6(—+£+g)+327(a2+b2+c2),
a b ¢

and the inequality

6
18(ab + bc +ca) + = + 7(a®+ b2 +c?) > 81.
aonc

Since
a?+b*+c*=9—2(ab + bc +ca),

the last inequality is equivalent to

2(ab + bc+ca)+i = 9.
abc

By the known inequality
(ab+ bc +ca)®* > 3abc(a+ b +c),

we get
1 9

> .
abc ~ (ab+ bc + ca)?

Thus, it suffices to show that

27
2q+—229,
q

where ¢ = ab + bc + ca. Indeed, by the AM-GM inequality, we have

27 27 gI 27
2q+?=q+q+?23 q-q-q—2=9.

The equality holds fora=b =c=1.
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P 1.57. If a, b, c are positive real numbers such that a + b + c = 3, then

+1 b+1 +1
ab + + & > 2(a?+ b* +c?).
c

Solution. We get the desired inequality by summing the inequality in P 1.54-(a),
namely

6(2+l1+5)+327@ﬂ+b2+ﬁx
b ¢ a

and the inequality

1 1 1
6(—+—~+—)25m2+b?+8)+&
a b ¢

Write the last inequality as F(a, b,c) > 0, where

lwmbﬂ):6(1+Jh+1)—5m2+b”+&)—&
a b ¢

then assume that
a =max{a,b,c}, b+c<2.

and show that

F(a,b,c)ZF(a,b;C,b;c)ZO.

Indeed, we have

b+c b+c b+c 4 1
F —F — _ _ 2 2 2 2]
(a,b,¢) (a’ 2 2 ) (bc b+c) S[b G
6 5 24 5
— (b— 2[———}2 b— 2[ ——]20.
b= 570 212~ Grep 2
Also,

b+c b+c 3—a 3—a 3(a—1)*(12—15a + 5a?)
a, ) =F|a, 5 = =0
2 2 2 2 2a(3—a)

The equality holds fora=b =c=1.

P 1.58. If a, b, c are positive real numbers such that a+ b+ c = 3, then

2 bZ 2
L o b 4332’ + b2+ ).
b ¢ a

(Pham Huu Duc, 2007)
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First Solution. Assume that
a =max{a, b, c},
then homogenize the inequality and write it as follows:

a? b* 2 6(a®+ b2+ c?)
—+—+—+a+b+c>
b c a a+b+c

2 2 2 2
Z(b——2b+c)26(a +b+c _a+b+c)’
c a+b+c 3

(b—c)? 2
Z c 2a+b+cz(b_c)2’
(b—c)?’A+(c—a)*B+(a—b)*C >0,

>

where 5 5

A=2"" _150 B=2FC_1 c="F2 150,

c a
By the Cauchy-Schwarz inequality, we have
2
Y Y >[(b—c)+(a—b)] __AC
(b—c)A+(a—b)*C = 1_,_1 A+C(a c)’.
A C
Therefore, it suffices to show that
AC
——+B>0.

A+C
Indeed, by the third degree Schur’s inequality, we get

AB+BC+CA=3+

a®+ b3+ +3abc—ab(a+ b)—bc(b+c)—calc+a) -

3.
abc

The equality holds fora=b=c=1.
Second Solution (by Michael Rozenberg). Write the inequality in the homogeneous
form )
(Z a) (Z ab3) +abc (Z a) > 6ach a’.
By expanding, we get
Z:(ab4 + a?b® + 2ab?c? —4a®bc) > 0,

which is equivalent to
Z:a(b2 —2bc+ac)*>0.



Cyclic Inequalities 101

P 1.59. If a, b, c are positive real numbers, then

a b B
?+—+—+2(ab+bc+ca)23(a2+b2+c2).
c a

(Michael Rogzenberg, 2010)

Solution. Write the inequality as

3
Z(a—+ab—2a2) >a’+b*+c*—ab—bc—ca,

b
a(a—b)? N b(b—c)? N c(c—a)?

>a’+ b2 +c?>—ab—bc—ca.
b c a

Assume that a = max{a, b, c}.
Case 1: a > b > c. By the Cauchy-Schwarz inequality, we have

ala—b)> bb—c)*_ [(a=b)+(b—c)]* abla—c)?
+ > = :
b c g-}-% b2 +ac

On the other hand,
a’+b*+c?—ab—bc—ca=(a—c)*+(b—a)(b—c) < (a—c)>
Therefore, it suffice to show that

ab(a—c)?* c(a—c)?

> (a—c)?,
b2 +ac a ( )

which is true if
ab

c
+_
b2+ac a

> 1.

This inequality is equivalent to
a’b+ b%c +c2a—ab®—ca*>0,
bc>—(a—b)(b—c)(c—a) > 0.

Case 2: a > ¢ > b. By the Cauchy-Schwarz inequality, we have

b(b—c)? N c(c—a)? - [(b—c)+(c—a)]* bc(a—Db)
c a - £ 44 ~ 24ab

On the other hand,

a’*+b*+c*—ab—bc—ca=(a—b)*+(c—a)(c—b) < (a—D)>
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Therefore, it suffice to show that

a(a—b)? N bc(a—b)?

> (a—b)?
b c2+ab = (a=b),

which is equivalent to
(a— b)*(a®b + b%c + c*a—ab?*—bc*) > 0,

(a—b)*[ab(a—b) + b*c +c*(a—b)]>0.
The equality holds for a = b =c.

P 1.60. If a, b, c are positive real numbers such that a* + b* + ¢* = 3, then

a? b*> c?

(@) —+—+—2=3;
b c a
a? b? c? 3
b + + > =
®) b+c c¢c+a a+b 2

(Alexey Gladkich, 2005)

Solution. (a) By Holder’s inequality, we have

(Z9)(Z5)Eew)= ()
Therefore, it suffices to show that

(Z a2)3 > 92 a’b?,

which has the homogeneous form

(Z a2)3 > B(Zazbz) \/BZa“.
x =Za2, y =Za2b2,

the inequality can be restated as

x® > 3y4/3(x2—2y).

By squaring, the inequality becomes

Using the notation

x®—27x%y? +54y% >0,
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which is true because
x®—27x%y? +54y°% = (x*—3y)* (x> + 6y) > 0.

The equality holds fora=b =c =1.
(b) By Holder’s inequality, we have

(Err)(Ern) ooz ()

Thus, it suffices to prove that

(Z a2)3 > zz a?(b +c)>.

Using the inequality from the proof of (a), namely

(Z a2)3 > 92 a’b?,

we still have to show that

1
a®b*>= > a*(b+c)
2,022 (b +o)
This inequality is equivalent to
Ea%b—dzza

The equality holds fora=b=c=1.

P 1.61. If a, b, c are positive real numbers, then

a’> b%> 2 _ 3(@+b:+c?)
—— >
b c a az+ b2+ c2

(Vo Quoc Ba Can, 2010)
Solution (by Ta Minh Hoang). Assume that
a =max{a, b, c},
and write the inequality as follows:

a? N b2 +c2 o> 3(@®+ b +c3)
—+—+——a—-b—c>
b c a az+ b2 +c2

—a—b—c,
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S LS e ba-bY,

b T a*+b2+c?
(b—c)?’A+(c—a)*B+(a—b)*C >0,

where

2 2 2 2 2 2
+b _b b + — + — b
a C> ’ C ca’ C a a > 0.

c a b

A

Consider the nontrivial case B < 0; that is,
ac—b%—c?>0.
From
ac—b*—c*=c(a—2b)—(b—c)?,
it follows that
cla—2b)> (b—c)* >0,
hence
a > 2b.

By the Cauchy-Schwarz inequality, we have

[(b—c)+(a—D)* AC
1 1 B
L A+C
A C

(b—c)*A+(a—Db)*C > (a—c)?.

AC 1 1 1
Therefore, it suffices to show that C + B > 0; that is, 2 + B + I <0,or

c b a
+ < .
a2+ b2—bc c2+4+a?2—ab  ca—b2—c2

Case 1: a> b > c. Since

a’+b*—bc—(ca—b*—c?)>a*+b*—bc—ca
=ala—c)+b(b—c)=>0,

and

2+a?—ab—(ca—b*—=c>)>a’+b* —a(b+c¢)
>a%+bc—a(b+c)
=(a—b)la—c)=0,

it suffices to show that ¢ + b < a. Indeed, we have a > 2b > b +c.
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Case 2: a > ¢ = b. Replacing b and c by c and b, respectively, we need to show
that a > b > c involves

a’> ¢ b%_ 3(a+b3+c?)
i+l

c b a az+ b2+ c2

According to the preceding case, we have

a’> b%? ?_ 3(a+b3+c?)
— >
b c a az+ b2 +c2

Therefore, it suffices to show that

This inequality is equivalent to
(a+b+c)la—b)(b—c)la—c)=0,

which is clearly true fora > b > c.
The proof is completed. The equality holds fora=b =c=1.

P 1.62. If a, b, c are positive real numbers, then

2 2 2
a—+b—+c—+a+b+c22\j(a2+b2+c2)(5+9+5).
b ¢ a b ¢ a

(Pham Huu Duc, 2006)

Solution. Without loss of generality, we may assume that b is between a and c;
that is,
(b—a)(b—c)<O.

Since

21+ h2 + 2 2
Z\J(a2+b2+cz)(%+é+£)=2¢M(a+b—+ﬁ)

c a b c a
a’+ b%+¢? b%? bc
<———4a+—+—

b C a
a’ b? bc c?
=—+—+a+b+—+—,
b c a b
it suffices to prove that
c? bc 2

—+c>—+—.

a a b
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This is true because

2 2 _ _
c__ﬂ_%_c_:c(a b)(b c)2
a a b ab

0.

The proof is completed. The equality holds for a = b =c.

P 1.63. If a, b, c are positive real numbers, then

a b c a b c
—+ = +—+32 + >51.

+
b ¢ a a+b b+c c+a
(Vasile C., 2009)

Solution. Write the inequality as

a b ¢ ( b c a )
—+—=+-+45>32 + + :
b ¢ a a+b b+c c+a

Using the substitution
a b

C
X = — y:_ g = —
b’ c’ a’

which involves xyz = 1, the inequality becomes

1 1 1
x+y+z+45—32( + + )20
x+1 y+1 z+1

We get this inequality by summing the inequalities

X — +15>9Inx,

x+1

32
y———+15>9Iny,
y+1

32
+15>9Inz.
z+1

Let 39
f(x)=x———+15—9Inx, x>0.
x+1

From the derivative

32 9 (x—1)(x—3)?

(x+1)2_x_ x(x +1)2

fl)=1+ ,
it follows that f (x) is decreasing for 0 < x < 1 and increasing for x > 1. Therefore,
we have f(x) > f(1) = 0. The equality holds for a = b =c.

OJ
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P 1.64. Find the greatest positive real number K such that the inequalities below hold
for any positive real numbers a, b,c:

a b c a b c 3
(a) —+—-—+-—3=2K + + =1

b ¢ a b+c c¢c+a a+b 2
a b ¢ a b c
b —+—+-——3+K + + —1|>0.
®) b ¢ a (2a+b 2b+c¢ 2c+a )_

(Vasile C., 2008)

Solution. (a) For

the inequality becomes

; 1 x3 x 1 3
x?+x+—=-3>K + + —-=1,
x3 x+1 14+x3 x34+x 2
1—K)x® x> 1 x 1 3
( X, +x+——3—K( + ——)20.
x+1 x+1 x3 14+x3 x34+x 2

For x — oo, we get the necessary condition 1 —K > 0. We will show that the
original inequality is true for K = 1; that is,
a b c¢_3 a b c
>

> =+ + + :
b ¢ a 2 b+c c+a a+b

Write the inequality as

(3_ ¢ )+(2_ a )+(é_ b )>§
a a+b b b+c c c+a) 2
bc ca ab 3

+ + >
a(a+b) b(b+c) clc+a) 2
By the Cauchy-Schwarz inequality, we have

bc L_ca ab - (bc +ca+ab)?
a(a+b) b(b+c) c(c+a)  abc(a+b)+abc(b+c)+abc(c+a)
_ (bc+ca+ab) - 3
2abc(a+b+c) 2

The equality holds fora = b =c.

(b) For b =1 and ¢ = a?, the inequality becomes

1 2a 1
2a+ ——3+K + —1]>=0,
a2 2a+1 a2+4+2

(a=1)*(2a+1)  K(a—1)? -0
a2 2a+1)(a2+2)
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This inequality holds for any positive a if and only if
2a+1 K
— > 0.
a? (2a+1)(a2+2)

For a = 1, this inequality involves K < 27. We will show that the original inequality
is true for K = 27. Using the substitution

a b c
X = E: y = Z; z= a)
which involves x yz = 1, the inequality can be restated as

27 1 1 1
x+y+z—3——( + + —1)20-
2 \2x+1 2y+1 2z+1

First Solution. We get the desired inequality by summing the inequalities

27 7
x———+—>4Inx,
22x+1) 2
27 7
————+—>4Iny,
Yoy T2 Y
2
z——7+ZZ4lnz.
202z+1) 2
Let 97 .
=x———+—-——4Inx, > 0.
S =x=on e T X
From the derivative
, 27 4 4(x—1)3
f=1 —2=

=
2x+1)2 x x(2x+1)2

it follows that f (x) is decreasing for 0 < x < 1 and increasing for x > 1. Therefore,
we have f(x) > f(1) = 0. The equality holds for a = b = c.

Second Solution. Replacing x, y,z by e*,e”, e*, respectively, we need to show that

x+y+2z=0
involves Ytz
F)+F0+1() =3 (25,
where 97
==t

If f is convex on R, then this inequality is just Jensen’s inequality. Indeed, f is
convex because
27(1—2e") _ 4(e"—1)*(2¢" +7) o

STy T T @ery 2
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1
P 1.65. Ifa,b,c € [5,2], then

a b ¢ b ¢ a
(@ 8(—+—+—)25(—+—+—)+9;
b ¢ a a b ¢
(b 20(9+9+5)217(9+5+9).
b ¢ a a b ¢

(Vasile C., 2008)
Solution. Without loss of generality, assume that
a = max{a, b, c}.

Let

t= 1<t<2.

b

a
c

(a) Let
E(a,b,6)=8(%+9+£)—5(2+5+9)—9.

c a a b ¢

We will show that
E(a,b,c) > E(a,+ac,c) > 0.

We have

E(a,b,c)—E(a, \/E,C)IS(%-FE—Z g)—5(9+%—2 E)
c

_ (b—+ac)*(8a—5c¢) -0
B abc -

E(a,\/a,c)=8(2\/§+2—3)—5(2\/g+%—3)
=8(2t+%—3)—5(%+t2—3)

_8. 12 _2(—1)?
_tz(t 1°(2t+1) t(t 1(t+2)

(t—1)%(4+5t)(2—1t)
= > >

Also,

0.

1
The equality holds fora=b =c,and alsofora=2,b=1and c = > (or any cyclic
permutation).

(b) Let

a b ¢ b ¢ a
E(a,b,c)=20( —+—+—|=17(=-+—-+— ).
b ¢ a a b ¢
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We will show that
E(a,b,c) > E(a,+ac,c) > 0.

We have
— a b a b ¢ c

a b a

_ 2 _
_ (b—+/ac)*(20a —17¢) >0,
abc

sesmnfo-2)- (ol
= 20(2t+ %)_17(% + tz)
t t

20 —34t 4+ 40t> —17t*

— -

_ (2—0)(@7¢2 —6t*—12t +10)
— - _

Also, we have

We need to show that 17t3 —6t2—12t +10>0 for 1 < t < 2. Indeed, we have

173 —6t*—12t + 10> 11t — 12t + 10 > 4t* — 12t + 9= (2t —3)* = 0.

1
The equality holds fora =2, b=1and c = B (or any cyclic permutation).

P 1.66. If a, b, c are positive real numbers such that a < b < c, then

a b ¢ 2a 2b 2c
—+—+—-= + + :
b ¢ a b+4+c c+a a+b

First Solution. Since

a b ¢ b ¢ a a b c
=4+ )= (==1)[==1)(=-1)=
b+c+a (a+b+c) (b )(c )(a )_O’

it suffices to show that

(a b c) (b c a) 4a 4b 4c
—t =+ |+ =+—+= ]2 + + :
b ¢ a a b ¢ b+c c+a a+b

This inequality is equivalent to

a(1+1— 4 )+b(1+1— 4 )+c(1+1— 4 )>o
b ¢ b+c c a c+a a b a+b) "
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200 _ )2 200 _ Y2 20— )2
a“(b c)+b(c a) +c(a b)2
b+c c+a a+b
The equality holds for a = b =c.

0.

Second Solution. The inequality is equivalent to

a(c—b)_b(c—a) c(b—a)>
b(b+c) <c(c+a) ala+d)

Taking account of
b(c—a)=c(b—a)+a(c—Db),

we may rewrite the inequality as

1 1

c(b—a)[

Since
1 1 _cz—a2+a(c—b)> c—b

ala+b) B cc+a) acla+b)c+a) ~ cla+b)(c+a)

and
1 1 _cz—b2+c(a—b)> a—b

b(b+c) clc+a) be(b+c)c+a) ~bb+c)c+a)
it suffices to show that
c(b—a)(c—b) a(c—b)la—D>b) >0
cla+b)(c+a) bb+c)c+a)

This inequality is true if

1 a
- >
a+b b(b+c)

0.

Indeed,
1 a 1 1 c—a

a+b bb+c) a+b b+c (a+b)(b+c)

P 1.67. Let a, b, ¢ be positive real numbers such that abc = 1.

(@) Ifa < b <c, then
b ¢

242455 @y p2y
b ¢ a

(b) Ifa<1<b<c, then

1 1
a(a+b)_c(c+a)]-'_a(c_b)[b(b+c)_c(c+a)]2

(Vasile C., 2008)
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Solution. (a) Since

a b ¢ b ¢ a a b c
=4+ )= (==1)[==1)(=-1)=
b+c+a (a+b+c) (b )(c )(a )_O’

it suffices to show that

(E+E+£)+(2+£+E)22(a3/2+b3/2+c3/2).
b ¢ a a b ¢

Indeed, by the AM-GM inequality, we have

a b 1 1 2a
—+ ) —= —+=|=> —=2>
S =a(3+1)2 N ==2a
The equality holds fora=b=c=1.
(b) Let k = +/3 and
E(a,b,c)zg+é+£—ak—bk—ck.
b ¢ a

We will show that

E(a,b,c) = E(a, v bc,v bc) > 0;
that is,

E(%, b,c) > E(i, v bc,vV bc) > 0.

Substituting
t=+vbc, t=>1,

we rewrite the right inequality as f(t) > 0, where

_1 3 1 k
f(t)—t—3+1+t —ﬁ—Zt.

We have the derivative

OB -3 ok 2k
o =8, glt)=—7F+3+ 55—

Since 1
§t2k+4g’(t) =9t _k(2k +3) + k(3 —k)t3*
>9—k(2k+3)+k(3—k)=9—3k*=0,

g(t) is increasing for t > 1. Therefore, g(t) > g(1) =0, f'(t) = 0, f(t) is increas-
ing for t > 1, hence f(t) > f(1)=0.

Substituting b = x? and ¢ = y?, where 1 < x < y, the left inequality becomes

E 1 2,2 >F 1
XZ—J/Z)X :y - XZ—lejxyyxy )
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or, equivalently,

1 X2 a4
Ty Y

_1_X3y3 > (yk_xk)z'

We write this inequality as

1 +
(y—X)(x2y3+ — -z zy) > (yF =2,
Xy Yy
and then show that
1 x+y

3t

(y—X)(x2y3+ )2 (y=x)*=xH=(=x% ™

x4y3 o y2
The left inequality (*) is true if f (x,y) = 0, where

1 Xty

fe,y)=x*y’+ ————=—y>+x°
Xy Y
We will show that
fl,y)=f(1,y)=0.
Since 1 < x < y, we have
1 1 1
FeN=FUN =X =14 =)= == (1- )
y? y? x*

2x3—1+(x2—1)—(x—1)—(1—%)

b (e )+ D)o

2

_Q+y)a—y)y
y? a

In order to prove the right inequality (*), we will prove that

and
1 1+y

f(l,y)=;— 2 0.

=) —x%) > %(yz — 2P > (yF— Xt

We have
4y =)y —x)=3(y*—x*P=(y—x)*=>0.

To complete the proof, we only need to show that
k
E(y2 —x?) > yk—x*, k=+3.

For fixed y, let
k
g(x)zxk—yk+§(y2—x2), 1<x<y.
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Since
g'(x)=kx(x*?-1) <0,

g(x) is decreasing, hence g(x) > g(y) = 0. The equality in (b) is an equality if
andonlyifa=b=c=1.
O]

P 1.68. If k and a, b, c are positive real numbers, then

1 1 1 1 1 1
+ + > + + .
(k+1)a+b (k+1)b+c (k+1)c+a  ka+b+c kb+c+a kc+a+b

(Vasile C., 2011)

First Solution. For k = 1, we need to show that
1 1 1 3
+ + = .
2a+b 2b+c¢c 2c+a a+b+c

This follows immediately from the Cauchy-Schwarz inequality, as follows:

1 1 1 9
+ + >
2a+b 2b+c 2c+a  (2a+b)+(2b+c)+(2c+a)
3
Ca+b+c

Further, consider two cases: k>1and 0 <k < 1.

Case 1: k > 1. By the Cauchy-Schwarz inequality, we have

k—1 N 1 - [(k—1)+17]?
(k+1)a+b kc+a+b (k—1D[(k+1a+b]+(kc+a+b)
k
 ka+b+c’

Adding this inequality and the similar ones yields the desired inequality.
Case 2: 0 < k < 1. By the Cauchy-Schwarz inequality, we have

1—k N k S [(1—k)+k]?
(k+1)a+b ka+b+c  (1—k)(k+1)a+b]+k(ka+b+c)
1
~ kc+a+b’

Adding this inequality and the similar ones yields the desired inequality.
The equality holds fora = b =c.

Second Solution (by Vo Quoc Ba Can). By the Cauchy-Schwarz inequality, we have

1 k k2
+ + >
(k+1)a+b (k+1)b+c (k+1)c+a
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(1+k +k?)?
- [(k+1)a+b]+k[(k+1)b+c]+k2[(k+1)c+a]
_1+k+k?
 kc+a+b

Therefore, we get in succession

1 k k> 1+k+k?

——+ + >y —,

Z(k+1)a+b Z(k+1)b+c Z(k+1)c+a_2kc+a+b
1+k+k? —— >(1+k+k

( )Z(k+1) +b ( )Z

1
Z(k+1)a+b22ka+b+c'

Third Solution. We have
1 B 1 _ c—a
(k+1a+b ka+b+c (ka+a+b)ka+b+c)

ka+b+c

S c—a 1 ( 1 _ 1 )
~ (kc+a+b)ka+b+c) k—1\ka+b+c kc+a+b)’

hence

1 1 1 1 1
- > _— _ | =
Z(k+1)a+b Zka+b+c_k—1(zka+b+c kc+a+b)

P 1.69. If a, b, c are positive real numbers, then

a b c
(a) + + <+va+b+c;
vV2a+b V2b+c V2c+a
(b ¢ 4 b +— _>Vafb+e

va+2b vVb+2c +Vc+2a

Solution. (a) By the Cauchy-Schwarz inequality, we have

2 J2a+b _Z( \/2a+b)<\/(za)(22ai—b)'

Therefore, it suffices to show that

ZZaCfI—bSl
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This inequality is equivalent to

b
Z:2a+b21'

Applying the Cauchy-Schwarz inequality, we get

Z b S (Zb)z

> =1.
2a+b ~ >.b(2a+b)

The equality holds fora =b =c.
(b) By Holder’s inequality, we have

I O X

From this, the desired inequality follows. The equality holds for a = b =c.

P 1.70. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

a+2b b+ 2c c+2a
a +b +c <3.
3 3 3

First Solution. By the Cauchy-Schwarz inequality, we have

e e R

The equality holds for a = b = ¢ = 1, and also for a = 3 and b = ¢ = 0 (or any
cyclic permutation).

Second Solution. Applying Jensen’s inequality to the concave function f (x) = v/x,
x = 0, we have

ava+2b+bvVb+2c+cvec+2a<

ala+2b)+ b(b+2c)+c(c+2a
S(a+b+c)\l ( ) a(+b+c) ( )

=(a+b+c)Va+b+c=3V3.
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P 1.71. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

avV1+b3+bvV1i+cd+cv1+a3<5.

(Pham Kim Hung, 2007)

Solution. Using the AM-GM inequality yields

_ 2 2
(1+b)+A—b+b?) _ b
2 2

V1+b3=4/(1+b)(1—b+b2)<

Therefore,

2 2 2 2
ZaV1+b3§Za(1+%)=3+ab +be” Fea”

2

To complete the proof, it remains to show that
ab®+ bc* +ca®* < 4.

But this is just the inequality in P 1.1. The equality occurs for a = 0, b = 1 and
¢ = 2 (or any cyclic permutation).
O

P 1.72. If a, b, c are positive real numbers such that abc =1, then

a b c 3

+ + =3

() Vb+3 \c+3 a+3° 2
a b c 3

N + + > =

®) b+7 §c+7 a+7 2

Solution. (a) Putting

v

X b4 y
a=—, b=—, c==,
y X b4
the inequality can be restated as
3
A
VyBx+z) 2By +x) /x(Bz+y) 2

By Holder’s inequality, we have

S [ o= (E)
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Therefore, it suffices to show that
Ax +y+2)°>27(x%y + y*z +2°x + xyz).

This is just the inequality (a) in P 1.9. The equality holds fora =b =c = 1.
(b) Putting

the inequality becomes

S _ooxr .3
VA Txt 124 " 2

By Holder’s inequality, we have

>y W] St o]z (T2

Since > (7x*+2z%) =8> x", it is enough to show that

X2 y? g2 4
(— +=—+ —) >27(x*+ y* +2%),
y 2z X

which is just the inequality in P 1.60-(a). The equality holds fora=b=c=1.
O]

P 1.73. If a, b, c are positive real numbers, then

2 2 2
(1+ 4a ) +(1+ 4b ) +(1+ ac ) > 97.
a+b b+c c+a

(Vasile C., 2012)

Solution. Let

X a—>b b—c c—a
= s = , 2= .

a+b b+c c+a
We have

—1<x,y,2<1
and
x+y+z+xyz=0.

Since

20 t1 Syl 2 —z41
a+b ’ b+c_y > c+a ’

we can write the inequality as follows:

(2x +3)2+ (2y +3)*+ (22 +3)? > 27,
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2+ y*+22+3(x+y+2)>0,
x*+y*+2*>3xyz.
By the AM-GM inequality, we have

x?+y? +2% >34/ x2y22

Thus, it suffices to show that |xyz| < 1, which is clearly true. The equality holds
fora=b=c.
OJ

P 1.74. If a, b, c are positive real numbers, then
2a 2b 2c
+ + <3.
a+b b+c c+a
First Solution. By the Cauchy-Schwarz inequality, we have

SN2\ [ g [De ol

Thus, it suffices to show that

(Vasile C., 1992)

Z a < 9
(a+b)la+c)” 4la+b+c)

which is equivalent to
a(b—c)?*+b(c—a)*+c(a—Db)*>0.
The equality occurs for a = b =c.

Second Solution. By the Cauchy-Schwarz inequality, we have

S\ = \[Zarnmra) e o)

Thus, it suffices to show that

1 9
<
Z (a+b)(b+c) ™ 4(ab+bc+ca)
which is equivalent to

a(b—c)*+b(c—a)*+c(a—Db)*>0.
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P 1.75. If a, b, c are nonnegative real numbers, then
a b c
v/ +\ + ,/ <1
4a+5b 4b + 5¢ 4c + 5a

Solution. If one of a, b, c is zero, then the inequality is clearly true. Otherwise,
using the substitution

(Vasile C., 2004)

b c a
u - E’ v - E’ W - E’
we need to show that uvw = 1 involves

1 1 1

+ + <1
V4+5u +4+5v V4+5w

Using the contradiction method, it suffices to show that

1 1 1

+ + >1
Va+5u VJ4+5v J4+5w

involves uvw < 1. Let
1 1 1

—7 —J Z —’
Jarse ° Jatsy V4 +5w

1 .
where x,y,z € (0, 5) Since
1—4x? 1—4y? 1—4z*
u= , V= , w= ,
5x? 5y2 522

we have to prove that x + y +z > 1 involves
(1—4x?)(1—4y>)(1—422) < 125x%y?z°.

Since
1—4x®*<(x+y+z)—4x>=(—x+y+2)Bx +y +32),

it suffices to prove the homogeneous inequality
(Bx+y+2)By+z+x)(Bz+x+y)(—x+y+2)(—y+z+x)(—z+x+y) < 125x%y?2%
By the AM-GM inequality, we have

+y+z3y3
(3x+y+z)(3y+z+x)(32+x+y)S125(u) .

Therefore, it is enough to show that

(x+y+z

3
3 ) (—x+y+2)(~y+z+x)(—z+x+y)<x’y?*z?
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Using the substitution
a=—x+y+3z b=—y+z+x, c=—z+x+Yy,
where a, b, ¢ > 0, the inequality can be restated as
64abc(a+b+c)® <27(b+c)*(c+a)*(a+ b)*
The known inequality
9(b+c)(c+a)a+b)=8(a+b+c)ab+ bc+ca),

equivalent to
a(b—c)?*+b(c—a)*+c(a—b)*>0,

involves
81(b+c)*(c+a)*(a+b)*>64(a+ b +c)*(ab+ bc+ca)?.
Thus, it suffices to show that
3abc(a+b+c) < (ab+ bc+ca)
which is also a known inequality, equivalent to
a’(b—c)*+ b (c—a)*+c*(a—b)*>0.

Thus, the proof is completed. The equality occurs for a = b =c.

P 1.76. If a, b, c are positive real numbers, then

a b C

+ + <1
V4a2+ab+4b2  V4b2+bc+4c2  VAc2+ca+4az

(Bin Zhao, 2006)

Solution. By the AM-GM inequality, we have

ab+4b>>5+vab- b8 =5vabd,

a < a 4 a®/s
VAaZ+ab+4b2 ~ /agz1s57ape Y 4a%/5+5b%5

Therefore, it suffices to show that

ad/s po/s c9/5
———t\————+\ ———- <1
455+ 5b9/5  \ 4b%5 + 5¢9/5  \ 4¢%5 + 5%/

Replacing a®/®, b°/>,c®/® by a, b, c, respectively, we get the inequality in P 1.75. The
equality holds for a = b =c.
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P 1.77. If a, b, c are positive real numbers, then

Ny —— b tyf e =1
a+b+7c b+c+7a c+a+7b

(Vasile C., 2006)

Solution. Substituting

Va+b+7c Y= \Jb+c+7a Vc+a+7b

(x2—1a+x%b+7x% =0

we have

(y2—1Db+y*c+7y%a=0 ,

(z2—1)c+2%a+72°b=0

which involves

x2—1 x? 7x2
7yt y'=1 y' |=0;
22 722 22—1
that is,
F(x,y,z)=0,
where

F(x,y,2) =324’y +6 ) X’y + > x*— 1.

We need to show that F(x,y,z) = 0 involves x + y +z > 1, where x,y,z > 0. To
do this, we use the contradiction method. Assume that x +y +2z < 1 and show that
F(x,y,z) < 0. Since F(x,y,z) is strictly increasing in each of its arguments, it is
enough to prove that x + y +2z = 1 involves F(x, y,z) < 0. We have

F(x,y,z) = 324x*y?z? +6(ny)2— 12xysz + (ZX)Z—ZZX)/— 1
= 324x?y?z? +6(ny)2— 12xyz—22xy

=12xyz(27xyz — 1)+2(ny) (3ny— 1).

27xyz < (Zx)3 =1
Sny < (Zx)z =1,

the conclusion follows. The equality occurs for a = b = c.

Because

and
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P 1.78. If a, b, c are nonnegative real numbers, no two of which are zero, then

@ a + b + c >§.
V3b+c \J3c+a V3a+b =2

) a N b N c > Y8
V2b+c J2c+a 2a+b

(Vasile Cirtoaje and Pham Kim Hung, 2006)

Solution. Consider the inequality

k>0,

\J(k+1)a+ (k+1)b+\J (k+1)c A
kb+c kc+a ka+ b

and use the substitution

= (k+1)a 4| (k+1)b g (k+1)c
_\ka+c’ y_\ch+a’ “\Nka+b

From the identity

(kb +c)(kc +a)(ka+b) = (k*+1)abc + kbc(kb +c) + kca(kc + a) + kab(ka + b),

written as

kb+c kc+a ka+b k>—k+1 k [kb+c kc+a ka+b

(ktDa (k+ Db (kt e (k+12 h+12lk+Da  G+Db  k+1)e

we get

= +
x2y?z2  (k+1)?  (k+1)?

which is equivalent to F(x,y,z) = 0, where

1 kK—k+1 k (1 1 1)

X2 y2 g2

F(x,y,2) = k(x*y* + y*2* + 22x?) + (K* — k + 1)x*y?*2* — (k + 1)%

So, we need to show that F(x, y,z) = 0 yields x + y +z > A,.. To do this, we use the
contradiction method. Assume that x + y + 2z < A, and show that F(x,y,2) < 0.
Since F(x, y,2) is strictly increasing in each of its variables, it suffices to prove that
x +y+2z=A, involves F(x, y,z) < 0. Let

494917

~ 2.691.
32

ky

(a) We need to show that F(x,y,z) < 0forx+y+2z=A, =3 and k = 3.
We will show a more general inequality, namely F(x,y,z) < 0 for k > k; and

]



124 Vasile Cirtoaje

all nonnegative numbers x, y,z satisfying x + y + 2 = 3. The AM-GM inequality
x+y+2z=>3Yxyz involves xyz < 1. On the other hand, by Schur’s inequality

(x+y+2)P+9xyz>4(x+y+2)(xy+yz+2zx)
we get
4(xy+yz+2zx)<9+3xyz,
hence

< (9 +3xyz)? B

(xy +yz+2x)*—9 < 16 9:%(xyz—1)(xyz+7).

Therefore,

F(x,y,2) =k[(xy + yz +2x)* —6xyz] + (k* —k + 1)x%y?z* — (k + 1)?
=k[(xy +yz+2x)*—9]+ (k* —k + 1)(x%y?2*> — 1) — 6k(xyz — 1)

9k 7 | - - 6K Xyz 1
< —5(3‘)/2 1)()(_}’2’ ) (kz_k + )(Xzyzzz 1) ( y )

Since xyz—1 < 0 and 16k®>—7k+16 > 0, it suffices to show that 16k*—49k+16 > 0;
indeed, this inequality is true for k > k;.

The equality occurs for a = b = c. In addition, when k = k,, the equality occurs
also for a = 0 and b/c = vk (or any cyclic permutation).

(b) We need to show that F(x,y,z) < 0forA, = V72 and k = 2. We will show
a more general inequality, that F(x,y,z) < 0 for 1 < k < k; and all nonnegative
numbers x, y, z satisfying

k+1)?
X+y+z=A =2 ( P ) .

From

F(x,y,2)=k(x®y? + y?22 + 22x?) + (k* — k + 1)x?y?2® — (k + 1)?
=k(xy +yz +2x)*—2kA xyz + (k* —k + 1)x*y?z* — (k + 1),

it follows that for fixed xyz, F(x, y,z) is maximal when xy + yz + zx is maximal;
that is, according to P 3.58 in Volume 1, when two of x,y,z are equal. Due to
symmetry, we only need to show that F(x, y,z) < 0 for y = z. Write the inequality
F(x,y,2z) <0 as follows:

4
w) <o,

k(x?y?+ y?22 + 22x?) + (k* — k + D)x%y?z*> — k (

+y+z\*
k [(%) —x2y? —yzzz—zzxz] > (k* —k+ 1)x%y?z
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kvVk (x+y +2)° [(x+y +2)*—16(x%y? + y22% + 22x*] = 64(k> + 1)x?y 2.

Due to homogeneity, we may only consider the cases y =z =0and y =z =1. In
the non-trivial case y = z = 1, the inequality becomes

kv/'k x(x +2)%(x® + 8x2 — 8x + 32) > 64(k% + 1)x>.

This is true because
297k vk > 64(k% + 1)

for 1 <k <k, and
x(x +2)%(x3 + 8x2? —8x +32) > 297x2.
Notice that
x(x +2)%(x> +8x% —8x +32) —297x% = x(x — 1)*(x> + 14x* + 55x + 128) > 0.

If 1 < k < ky, then the equality occurs only for a = 0 and b/c = v'k (or any cyclic
permutation). Therefore, if k = 2, then the equality holds for a =0 and b/c = v2
(or any cyclic permutation).

Remark. From the proof above, it follows that the following more general state-
ment holds:

e [et a, b, c be nonnegative real numbers, no two of which are zero. If k > 0, then

a + b + ¢ >min{ 3 i}
V kb +c ch+a Vika+b ™ Vi+1 Vi)

For k = 1, we get the known inequality

a b c
v/ +\ +4/ >2,
b+c c+a a+

with equality for a = 0 and b = ¢ (or any cyclic permutation). We can get this
inequality by summing the inequalities

a 2a b 2b c 2¢
‘/ > , \ > , > .
b+c a+b+c c+a a+b+c a+b a+b+c

P 1.79. If a, b, ¢ are positive real numbers such that ab + bc + ca = 3, then

1 1 1 3
(@ @1 b)Batd)  b+oGb+o)  Cta)Bcta)- 8
) 1 1 1 1

+ - > -,
(2a+b)? (2b+c¢)? (2c+a)> 3
(Vasile Cirtoaje and Pham Kim Hung, 2007)
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Solution. (a) Using the Cauchy-Schwarz inequality and the inequality in P 1.78-(a)
gives

1 1
Z(a+b)(3a+b) :Z(b+c)(3b+c)

NONVE=)

~ Yla(b+c)
9 3

> =—.
8(ab+bc+ca) 8

The equality holds for a = b =c.
(b) We consider two cases (Vo Quoc Ba Can).

Case 1: 4(ab + bc + ca > a® + b? + c2. By the Cauchy-Schwarz inequality, we get

Z 1 > 9 (Z a)z

(2a+b)2 ~ >(2a+b)2(b+2c)?
Thus, it suffices to show that
9p%q > > (2a+b*(b+2c)?,
where p=a+b+c,q=ab+ bc+ca. Since
(2a+ b)(b+2c)=pb+q+ 3ac,

we have
Z(Za + b)*(b + 2¢)? =pZZ:a2 +3g* + 9Z:a2b2 + 2p*q + 18abcp + 6¢>

= p*(p* —2q) + 99> + 9(¢* — 2abcp) + 2p*q + 18abcp = p* + 18¢?,

and the inequality becomes
9p*q = p* +18¢?,

(p*—3q)(6q —p*) = 0.
The last inequality is true since p?> —3q > 0 and

6q —p* =4(ab + bc +ca)—a*—b*—c*> 0.

Case 2: 4(ab + bc + ca < a? + b% + c2. Assume that a = max{a, b,c}. From
a*—4(b+c)a+(b+c)*>6bc>0,

we get
a>2+vV3)(b+c)>2(b+c).
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Since

1 1 1 1 1 2
+ + > + > ,
(2a+b)>2 (2b+c)? (2c+a)? (2b+c)? (2c+a)>  (2b+c)(2c+a)

it suffices to show that
2 S 1
(2b+c)(2c+a)  ab+bc+ca

This is equivalent to the obvious inequality
cla—2b—2c)=0.
The proof is completed. The equality holds for a = b =c.

Conjecture. Let a,b,c be nonnegative real numbers, no two of which are zero. If
k > 0, then

@) 1 + 1 + 1 > 9 :
(a+b)ka+b) (b+c)kb+c) (c+a)kc+a)  2(k+1)(ab+ bc+ca)
1 1 1 9

- + > :
(ka+b)>2 (kb+c)> (kc+a)? ~ (k+1)2(ab+ bc+ca)

(b)

For k =1, from (a) and (b), we get the well-known inequality (Iran 96):

1 + 1 + 1 > 9
(a+b)2 (b+c)?> (c+a)?*  4(ab+bc+ca)

P 1.80. If a, b, c are nonnegative real numbers, then
4, 14, 4 3 3 3 A7 912 122, 2.2
a*+b*"+c*+15(a’b+ b’°c+c a)ZZ(a b® + b“c” + c“a®).

(Vasile C., 2011)

Solution. Without loss of generality, assume that a = min{a, b, c}. There are two
cases to consider: a < b<canda <c<b.

Case 1: a < b < c. For a = 0, the inequality is true because is equivalent to

b*+c*+15b%c — gbzcz >0,

2
(b _ %) (b%+ 16bc + 4¢2) > 0.
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Based on this result, it suffices to prove that
4 3 3 47 21,2 2
a”+15(a°b+c a)Z:a (b= +c?).

This inequality is true if
a’b+cda> a®(b? +c2).
Indeed,

a’b+c—a(b*+c*)=c*(c—a)—ab(b—a) > c*(b—a)—ab(b—a)
=(c2—ab)(b—a)>0.

Case 2: a < ¢ < b. It suffices to show that
a’b + b3c + c*a > a®b* + b%c? + c?a’.
Since
ab®+ b +ca®—(a®b+b3c+cca)=(a+b+c)a—b)(b—c)(c—a) <0,

we have

ZaSb > %(ZaBb +Zab3) = %Z:ab(a2 +b?) > Zazbz.

The equality holds for a = 0 and 2b = ¢ (or any cyclic permutation).

P 1.81. If a, b, c are nonnegative real numbers such that a + b + ¢ = 4, then
a®b+b3c+ca<27.

Solution. Assume that a = max{a, b,c}. There are two possible cases: a > b > ¢
anda>c>b.
Case 1: a > b > c¢. Using the AM-GM inequality gives

3(a®b + b3c + c2a) < 3ab(a? + ac +¢*) < 3ab(a + ¢)?
a-+-3b+(a+c)+(a+c)]4
4
3a+3b+2c\*  (3a+3b+3c)*

=a-3b-(a+c)-(a+c)§[

Case 2: a > c¢ > b. Since

ab®+ b +ca®—(a®b+b3c+cca)=(a+b+c)a—b)b—c)(c—a) >0,
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it suffices to prove that
a*b+b3c+c2a+ (ab®+ bc® +ca®) < 54.
Indeed,
Zagb +Z:ab3 < (a*+b*+c*)(ab + bc +ca)
< %[a2 +b%+c?+2(ab + bc +ca)?
=%(a+b+c)4=32<54.
The equality holds for a =3, b =1 and ¢ = 0 (or any cyclic permutation).
Remark. The following sharper inequality holds (Michael Rozenberg).
e If a, b, c are nonnegative real numbers such that a + b + ¢ = 4, then
a’b+b3c+cca+ % abc <27,

with equality for a = b = ¢ =4/3, and also for a =3, b =1 and ¢ = 0 (or any cyclic
permutation).

Write the inequality in the homogeneous form
27(a+ b +c)* > 256(a®b + b3c +c2a) + 473abc(a + b +¢).
Assuming that ¢ = min{a, b, c} and using the substitution
a=c+p, b=c+q, p,q=0,
this inequality can be restated as
Ac*+Bc+C =0,

where
A=217(p*—pq+q*) >0,

B = 68p>® —269p2q + 499pq? + 68q° > 60p(p? — 5pq + 8q%) > 0,
C = (p—3q)*(27p* + 14pq + 3¢*) > 0.

P 1.82. Let a, b, c be nonnegative real numbers such that
2 2 2 10
a‘+b+c° = ?(ab+bc+ca).

Prove that 8o
at+ bt +ct > 2—7(a3b + b3c+c3a).

(Vasile C., 2011)
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Solution (by Vo Quoc Ba Can). We see that the equality holds fora = 3, b = 1,
¢ =0. From

a*+b*+c*+2(ab+ bc+ca) =(a®+ b2+ c?)? +4abc(a+ b +c),
we get
a*+b*+c* > (a® + b%+c?)?*—2(ab + bc + ca)?
= %(ab + bc+ca)’.
Therefore, it suffices to show that
3(ab+ bc+ca)*>a®*b+ b3c+cia.

In addition, since

ab+ bc+ca=

3(a?+ b%+c?)+6(ab + bc +ca) _3(a+b+c)2
16 B 4 ’

it suffices to show that
+b+c\!
27(%) > a’b+ b3c +c3a,

which is the inequality from the preceding P 1.81. The equality holds for a = 3b
and ¢ = 0 (or any cyclic permutation).
OJ

P 1.83. If a, b, c are positive real numbers, then

a® N b3 N c3 >a+b+c
2a2+ b2 2b2+c¢2  2c2+4a2 3

(Vasile C., 2005)

Solution. We write the inequality as

(a_S_E)Jr(b_S_E)Jr( ¢’ _£)>0
2a2+ b2 3 2b2+c¢2 3 2c2+a2 3) 7
a(a®—b?) N b(b%—c?) N c(c?2—a?) -

2a2 + b2 2b2 +¢? 2c2+a®
Taking into account that

a(a®>=b*) b(a®—b*) _ (a+b)(a—b)*(a®—ab+b?)
22+ b2 2b2+a® | (2424 DA)(2b2+ @)

=0,
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it suffices to show that
b(a®?—0b?%) b(b%>—c?) c(c*—a?) -
2b2 4+ g2 2b2 4+ ¢2 2c2+ a2

Since
b(a®—b?) N b(b*—c*) 3b2%(a%?—c?)

2b2% + a2 2b2+c¢2  (2b2+4a2)(2b2 +¢2)’
the last inequality is equivalent to

(c2—a®)(c — b)[a*(3b% + bc + ¢?) + 2b%c(c —2b)] = 0. )

Similarly, the desired inequality is true if
(a?=b*)(a—c)[b*(3c% 4+ ca+a?)+2c%a(a—2c)] = 0. G
Without loss of generality, assume that
¢ = max{a, b, c}.
According to (*), the desired inequality is true if
a®(3b% + bc + c¢?) +2b%c(c —2b) > 0.

We claim that this inequality holds for for a > b, and also for 2ac > +/3 b2. If
a > b, then

a?(3b% + bc + ¢*) + 2b%c(c —2b) > b*(3b% + bc + ¢?) + 2b%c(c — 2b)
=3b%[b%+c(c—b)] > 0;
also, if 2ac > +/3 b?, then
4
a*(3b% + bc + ¢?) + 2b%*c(c —2b) > %(Bbz + bc +¢?) +2b%*c(c —2b)
c
b2
= E(Sc4 —16bc® +3b%c2 +3b3%c +9bY)
2
= B[Zc(c + b)(2c —3b)* +9b%*(c — b)* + 3b3c] > 0.
c
Consequently, we only need to consider thata < b < c and +/3 b? > 2ac. According
to (**), the desired inequality is true if
b2(3c% +ca+a?®)+2c%a(a—2c) > 0.
We have
b%*(3c¢* +ca +a?) + 2c*a(a—2¢) > 43£(3c2 +ca +a*) + 2c*a(a —2c)

2a%c(2a + 5¢)
=—>
3
This completes the proof. The equality occurs fora = b =c.

0.
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P 1.84. If a, b, c are positive real numbers, then

a* b* ct a+b+c
+ + > :
at+b% b3+c® c2+ad 2
(Vasile C., 2005)

Solution (by Vo Quoc Ba Can). Multiplying by a®+ b* + c3, the inequality becomes

Yo+ Y 5 (S (Ee).

By the Cauchy-Schwarz inequality, we have

i _ Eee)  (Zer)
a3+b3 - Zc(a3+b3) Za(b3+c3)'

According to the inequality

> X —

I

X
- ) X;.y > 07
Yy

we have

21,232
(2 a°b%) )_Z a’b?— —Za(b3+c3).

> a(b3+c3

Therefore, it suffices to show that

S+ Yab -2 Y b+ 2 2 (D) (3e),

which is equivalent to
ZZaA' +4Z:a2b2 > E’»Z:ab(a2 + b?),
z:[a4 + b*+ 4a*b?>—3ab(a*+ b?)] >0,

> (a—Db)*(a®—ab+b?) > 0.

This completes the proof. The equality occurs fora=b =c.

P 1.85. If a, b, c are positive real numbers such that abc =1, then

a? b*> c? b ¢ «a s o o

(a) 3(?+?+3)+4(;+§+c—2)27(a +b +c );

3 p* 8 b

(b) 8(—+—+—)+5( + Sy )213(a3+b3+c3).
b c a b3

(Vasile C., 1992)
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Solution. (a) We use the AM-GM inequality, as follows:
S | (a2} ¢ a3
32—+4Za2 > 3—+—+3 >7>" - -ﬁ-(—)

—72(1; 7> %

The equality holds fora=b =c=1.
(b) By the AM-GM inequality, we have

SZ_+SZa3 2(8_+_+4C3)>132 1<J(a3)8 3.(2)4

c3
o 132 ;\ plicil 132

The equality holds fora=b=c=1.

P 1.86. If a, b, c are positive real numbers, then
ab bc ca a’+ b% +¢?

+ - < :

b24+bc+c2 c24+ca+a? a?4+ab+b2  ab+bc+ca

(Tran Quoc Anh, 2007)

Solution. Write the inequality as follows:
2

Z( a B ab )ZO,

ab+bc+ca b2+ bc+c?
32
Zac(ac b)ZO,
b2+ bc +c2
ac(ac —b?)
2| perar o> 2ae

ac’(a+b+c)
_— >

Z b2+ bc + c2 _Zac,

2

Z ac >ab+bc—|—ca
b2+bc+c2~ a+b+c

By the Cauchy-Schwarz inequality, we have

2

2
Z ac S (Zac) _ab+bc+ca
b2+bc+c2~ Ya(b?+bc+c2) a+b+ca’
The equality holds for a = b =c.
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P 1.87. If a, b, c are positive real numbers, then

a—>b N b—c + c—a >0
b(2b+c¢) c(2c+a) a(2a+b)

Solution. Write the inequality as follows:
Z ac(a—Db) >0,
2b+c¢

Z[M+ac]2ab+bc+ca,
2b+c

Z ac >ab+bc+ca
2b+c a+b+c

By the Cauchy-Schwarz inequality, we have

Z ac_ (Zac)z (Zab)z

2b+c  Dlac(2b+c) N 6abc + > a%b’

Thus, it suffices to prove that

> ab 1

>
6abc+ > a2b ~ >.a’

which is equivalent to
Z ab* > 3abc.

Clearly, the last inequality follows immediately from the AM-GM inequality. The
equality holds fora =b =c.
O

P 1.88. If a, b, c are positive real numbers, then

a’+6bc b*+6¢ca c2+6ab>

+ + > 7;
(@ ab+2bc bc+2ca ca+2ab

a’?+7bc b*+7ca c*+7ab
b + + >12.
®) ab + bc bc+ca ca+ab

(Vasile C., 2012)
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Solution. (a) Write the inequality as follows:

> Jac(a? +6bc)(b +2a)(c +2b) > 7abe(a + 2¢)(b + 2a)(c + 2b),

22a2b4 +abc (72abc +4Z:a3 +26Z a’b + 72 abz) >
> 7abc (9abc +4Z a’b + ZZabz),
Z(Z a2b4—acha2b) +abc (42 a’ + 9abc—7Z abz) > 0.
Z(Z a2b4—acha2b) = Z:(ab2 —bc*)? >0,

it suffices to show that

Since

42 a®+9abc — 72 ab* > 0.
Assume that a = min{a, b, c}. Using the substitution
b=a+x, c=a+y, x,y=0,
we have

4Z:a3 +9abc—7Zab2 =5(x*—xy +y?a+4x>+4y>—7xy* >0,

since

43 +4y° =4x®+2y% +2y% > 33/4x3 - 2y3 - 2y* = 6v/2 xy* = 7xy”.

The equality holds fora = b =c.

(b) Write the inequality as follows:

Z ac(a®*+7bc)(b +a)(c + b) > 12abc(a +c)(b +a)(c + b),

Za2b4 +abc (Zlabc +Z:a3 + 1SZa2b + SZabz) >
> 12abc (Zabc + Zazb + Zabz),

(Zazb4—abc2a2b) +abc (Za?’—?)abc +4Za2b—4Zab2) >0

Since .
Za2b4—abc2a2b = EZ:(ab2 —bc*)? >0,

it suffices to show that

Za3—3abc+42a2b—42ab2 =0,
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which is equivalent to
1
Satb+ ¢)> (a—by*—4(a—b)(b—c)(c—a) = 0.
Assume that a = min{a, b, c}. Making the substitution
b=a+x, c=a+y, x,y=0,

wenae 1(a+b+c)2(a—b)2—4(a—b)(b—c)(c—a)=
2
=(x*—xy+y*)Ba+x+y)+adxy(x—y)
=3(x*—xy+yHa+x}+y +4xy(x—y)
=3(x*—xy+y?a+x>+y(x—y)*>0.
The equality holds fora = b =c.

P 1.89. If a, b, c are positive real numbers, then

(@ ab N bc L_ca _ a®+b*+c*
2b+c 2c+a 2a+b~ a+b+c’
) ab N bc L 3(a%+ b2+c2);
b+c c¢c+a a+b 2(a+b+c)
ab bc ca a®+ b%+ ¢?
(©) <

+ + < :
4b+5c 4c+5a 4a+5b  3(a+b+c)

(Vasile C., 2012)

Solution. (a) First Solution. Since

2ab ac

=qaq— s
2b+c 2b+c

we can write the inequality as

ac 2(a®+ b2 +c?)
> +

>a+b+ec.
2b+c a+b+c

By the Cauchy-Schwarz inequality,

> =
2b+c  D(2b+¢) 3(a+b+c)

Z ac (Z«/E)z_(@+«/ﬁ+ﬁ)2
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Then, it suffices to show that

(V/ab + vbc+ yca)? +6(a® + b +¢?)
3(a+b+c)

>a+b+ec,

which is equivalent to

3(a2+b2+c2)+2\/abc(ﬁ+ Vb + 1/5) > 5(ab + bc + ca).

Using the substitution
X:'\/a, y:\/g) Z:'\/E;

the inequality can be restated as

3(x*+ y*+2M) + 2xyz(x + y +2) > 5(x%y? + y2z® + 2%x?).
We can get it by summing Schur’s inequality of degree four

20t +y* + 2+ 2xyz(x +y +2) > ZZ:xy(x2 +y?%)
and
xt+yt 2t + Zz:xy(x2 +¥?) = 5(x%y? + y*2* + 2%x?),

the last being equivalent to the obvious inequality

(x*+ y*+2* —x2y? — y22% —2%x?) + Zny(x —y)*>0.
The equality holds fora = b =c.
Second Solution. By the Cauchy-Schwarz inequality, we have

1 1 <a2/b+b+c_a2+b2+bc
2b+c b+b4+c” (a+b+c)2 bla+b+c)?

ab < a(a®? + b% + bc)
2b+c~ (a+b+c)?
Z ab_ _ > a*+ > ab*+ 3abc
2b+c ™ (a+b+c)? ’
Since 3abc < Y’ a*b (by the AM-GM inequality), we get

b

Z ab <Za3+2ab2+2a2b_a2+b2-|—c2
2b+c ~ (a+b+c) - a+b+c

Third Solution. Write the inequality as

Zab(a+b+c) <

<a’+b%+c2.
2b+c



138

Vasile Cirtoaje

Since

2ab(a+ b +c) = (a®+2ab)(2b + ¢) — 2ab* — d’c,

we can write the inequality as
2ab? a’c
+ +p = 2q,
Z 2b+c¢ Z 2b+c P 1

p=a*+b*+c* gq=ab+bc+ca, p=q.

where

By the Cauchy-Schwarz inequality, we have

2b+c - Sa(2b+c) 3

Z ab? > (Zab)z q

and

2
Z a’c (Xac) ¢
2b+c~ Yc(@b+c) p+2q
Thus, it suffices to show that

2

3 p+2q

2
9, 9 4,502,

which is equivalent to the obvious inequality

(p—q)(8p+5q) = 0.

(b) Write the inequality as

3., o 5 ab(a+b+c)
— b > _ .
2(a + +c)_Z e
Since ) )
ab(a+b+c): a‘b tab—d®+ab— asc ’
b+c b+c b+c

the inequality can be written as

a‘lc 1., 5,
E + —(a®+ b*+c*)=ab + bc +ca.
b+c 2

By the Cauchy-Schwarz inequality,

Z a’c S (Zac)z S
b+c DYec(b+c) p+q

where
p=a*+b*+c* gq=ab+bc+ca, p=>q.
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Therefore, we have

c 1 2 -
Z 1€ (@ +b2+c))—(ab+bc+ca)> —1— +l_7_q:p—(p q)ZO.
btc 2 pt+q 2 2(p +4)

The equality holds for a = b =c.

(¢) Since
4ab Sac

=q— s
4b + 5¢ 4b + 5¢
we can write the inequality as

>a+b+c.

Z ac +4(a2+b2+c2)
4b + 5¢ 3(a+b+c)

By the Cauchy-Schwarz inequality,

Z ac (Zac)z (ab+ bc +ca)?

4b+5c ~ Dlac(4b+5c) ~ 12abc + 5(a2b + b2c + c2a)’
Therefore, it suffices to show that

5(ab + bc + ca)? 4(a®>+ b%+c?)

>a+b+c.
12abc + 5(a?b + b2c + c2a) 3(a+b+c) =4 C

Due to homogeneity, we may assume that a + b + ¢ = 3. Using the notation
gq=ab+bc+ca, q<3,
this inequality becomes

5¢> -2
d L 3072) 5
5(a2b + b2c + c2a + abc) + 7abc 9

According to the inequality (a) in P 1.9, we have
a’b + b*c +c*a +abc < 4.
On the other hand, from
(ab + bc+ca)* > 3abc(a+b +c),

we get
2
abc < q—.
9
Thus, it suffices to prove that

5q° 4(9—2q) -
20 +7q2/9 9 7
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which is equivalent to
(g—3)(14¢*—75q +135) < 0.
This is true since g —3 < 0 and
14q% —75q + 135 > 3(4¢> —25q +39) = 3(3—q)(13—4q) > 0.

The equality holds fora = b =c.

P 1.90. If a, b, c are positive real numbers, then

(@) avb2+8c2+bvc2+8a2+cvaz+8b2<(a+b+c)

(b) avb2+3c2+bvc2+3a2+cva2+3b2<a’+b*>+c?>+ab+bc+ca.

(Vo Quoc Ba Can, 2007)

Solution. (a) By the AM-GM inequality, we have

2 2 2 2 2 5
Jhrrge o Y02 +8c)(b+2c) (b2 +8c%)+(b+2c)

b+2c - 2(b + 2c)
b2+ 2bc + 6¢> 3bc
= =b+3c— ,
b+ 2c b+ 2c
hence 3qh
av b2+ 8c2<ab+3ac— a C,
b+ 2c
1
b2+8c2<4 b—3ab .
SV <4 b dabe 3 L

Therefore, it suffices to show that

(Za)2+3abcz 5 -:2c > 4Zab.

Since

Z 1 > 9 _ 3
b+2c D(b+2c) Dlda’

it is enough to prove that

(Z a)3 +9abc > 4(2 a) (Z ab).

This is Shur’s inequality of degree three. The equality holds for a = b = c.
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(b) Similarly, we have

Jhiraa e YO H3Ab+eP (b2 +3c?) + (b +c)’

b+c - 2(b+c¢)
2 2
_ b*+bc+2c b4 2bc’
b+c b+c
hence 9ab
av b2+3c2<ab+2ac— a C,
b+c
1
vVb2+4+3c2<3 b—2ab .
Za c Za a Czb+c

Thus, it suffices to show that

(Za)2+2abcz b—li-c 24Zab.

Since

Z 1 > 9 9
b+c ™ Di(b+c) 2>
it is enough to prove that

(3a) +9abe = 4(>1a) (D ab),

which is just Shur’s inequality of degree three. The equality holds fora =b =c.
O

P 1.91. If a, b, c are positive real numbers, then

() ! + ! + ! > /2
ava+2b bvb+2c cvc+2a Vabc’
®) ! ! 1 . [

+ + = .
ava+8b bvb+8c cvc+8a abc
(Vasile C., 2007)

Solution. (a) Write the inequality as

bc
S
3a(a+2b)

Replacing a, b, c by —, —, —, respectively, the inequality can be restated as

i
W | =

1
y

X
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Since

3z+(2x +
V3z(2x+y) < M,

2

it suffices to show that
PIP S
- 2 —.
2x+y+3z 2
Indeed, using the Cauchy-Schwarz inequality gives

X (Zx)z 1
Z:2x+y+3222;2x(2x+y+3z)_5'

The equality holds for a = b =c.

(b) Write the inequality as

bc
S e,
a(a+ 8b)

1
Replacing a, b, ¢ by = respectively, the inequality becomes
x

5 }79 2_23
x2
Z —>1.

o

Applying the Cauchy-Schwarz inequality yields
2

Z x? > (X x)
2v/8x2+y2 Y z4/8xZ+y?

Therefore, it suffices to show that

Zz\/8x2+y2 <(x+y+2)?

which is just the inequality in P 1.90-(a). The equality holds fora =b =c.

P 1.92. If a, b, c are positive real numbers, then

a b c a+b+c
+ + <\ i
vV5ad+4b +5b+4c +/5c+4a 3

(Vasile C., 2012)
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Solution. By the Cauchy-Schwarz inequality, we have

2
E==) Cimm) %)

It suffices to show that

> 1
—S_
4a+4b+c 3

and

a+b+ec.

Za(4a+4b+c) <
5a+4b -

The first is just the inequality in P 1.18, while the second is equivalent to
S5a +4b
Z ala—c) >0,
S5a+4b
Z a(a—c)(5b+4c)(5¢+4a) =0,

Z:azb2 +4Z:ab3 > Sacha.

The last inequality follows from the well-known inequality

Z:azb2 > acha
Z:ab3 = acha,

which follows from the Cauchy-Schwarz inequality, as follows:

() ()= (S vare) =ane(S5)'

The equality holds for a = b =c.

and the known inequality

P 1.93. If a, b, c are positive real numbers, then

a b c Ja+vb+ /¢
+ + > ;
@ va+b Vb+c Vc+a V2
) a_ . b N c S \J 27(ab+bc+ca)'
va+b +Vb+c +c+a 4

(Lev Buchovsky - 1995, Pham Huu Duc - 2007)
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Solution. (a) By squaring, the inequality becomes

2

Za+b+2zm —Za+2\/_

The sequences

{ 1 1 1 }
va+b  Vb+c +c+a

and

{ ab bc ca }

Ja+b  Vb+c Jc+ta

are always reversely ordered; therefore, according to the rearrangement inequality,
we have

1 ab N 1 bc N 1 ca <
va+b va+b +vVb+c vb+c +VJc+a Ve+a
1 ca 1 ab 1 bc

va+b Vc+a Vb+c va+b +c+a Vb+c

et Zm

Thus, it suffices to show that

2

b 1
Zaib+2zaib2§ a+» Vab.
2

Zac-li—b Za+b_z

the inequality becomes as follows:

Dla+ Za+b_ a+ >y Vab,
Za;b+zazibb_22\/_

S22 =0

The equality holds fora = b =c.

Since

(b) By Holder’s inequality, we have

(Z 1/%)zzza(a+ b) > (Za)g.
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Thus, it suffices to show that

(Za)3 > ;(ZaZ +Zab) V/3(ab + bc + ca),

which is equivalent to

2p° +¢° > 3p’q,

where p =a+b+c and g = v/3(ab + bc + ca). By the AM-GM inequality, we have

2p® + q* > 34/p®q3 = 3p’q.

The equality holds for a = b =c.

P 1.94. If a, b, c are nonnegative real numbers such that a + b + c = 3, then

V3a+b2+v3b+c2+3c+a2>6.

First Solution. Assume that a = max{a, b,c}. We can get the desired inequality
by summing the inequalities

V3b+c2+4v3c+a2>vV3a+c2+b+c

and

V3a+b2++/3a+c2>2a+b+c.

By squaring two times, the first inequality becomes in succession

\/(Bb +c2)(3c+a?)=(b+c)V3a+c2,

[b(a+b+c)+c*][ca+b+c)+a?]>(b+c)[ala+b+c)+c?],
b(a—b)(a—c)la+b+c)=0.

Similarly, the second inequality becomes

v/ (3a + b2)(3a + c2) > (a + b)(a +c¢),

[a(@a+b+c)+b?[ala+b+c)+c2]>(a+b)(a+c),
ala+b+c)b—c)*>0.

The original inequality becomes an equality when a = b = ¢, and also when two of
a, b,c are zero.

Second Solution. Write the inequality as

VX+VY +VZ <VA+VB+VC,
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where
X=(b+c), Y=(c+a), Z=(a+b)

A=3a+b? B=3b+c% C=3c+d>

According to Lemma from the proof of P 2.11 in Volume 2, since
X+Y+Z=A+B+C,
it suffices to show that
max{X,Y,Z} > max{A,B,C}, min{X,Y,Z} <min{A, B,C}.
To show that max{X,Y, Z} > max{A, B, C}, we assume that
a =min{a, b,c}, max{X,Y,Z}=X.

From
X—A=(*—a®>)+blc—a)+c(b—a)=>0,
X—B=b(c—a)=>0,
X—C=(b*-a*)+c(b—a)>0,

the conclusion follows. Similarly, to show that min{X,Y,Z} < min{A,B,C}, we
assume that
a =max{a,b,c}, min{X,Y,Z} =X,

when
A—X=(a’>—c)+bla—c)+c(a—b) >0,

B—X=b(a—c)=>0,
C—X=(a®>-b>)+c(a—b)>0.

P 1.95. If a, b, c are nonnegative real numbers, then

Va2 +b2+2bc+vVb2+c2+2ca+ v c2+a2+2ab>2(a+b+c).

(Vasile C., 2012)

First Solution (by Nguyen Van Quy). Assume that a = max{a, b,c}. We can get
the desired inequality by summing the inequalities

Va2 +b2+2bc+ Vb2 +c2+2ca> Va2 +b2+2ca+b+c

and

Vetra?+2ab+ Va2 +b2+2ca>2a+b+ec.
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By squaring two times, the first inequality becomes

\/(a2 + b2+ 2bc)(b2+c2+2ca) = (b+c)V a2+ b2+ 2ca,

cla—b)(a*—c?)=>0.

Similarly, the second inequality becomes

\/(c2 + a2+ 2ab)(a?+ b2+ 2ca) > (a+ b)(a+c),

a(b+c)(b—c)*>0.

The original inequality becomes an equality when a = b = ¢, and also when two of
a, b, c are zero.

Second Solution. Let {x, y,z} be a permutation of {ab, bc, ca}. We will prove that
20a+b+c)<Vb2Hct+2x+ v/ 2+ +2y+vVa2+ b2+ 2z.
Due to symmetry, assume that a > b > c¢. Using the substitution
X=a*+b*+2ab, Y=c*+a*+2ca, Z=>b*+c*+2bc,

A=Db*+c*+2x, B=c*+a*+2y, C=a*+b*+2z,

we can write the inequality as

VX +VY +VZ <VA+VB+VC.
SinceX+Y+Z=A+B+C,X>Y >Zand
X >max{A,B,C}, Z <min{A,B,C},

the conclusion follow by Lemma from the proof of P 2.11 in Volume 2.

P 1.96. If a, b, c are nonnegative real numbers, then

\/a2+b2+7bc+\/b2+c2+7ca+\/02+a2+7ab23\/3(ab+bc+ca).
(Vasile C., 2012)

Solution. Assume that a = max{a, b,c}. We can get the desired inequality by
summing the inequalities

\/a2+b2+7bc+\/b2+c2+7ca2\/a2+b2+7ca+\/b2+c2+7bc
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and

Va2+c2+7ab+ \/a2+b2+7a023\/3(ab+bc+ca)—\/b2+c2+7bc.
By squaring, the first inequality becomes
(a®+ b%+7b)(b* + ¢* + 7ca) = (a® + b* + 7ca)(b* + ¢* + 7bc),
cla—b)a®=c*)>o0.
Similarly, the second inequality becomes
a®+ VE +3v3F > 10a(b + ¢) + 17bc,
where

E = (a®+c?+7ab)(a® + b*+ 7ac)
=a*+ 7(b+c)a® + (b*+ c® +49bc)a® + 7(b + ¢®)a + b?c?

and
F =(ab+ bc +ca)(b*+c*+ 7bc).

Due to homogeneity, we may assume that b + ¢ = 1. Let us denote x = bc. We

1
need to show that f(x) >0 for0 < x < 2 and a > > where

f(x)=a*—10a—17x + 4/ g(x) + 34/3h(x),
with

g(x)=a*+7a®+ (1 +47x)a*+7(1—3x)a + x>
=x*+a(47a—21)x +a* +7a® + a*+ 7a,

h(x)=(a+x)(1+5x)=5x%2+(5a+1)x +a.

We have the derivatives

" 343K
fl)=—17+2—+ /3
2/8  2vh
:_17+2x+a(47a—21)+3\/§(1Ox+5a+1)’
2/8 2vh

veon 28"8—(g')* | 3v/3[2n"h— ()]
)= 1gyz 4hvh
_ a(28—45a)(7a—1)* 3v3(5a —1)?
4g./¢ 4hvh
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1 1
We will show that g > 3h. Since 0 < x < — and a > —, we have

g —3h=—14x*+(47a*—36a—3)x + a* +7a® + a* + 4a

> ~3 +(47a*—36a —3)x +a* + 7a® + a* + 4a.
For the non-trivial case 47a* —36a —3 < 0, we get

7  47a*—36a—3
g—3h2—§+ - 2 2 L a*+ 7+ +4a
_(2a—1)(4a3+30a2+66a+13)>

8

28
We will prove now that f”(x) < 0. This is clearly true for a > —. Otherwise, for
1
— <a< —,we have
2 45

F700) < a(28 —45a)(7a—1)*>—27(5a —1)? -

0,
484/8
since

a(28 —45a)(7a—1)>—27(5a—1)* < (28— %) (7a—1)*>—27(5a—1)>?

27 27(1—3a)(17a—3
<5 (7a=17—=27(5a—~1)" = ( ai( a=3)

1
Since f is concave, it suffices to show that f(0) > 0 and f (—) > 0.
From

f(0)=va(ava—10va+3v3+Vad+7a>+a+7),

it follows that f(0) > 0 for all a > % if and only if

Vad+7a2+a+7>—ava+10/a—3v3.
This is true if

a®+7a%*+a+7>(—ava+10va—3v3)>?
which is equivalent to

(v3a—2)*(9a +104/a—5) > 0.

1
Clearly, this inequality holds for a > >
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Since )
(1)_(4a2+14a+1)
f\a)” 4
and
h(l) _ 9(4a+1)
4) 16
we get

f(l):8a2—26a—16+9¢m

Using the substitution

we find

1 Ox*—45x2 +54x —18 (x—1)*(9x2+18x —18)

Thus, the proof is completed. The equality holds for a = b = ¢, and also for 3a = 4b
and ¢ = 0 (or any cyclic permutation).
U

P 1.97. If a, b, c are positive real numbers, then

a’?+3ab b*>+3bc c¢*+3ca
+ + > 3.
(b+c)? (c+a)? (a+b)?

Solution. Write the inequality as
a(a+b) ab
+2 >3
Z(b+c)2 Z(b+c)2_

{bc, ca, ab}

The sequences

and

{ 1 1 1 }
(b+c¢)? (c+a)? (a+b)?
are reversely ordered. Thus, by the rearrangement inequality, we have

bc ab
Z(b+c)2 SZ:(b+c)2'

Therefore, it suffices to show that

a(a+b) b(c+a)
Z (b +c)? Z (b+c)2 =3
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which is equivalent to

a+b b+c
Za[(b+c)2+z(a+b)2]23

By the AM-GM inequality, we have

a+b b+c 2 4
>

(b+c2  (atbp~ V(a+b)(b+c) = (@+b)+(b+c)

Thus, it is enough to prove that

Z a 3
—2_.
a+2b+c 4

Indeed, by the Cauchy-Schwarz inequality, we get

Z a - (Za)z _Za2+22ab

a+2b+c” Yala+2b+c) Da2+3>.ab

The equality holds for a = b =c.

P 1.98. If a, b, c are positive real numbers, then

a’b+1 b%+1 c%a+1
+ + > 3.
a(b+1) b(c+1) cla+1)

Solution. By the Cauchy-Schwarz inequality, we have
1
(a’b+1) (E + 1) >(a+1)%
hence
a’b+1 - b(a+1)?

a(b+1)  a(b+1)?
Therefore, it suffices to prove that

2
Z b(a+1) >3
a(b+1)2
This inequality follows immediately from the AM-GM inequality:
b 1)? b 1)2
PRV | i [UCRE Yy
a(b+1)2 a(b+1)2

The equality holds fora=b =c=1.

>

3
.
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P 1.99. If a, b, c are positive real numbers such that a + b + c = 3, then

Vad+3b+vVb3+3c+Vc3+3a>6.

Solution. By the Cauchy-Schwarz inequality, we have
(a®+3b)(a+3b) > (a*+3b)%.

Thus, it suffices to show that

a’+3b
LI
va+3b

By Holder’s inequality, we have

(Z az+—3b)2 [Z(a2 +3b)(a + 3b)] > [Z(a2 + 3b)]3 =(D>la®+ 9)3
va+3b - '

Therefore, it is enough to show that

(3a2+9)" =36 (a?+3b)(a +3b).

Let
p=a+b+c=3, q=ab+bc+ca, q<3.

We have
Za2+9=p2—2q+9=2(9—q),

Z(a2+3b)(a+3b):Za3+32a2b+92a2+32ab

= (p®>—3pq +3abc) + 32a2b +9(p*—2q) + 3¢
=108 —24q +3(abc +Za2b).
Since abc + >, a?b < 4 (see the inequality (a) in P 1.9), we get
> (a®+3b)(a +3b) < 24(5—q).
Thus, it suffices to show that
(9—q)* >108(5—q),

which is equivalent to
(3—q)*(21—¢)=0.

The equality holds fora=b =c=1.
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P 1.100. If a, b, c are positive real numbers such that abc = 1, then

/ a A b / c
> 1.
a+6b+2bc+ b+6c+2ca+ c+6a+2ab

(Nguyen Van Quy and Vasile Cirtoaje, 2013)

Solution. By Holder’s inequality, we have

(S rergne) [Datas 6 2000] = (Sla)'.

Therefore, it suffices to show that

(Za2/3)3 ZZa2+6Zab+6,
which is equivalent to
BZ:(ab)z/?’(az/3 +b23) > 62 ab.

Since
a?® 4+ b%? > 2(ab)'?,

the desired conclusion follows. The equality holds fora =b =c = 1.

P 1.101. If a, b, c are positive real numbers such that abc = 1, then

1)? 1)\? 1\?
(a+—) +(b+—) +(c+—) >6(a+b+c—1).
b c a

(Marius Stanean, 2014)

Solution (by Michael Rozenberg). By the AM-GM inequality, we have

1 2
Z(CH_E) +6:Z(a+ac)2+6
=Z(a2+a2c2+2a2c)+6
=Z(a2+a2b2+2a2c+2)
262\6/a2~a2b2-a2c-a2c-1~1:6Za.

The equality holds fora=b =c=1.
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P 1.102. If a, b, ¢ are positive real numbers, then

a b c a+b+c
+ + > —
a+b b+c c+a ag+b+c—+abe

(Michael Rozenberg, 2014)
Solution. There are two cases to consider.

Case 1: ab + bc +ca > vabc (a + b + ¢). By the Cauchy-Schwarz inequality, we
have

2
Z a (>a) B (a+b+c)?
a+b~ Ya(a+b) (a+b+c)2—(ab+bc+ca)
Therefore, it suffices to show that
(a+Db+c) - a+b+c
(a+b+c)2—(ab+bc+ca)  q+b+c—+abc

which is equivalent to

ab+ bc+ca—vabc (a+b+c)>0.

Case 2: vabc (a+ b +c¢) > ab + bc + ca. By the Cauchy-Schwarz inequality, we
have

Z a_ (ZGC)Z (ab + bc + ca)?

a+b ~ Dlac2(a+b) - (ab+ bc+ca)>—abc(a+b+c)’
Thus, it suffices to show that

(ab + bc + ca)? - a+b+c
(ab+bc+ca)>—abcla+b+c)  q+b+c—abc

which is equivalent to
2
[\/3 abc (a+ b+ c)] > (ab+ bc +ca)?,

vabc (a+b+c)>ab+ bc+ca.

The proof is completed. The equality does not hold.

P 1.103. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

avb2+b+1+bvVeitc+l+cvai+a+1<3V3.

(Nguyen Van Quy, 2014)
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Solution. From
4(b2+b+1)=2(b+1)*+2(b*+1)>3(b+ 1),

we get
\/b2+b+12§(b+1),

hence

_ab*+b+1) 2a(b*+b+1)
2B =) T <2 ey

Therefore, it suffices to prove that

Za(b2+b+1)<

2
b+1 -2’

which is equivalent to

Z ab? 3
< -.
b+1 2

In addition, since b +1 > 24/, it is enough to show that

Z:ab?’/2 <3.

Replacing a, b, c by a?, b, c?, respectively, we need to show that a®> + b*+ c¢* = 3
involves a®b® + b2c® + c?a® < 3, which is just the inequality in P 1.7. The equality
holds fora=b =c.

]

P 1.104. If a, b, c are positive real numbers, then

1 1 1 1
+ + < .
b(a+2b+3c)? c(b+2c+3a)> a(c+2a+3b)2 "~ 12abc

(Vo Quoc Ba Can, 2012)
Solution. Assume that a = max{a, b, c}, and write the inequality as

ca 4 ab N bc < i
(a+2b+3c)?> (b+2c+3a)? (c+2a+3b)2" 12

Case 1: a = b > c. By the AM-GM inequality, we have
(a+2b+3c)*>>4(2b+c)(2c +a);

thus, it suffices to show that

Z ca < 1
(2b+c)(2c+a) ~ 3’
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which is equivalent to
3> ca(2a+b) < (2a+b)(2b+c)(2c +a),

ab?+ bc? + ca® < a®b + b%c + c?aq,
(a=b)(b—c)(c—a)<O.

Clearly, the last inequality is true.
Case 2: a > ¢ = b. Since, by the AM-GM inequality,
(a+2b+3c)*>12c(a +2b),

(b+2c +3a)* > 4(2a + b)(2c + a),
(c+2a+3b)*>4(a+2b)(a+b+c),
it suffices to show that
a ab bc 1
+ + <z,
3(a+2b) (2a+b)(2c+a) (a+2b)(a+b+c) 3
which is equivalent to
ab N bc < 2b
(2a+b)2c+a) (a+2b)a+b+c)” 3(a+2b)
a + c < 2
(2a+b)(2c+a) (a+2b)la+b+c)  3(a+2b)
a(a + 2b) c
(2a+b)(2c+a) a+b+c
a(a+2b) c(2c+a) < 2(2c+a)

2
S_5
3

2a+b a+b+c ™ 3 7
c(2c+a)  2(2c+a) < 3a? B
a+b+c 3 ~ 2a+b ’
fle) = f(a),
where
Flx) = x(2x +a) _ 2(2x + a).
a+b+x 3
We have
3a?+4ac+b(3a+2c) 4
f(a)_f(c):(a_c)[ (@a+b+c)(2a+b) _E]
_(a—c)[a®—3ab—4b*+2c(2a + b)] -
3(a+b+c)(2a+b) -7
because

a?—3ab—4b*+2c(2a+b) > a®>—3ab—4b*+2b(2a+ b) = (a—b)(a +2b) > 0.

The equality holds for a = b =c.
OJ
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P 1.105. Let a, b, ¢ be positive real numbers such that a + b + ¢ = 3. Prove that

a?+9b b*+9 c*+9a

(a) + =+ >15;
b+c c+a a+b
a’?+3b b*+3c c%*+3a

b + + > 6.

®) a+b b+c c+a

Solution. (a) Write the inequality as follows:

2
Za +3b(a+b+c) > 5(a+b+0),
b+c
2
Z[a +3b(a+b+c)—3b]22(a+b+c),
b+c

a®+3ab
E - >2 +b+
b+c (a ),

2
(20 500,
b+c

Za(a+b—2c) o,
b+c

ala—c) a(b—c¢)
Z b+c +Z b+c =0,
ala—c) b(c—a)
Z b+c +Z c+a =0,
a b
Z(G_C)(b+c_c+a)20’

—b)a—c)
(a+b+c)Z (b+c)(c+a)

Therefore, we need to show that
> (a®—bH(a—c) 20,
which is equivalent to the obvious inequality

Za(a —c)*>0.

The equality holds fora = b =c.

(b) Write the inequality as follows:

Za2+b(a+b+c)

>2 b
s >2(a+b+c),
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a® + bc
Z >a+b+ec,
a+b

(a2+bc )
Z —a|=0,
a+b
Zb(c_a)ZO,
a+b
bc ab
> .
Z:a+b _Za+b
{ab, bc, ca}

{ 1 1 1 }
a+b’ b+c c+a

Since the sequences

and

are reversely ordered, the inequality follows from the rearrangement inequality.

The equality holds fora = b =c.

P 1.106. If a,b,c €[0, 1], then

@ bc + ca + ab <1
2ab+1 2bc+1 2ca+1"
a b c 3
b <=,
(b) <37

+ +
ab+1 bc+1 ca+1

Solution. (a) First Solution. It suffices to prove that

bc ca ab

+ + <1
2abc+1 2abc+1 2abc+1

that is,
2abc+1>ab+ bc+ca,

1—bc>a(b+c—2bc).

Since a < 1 and

b+c—2bc=b(1—c)+c(1—>b)=>0,

it suffices to show that
1—bc>b+c—2bc,

which is equivalent to
(I1-b)(1—c)=0.

]

(Vasile C., 2010)
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The equality holds fora =b =c =1, and fora =0 and b = ¢ = 1 (or any cyclic
permutation).
Second Solution. Assume that a = max{a, b, c}. It suffices to show that

bc ca ab
+ + <1
2bc+1 2bc+1 2bc+1

that is,
a(b+c)<1+bc.

We have
1+bc—a(b+c)=1+bc—(b+c)=(1—-=b)(1—c)=0.
(b) We will show that

E(a, b,¢) < E(1, b,c) < E(1,1,¢) = 2

where
a b c

+ + :
ab+1 bc+1 ca+1
Write the inequality E(a, b,c) < E(1, b, ¢) as follows:

E(a,b,c)=

a C 1 c

+ < +
ab+1 ca+1~ b+1 c+171’
(1—a)[ ! - ¢ ]>o
(b+1)(ab+1) (c+D(ca+1)] ™~

(1—a)[(c+1)(ca+1)—(b+1)(ab+1)c*]>0.

Since 1 —a > 0 and ¢ < 1, it suffices to show that
(c+1)(ca+1)—(b+1)(ab+1)c =0,
which is true because
(c+1)(ca+1)—(b+1)(ab+1)c=(c+1)(ca+1)—2(a+1)c
=(1—-c¢c)(1—ac)=0.
Setting a = 1 in the similar inequality
E(a,b,c) < E(a,1,c),

it follows that
E(1,b,c) <E(1,1,¢).

Finally,
1 c 3

+ ==.
c+1 c¢c+1 2
The equality holds for a = b =1 (or any cyclic permutation).

1
E(1,1,c)=—=+
(L10)=3
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P 1.107. If a, b, c are nonnegative real numbers, then

a* +b*+c*+5(a®b + b3c + c2a) > 6(a?b? + b?c? + c%a?).

Solution. Assume that a = min{a, b, c} and use the substitution
b=a+p, c=a+q, p,q=0.

The inequality becomes
9Aa®+ 3Ba+C >0,

where
A=p*—pq+q°>, B=3p®>+p*q—4pq*+3¢°,

C=p*+5p°q—6p°¢* +¢*.

Since
A>0,

B=3p(p—q)*+q(7p>*—7pq+3¢*) =0,
C=(p—q)*+pq(Bp—29)* >0,

the inequality is obviously true. The equality occurs for a = b =c.

P 1.108. If a, b, c are positive real numbers, then
a®+b°+c®—a*b—b*c—c*a>2abc(a®+ b* +c?>—ab—bc—ca).
(Vasile C., 2006)

Solution. Since

5(D1a°= > a*b)=> (4a°+b5—5a*b) = > (a—b)*(4a> +3a’b + 2ab? + b*)

and Z(Zaz—Zab)=Z(a—b)2,

we can write the inequality in the form
Ala—b)P+B(b—c)*+C(c—a)* =0,

where
A=4a®+3a®b + 2ab*+ b> —5abc,
B =4b>+3b%c + 2bc% + ¢ —5abc,

C =4c® +3c%a + 2ca® + a® —5abc.
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Without loss of generality, assume that a = max{a, b, c}. We have
A> a(4a® +3ab —5bc) > a(4c® + 3b%>—5bc) > 0,
C > a(3c¢?+2ca+a?>—5bc) > a(3c2—3ca+a?) >0,
A+B>4a®+5b%+ ¢ +3a®b + 2bc®> — 10abc

> 34/4a3-5b3 - c3 +24/3a2b - 2bc2 — 10abc
= (3v/20 + 2/6 — 10)abc > 0,

B+C > a®+4b®+5¢%+3b%c + 2ca? — 10abc
> 3\3/a3 -4p3.5¢3 +2\/3b2c-2ca2— 10abc
= (3v20 + 24/6 — 10)abc > 0.

Ifa>b>c, then

> A(a—b)* > B(b—c)*+Cla—c)*= (B+C)(b—c)* > 0.
If a >c> b, then

> [A(a—b)* > Ala—b)*+B(c— b)* > (A+B)(c — b)* > 0.

The equality holds fora = b =c.

P 1.109. If a, b, c are positive real numbers such that a®> + b*> + ¢ = 3, then

a b c
- +
1+b 14c¢c 1+a

3
==
2
(Vasile C., 2005)
Solution. Let
p=a+b+c, g=ab+bc+ca, p*=3+2q.

First Solution. By the Cauchy-Schwarz inequality, we have

Z a S (Za)z _3+2q

1+b~ Ya(l+b) p+q’

Thus, it suffices to prove that
6+q = 3p.
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Indeed,
26+q—3p)=12+(p>—3)—6p=(p—3)*>0.

The equality holds fora=b=c=1.
Second Solution. By the AM-GM inequality, we have
Z a _Z a(a+c) >Z 4a(a+c)
14b “H(1+b)a+c)” “[(1+b)+(a+c)]2
_4(Xa*+Xac) 4B+q)  6+2p?
~ (+p» (+pr (1+p)*

Therefore, it suffices to show that

6 + 2p>
(1+p)?

3
=z,
2

which is equivalent to (p — 3)? > 0.

Conjecture. If a, b, c are positive real numbers such that a® + b> + c? = 3, then

a b c 1
+ + > -
5+4b 544c 5+44a 3

P 1.110. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then

ava+b+bvVb+c+cvc+a=3v2.
(Hong Ge Chen, 2011)

First Solution. Denote

ab+ bc+ca
q= — 3 g<l.

By squaring, the inequality turns into

Za3+Za2b+ZZac\/a2+3q2 > 18.
Since
24/ a*+3q*>>a+3q,

we have

Zz:ac\/a2 +3¢g% > Zac(a-l—?)q) = Zab2+9q3.
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Thus, it suffices to show that
Za?’ +Zab(a+ b) +9q> > 18,
which is equivalent to
(a+b+c)a®+b%+c*)+9q> > 18,

3(9—6q%) +9¢> >0,
1—2¢*+q¢*>0,
(1-¢*)*+¢°(1—q)=0.

Clearly, the last inequality is true. The equality holds fora =b =c = 1.

Second Solution. Using the substitution

atb x+y b+c y+z [c+ta z+x
2 27 2 27 2 2

a+b a+c b+c
X = + — >0,
2 2 2

(x+y)2+(x+z)2 (y+2)2 x(x+y+z)—yz
a= — = .
2 2 2

In addition, a + b + ¢ = 3 involves

gives

X2+ y*+22+xy+yz+zx =6,
which is equivalent to
p°—q=6,

where
p=x+y+z, qgq=xy+yz+zXx.

From

18—2p%> =3(x*+y*+ 2%+ xy + yz +2x)—2(x + y +2)*
=x*+y*+z2—xy—yz—2x >0,

it follows that
p <3.

The desired inequality is equivalent to
D xp—y2)(x +y) =12,

pZ:(x2 +xy)>3xyz +Zyzz+ 12,
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6p > 3xyz + Zyzz +12,

6p+Zy222pq+12.

(=) (En)= (X

(by the Cauchy-Schwarz inequality), it suffices to show that

Since

q2
6p + — = pq+12.
p

Indeed,

¢ p6—9+q* _(6+6-9+q* _36

6p + — —pgq > 12.
p p p p

Conjecture. If a, b, c are nonnegative real numbers such that a+ b+ ¢ = 3, then

av/4a +5b+bv4b +5¢c+cv4c +5a > 9.

P 1.111. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

a N b N c > 1
2b2+c¢  2c24+a 2a%2+b

(Vasile Cirtoaje and Nguyen Van Quy, 2007)

Solution. By the Cauchy-Schwarz inequality, we have

Z a (Za a+c)

2b2+c ~ dYla(a+c)(2b2+c)

Since Y. av/a+ ¢ > 3+v/2 (see the preceding P 1.110), it suffices to prove that
Z a(a+c)(2b*+c¢) <18,
which is equivalent to

ZZ:azb2 + 6abc +Zac(a+c) <18,

ZZ:azb2 + 3abc + (Z a) (Z ab) <18.
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Denoting
q=ab+ bc+ca,

the inequality becomes
9abc + 18 > 2¢* + 3q.

This inequality is true for ¢ < 2, because 18 > 2¢q* + 3q. Since q < p?/3 = 3,
consider further the case 2 < g < 3. By Schur’s inequality of degree three, we have

9abc > 4pq—p® =129 —27.
Therefore,

9abc + 18 —(2q° +3q) = (129 —27) + 18 — (29> + 3q)
=-2¢>+99—9=(3—q)(2g—3) > 0.

This completes the proof. The equality holds fora=b =c =1.

P 1.112. If a, b, c are positive real numbers such that a+ b +c =ab + bc + ca, then

1 1 1
+ + <1
a?+b+1 b2+c+1 c24+a+1
Solution. By the Cauchy-Schwarz inequality, we have

1 < 14+b+c?
a?+b+1" (a+b+c)?

hence

Z 1 <Z 1+b+c®> 34a+b+c+a’+b*+c?
a2+b+1~ “(a+b+c)? (a+b+c)? '

It suffices to show that
3+a+b+c<2(ab+ bc+ca),

which is equivalent to
a+b+c=>3.

We can get this inequality from the known inequality
(a+b+c)*>3(ab + bc +ca).

The equality holds fora=b =c=1.
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P 1.113. If a, b, c are positive real numbers, then

1 1 1 1
(a+2b+3c)? (b+2c+3a)> (c+2a+3b)2 " 4(ab+ bc+ca)

Solution. By the AM-GM inequality, we have

(a+2b+3c)=[(a+c)+2(b+c)P=(a+c)?+4(b+c)*+4(a+c)b+c)
>3(b+c)+6(a+c)b+c)=3(b+c)2a+b+3c).

Thus, it suffices to show that

1 3
< .
Z (b+c)(2a+b+3c) ~ 4(ab+ bc+ca)

Write this inequality as follows:

§_Z ab+ bc+ca >0,
4 (b+c)(2a+ b+ 3c)

Z[l_ 2(ab + bc+ca) ]ZE,
(b+c)(2a+ b+ 3c) 2

Z (b+c)*+2c¢?
(b+c)(2a+b+3c)

3
=z,
2

b+c 2c? 3
S Y,
2a+b+3c (b+c)(2a+b+3c) 2
Applying the Cauchy-Schwarz inequality, we get

Z b+c Db +))? 4
4

2
> - —1
2a+b+3c Dl(b+c)(2a+b+3c) 2

(Xa)
(Xd)

and
2

Z c > (ZC)Z _1
(b+c)2a+b+3c) ~ S(b+c)(2a+b+3c) 4

from where the conclusion follows. The equality holds for a = b =c.

P 1.114. If a, b, c are positive real numbers, then

a b c 3
\/ +\ +4/ <z
a+b+2c b+c+2a c+a+2b 2




Cyclic Inequalities 167

Solution. Apply the Cauchy-Schwarz inequality as follows:

(Z V ﬁ )2 = [Z(b+c+2a)][z (b+c+2a)a(a+b+2c)]
4(Za) [Za(c—l—a—l—2b)]

- (b+c+2a)(c+a+2b)a+b+2c)

Thus, it suffices to show that
16(>a)[ D alc+a+2b)] <9(b+c+2a)(c +a+2b)(a+b+2c).

Denoting
p=a+b+c, q=ab+bc+ca,

the inequality becomes

16p(p*+q) < 9(p+a)(p + b)(p +¢),
16p(p? +q) < 9(2p® + pq + abc),
2p® —7pq + 9abc > 0.

Using Schur’s inequality of degree three
p® +9abc > 4pq,
we have
2p° —7pq + 9abc = (p* + 9abc — 4pq) + p(p* — 3q) = 0.
The equality holds for a = b =c.

P 1.115. If a, b, c are positive real numbers, then

S5a 5b 5c
+ + <3.
a+b+3c b+c+3a c+a+3b

Solution. Substituting

Y= S5a . 5b g 5c¢
N Ja+b+3c’ Y= \Jb+c+3a’ - Jc+a+3b’

(x2—5)a+x%b+3x%c=0

we have

3y?a+(y*—5)b+y* =0,

z2a+322b+(22—=5)c =0
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which involves

x2—5 x? 3x?
3y* y'=5 y* |=0;
22 322 z2-—5
that is,
F(x,y,z)=0,
where

F(x,y,z) = 4x*y*s® +22:x2y2 +52x2—25.
We need to show that F(x,y,z) = 0 involves x + y + 2z < 3, where x,y,z > 0.
According to the contradiction method, assume that x + y +z > 3 and show that
F(x,y,z) > 0. Since F(x,y,z) is strictly increasing in each of its arguments, it is
enough to prove that

xX+y+z=3
involves

F(x,y,z)>0.
Denote

q=xy+yz+zx, r=xysz.
Since
szyz = q*—6r, sz =9—2q,

we have

F(x,y,z)=4r*+2(qg>—6r)+5(9—2q)—25 = 2(2r*— 6r + q>* — 5q + 10),

1
EF(x,y,z) =2(r—1)*+¢*>*—5q+8—2r.

It suffices to show that
q>—5q+8>2r.

From the known inequality
(xy +yz+2x)* > 3xyz(x +y +2),
it follows that g® > 9r. Therefore, it suffices to prove that

2 2
q2—5q+82%,

which is equivalent to
(3—q)(24—7q) > 0.
Since 1
q< g(x+y+z)2:3,

the conclusion follows. The original inequality is an equality fora = b =c.
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P 1.116. Ifa, b, c € [0, 1], then
2 2 2,2
ab®+ bc*+ca +ZZa+b+c.
(Ji Chen, 2007)

Solution. We use the substitution

a=1—x, b=1—y, c=1—g,
where x, y,z €[0, 1]. Since

Dla(l—b)=> y(1-x)2-y)= D y(2—2x—y +x¥)

=23 = (x) + 20

the inequality can be written as

2223 = (3x) + Y0

According to the known inequality in P 1.1, we have

4 3
2
Z xy“ < %7 (Z x) .
Thus, it suffices to prove the following inequality

5
—22t—t2+it3,
4 27

where
t=x+y+z<3.

This inequality is equivalent to
(15—4t)(3—2t)*> >0,

which is obviously true for t < 3. The proof is completed. The equality occurs for

1
a=0,b=1andc= 3 (or any cyclic permutation thereof).
O

P 1.117. If a, b, c are nonnegative real numbers such that
a+b+c=3, a<b<1<c,

then
a’b + b%c+c%a < 3.
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Solution. Since
ab?+bc?+ca?—(a®b+b%c+cH)=(a—b)(b—c)(c—a) >0,
it suffices to prove that
a’?b + b%c+ ¢+ (ab? + bc? + ca®) < 6;

that is,
(a+b+c)(ab+ bc+ca)—3abc <6,

ab+ bc+ca—abc <2,
1—(a+b+c)+ab+bc+ca—abc<0,
(1—a)(1—b)(1—c) < 0.

The equality occurs fora=b =c=1.

P 1.118. Let a, b, ¢ be nonnegative real numbers such that

a+b+c=3, a<l<b<ec.

Prove that
(@) a?b + b%c +c%2a > ab + bc +ca;
(b) a?b + b%c + c?a > abc + 2;
1 9
— 42> ;
© abc “ a2b+ b%c + c2a
(d) ab? + bc? + ca® > 3.

(Vasile C., 2008)
Solution. (a) We have

a*b+ b*c+c*a—ab—bc—ca=ab(a—1)+bc(b—1)+ca(c—1)
=—ab[(b—1)+(c—1)]+ bc(b—1)+ca(c—1)
=b(b—1)(c—a)+a(c—1)(c—b)=0.

The equality holds fora=b =c=1, and also fora=0, b =1 and c = 2.

(b) Since
a(b—a)(b—c) <0,
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we have

a’*b+ b%*c +c*a > a*b+ b*c +c*a+a(b—a)(b—c)
=b*(a+c)+ac(a+c—D).

Thus, it suffices to prove that
b*(a+c)+ac(a+c—b)>abc+2.
This inequality is equivalent to
b*(a+c)—2>ac(2b—a—c),

b%(3—b)—2>ac(3b—23).

From (b —a)(b—c) <0, it follows that
ac < b(a+c—Db)=b(3—2b).
Thus, it suffices to show that
b*(3—b)—2> b(3—2b)(3b—3),
which is equivalent to the obvious inequality

(5b—2)(b—1)*>0.

The equality holds fora=b =c=1, and also fora=0, b =1 and c = 2.

(c) According to the inequality in (a), it suffices to show that

L2
abc ~abc+2’

which is equivalent to
(abc—1)*>0.

The equality holds fora =b =c=1.
(d) Since

ab?+ bc? +ca®*—(a®*b+b%*c+c?)=(a—=b)(b—c)(c—a) =0,
it suffices to prove that
ab?+ bc? 4 ca® + (a®b + b%c +¢2) > 6;

that is,
(a+b+c)(ab+ bc+ca)—3abc>6,

ab+ bc+ca—abc > 2,
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1—(a+b+c)+ab+bc+ca—abc>0,
(1—a)(1—b)(1—c) > 0.
The equality holds fora=b =c =1.
Remark 1. For
a+b+c=3, 0<a<l1<b<c,
the following open inequality holds

1 oes 21 ’
abc azb + b2c + c2a

which is sharper than the inequality in (c).

Remark 2. From the proof of the inequality in (d), the following identity follows
fora+b+c=3:

2(ab®*+bc?+ca®—3)=3(1—a)(1—=b)(1—c)+(a—b)(b—c)(c—a).

P 1.119. If a, b, ¢ are nonnegative real numbers such that

a+b+c=3, a<l1<b<cg,

then
5—2a 5—-2b 5—2¢c_ 9
(@) + ==
1+b 1+c¢ 1+a 2
3—2b 3-2 3—2 3
) T
l1+a 1+b 1+c¢ 2

(Vasile C., 2008)

Solution. (a) Write the inequality as follows:

22(5—261)(1 +¢o)(1+a)=9(1+a)(1+b)1+c),

2(21+7Zab—22ab2) Z9(4+Zab+abc),
6+52ab 29abc+4Zab2.

By P 1.9-(a), we have
> ab*<4—abc.

Therefore, it suffices to prove that

6+52ab > 9abc +4(4—abc),



Cyclic Inequalities

173

which is equivalent to
Z ab>2+abc,

(1—a)(1—0b)(1—c)=0.
The equality holds fora=b =c=1,and also fora=0,b =1, c =2.

(b) Write the inequality as follows:

22(3 —2b)(1+b)(1+¢) <3(1+a)(1+b)(1+c),

2(3+52ab—22a2b) £3(4+Zab+abc),

6 + 3abc +4Za2b > 7Zab,

6+ 3abc +4Zab(a +b) > 7Zab +4Zab2,

6+ 3abc +4(Za) (Zab)— 12abc > 7Zab +4Zab2,

6+52ab 29abc+4Zab2.

By P 1.9-(a), we have
> ab* < 4—abc.

Therefore, it suffices to prove that
6+ SZab >9abc +4(4—abc),

which is equivalent to
Z ab>2+abc,

(1—a)(1—=b)(1—c)>0.
The equality holds fora=b =c=1,and also fora=0,b =1, c =2.

P 1.120. If a, b, c are nonnegative real numbers such that
ab+bc+ca=3, a<l1l<b<c,

then
(@) a?b + b%c + c%a > 3;

(b) ab?+ bc? + ca? +3(v3—1)abc > 3v3.

(Vasile C., 2008)
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Solution. (a) Since
a(b—a)(b—c) <0,

we have

a’b+ b%c+c?a>a’*b+ b’ c+c*a+a(b—a)(b—c)
=b%(a+c)+acla+c—Db).

Thus, it suffices to prove that

b*(a+c)+ac(a+c—b)>3.

Denote
X =a-+c.
From ab + bc + ca = 3, we get
ac=3—bx
and
x_3—ac<3<3
b b~

Thus, we need to show that
b%x + (3 —bx)(x—b) > 3,
2b%x —(x*+3)b+3x—3>0.
Since
2b%x —(x*+3)b+3x—3=2(b>*—2b+ 1)x+2(2b—1)x — (x*+3)b+3x—3

=2(b—1)’x+(3—x)(bx—b—1)
>(3—x)(bx—b—1),

it is enough to prove that
bx—b—-1>0.

From the inequality (b —a)(b—c) < 0, we get

b2 + 3
bx > b +ac=b2+3—bx, bx> 2+ .
Therefore,
2 12
bx—b—1>2F3 5 - 21) > 0.

The proof is completed. The equality holds fora=b=c=1,and fora=0,b=1
and ¢ = 3.
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(b) Since
ab®+ bc*+ca*—(a?b + b*c+c*)=(a—b)(b—c)(c—a) >0,
it suffices to prove that

ab®+ bc? +ca® + (a®b + b%c + ) + 6(V3 —1)abc > 643;

that is,
(a+Db+c)ab+bc+ca)+3(2v3—3)abc > 6V3,
a+b+c+(2v3—3)abc > 2v3,
a[1+ (2v3—=3)bc]+Db+c>243,
a[1+(2v3—=3)p]+2(s—+3)>0,
where b
s = ;_C, p=bc, s*>p>1.
From ab + bc + ca = 3, we get
3—p
= s <3.
a 2s P

Therefore, we need to show that F(s,p) > 0, where
F(s,p) = (3—p)[1+ (2v3—3)p]+4s(s — v/3).
Since the inequality F(s,p) > 0 is true for s — +/3 > 0, consider further the case

s < /3.

We will show that
F(s,p) = F(s,s*) > 0.

We have
F(s,p)—F(s,5*) = (2v3=3)(s* — p*) — (6v/3—10)(s* — p)
= (s2—p)[(2v3—=3)(s® + p)— 643+ 10].
Since s> —p >0 and
(2v3=3)(s2+p)—6v3+10>(2v3—=3)(1+1)—6V3+10=4—2v3>0,
the left inequality is true. The right inequality is also true because
F(s,s2) =(3—s?)[1+ (2v3—3)s®]+ 4s(s — V/3)
= (V3=35)[(V3+5)(1 + (2v3 —3)s2) — 4s]
= (V3 =35)[V3(1—5)*(1 +2s)—3s(1 —5)?]
= (V3 —=5)(1—=5)*[V3+(2v/3—3)s]>0.
The equality holds fora =b=c =1, and also fora=0and b =c = /3.
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P 1.121. If a, b, c are nonnegative real numbers such that
a’+b*+c*=3, a<1<b<g,

then
(@) a’b + b%c +c%a > 2abc + 1;

(b) 2(ab?+ bc? + ca®) > 3abc + 3.
(Vasile C., 2008)

Solution. (a) Let
x=a+c, x=b.

From a® + b? + c® = 3, we get

b%2+x%2—3
ac=—=,
2

and from (b —a)(b—c) <0, we get
bx > b® +ac,

x?>4+b%2-3
bx > b*+ —--——,
X 2

(x—b)*<3—-2b% b< \E
x<b+d, d=+3—2b2

Since
a(b—a)(b—c) <0,

we have

a*b+ b*c+c*a>a*b+b*c+c*a+a(b—a)(b—c)

= b?x —ac(b—x).
Thus, it suffices to prove that
b%x —ac(3b—x)>1,
which is equivalent to f(x,b) = 0, where

f(x,b)=2b*x —(x*+b*—3)(3b—x)—2
=x3—3bx*+3(b*—1)x —3b>+9b—2.

We will show that
f(x,b)> f(b+d,b)>0.
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Since x < b+d and

fl,b)—f(b+d,b)=(x—b—d)[x*+x(b+d)+(b+d)*—3b(x+b+d)+3b*—3]
=(x—b—d)[x*—(2b—d)x —b*—bd],

we need to show that g(x) < 0, where
g(x)=x*—(2b—d)x —b*—bd = (x —2b)(x +d) + b(d — b).
Since d — b < 0, it suffices to show that x —2b < 0. Indeed, we have
x*=(a+c) <2(a®+c*)=2(3-b*) <4,

hence
x <2<2b.

To prove the right inequality f (b +d, b) > 0, we have
f(b+d,b)=2b*b+d)—2bd(2b—d)—2=2(3b—b>—1—b?d).

We need to show that

3b—b%—1>b2v/3—2b2

for

We have
3b 3b—2

3b—bp*—1>3p———-1= >0.
2 2

By squaring, the inequality becomes
(3b—b3—1)?> b*(3—2b?),
3b°—9b% +2b> +9b*—6b+1 >0,
(b—1)*(3b*+6b>—4b+1)>0.
The original inequality is an equality fora=b=c=1.

(b) Denote
p=a+b+c, qg=ab+bc+ca.

Since
ab®+ bc*+ca*—(a’?b + b*c+c*)=(a—b)(b—c)(c—a) >0,
it suffices to prove that

ab?+ bc? + ca® + (a®b + b?c + ¢*) > 3abc + 3;
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that is,
pq = 6abc + 3.
From
(a—1)(b—1)(c—1)=>0,
we get
abc>1—p+aq,
therefore

pq—6abc—3>pg—6(1—p+q)—3
=(p—6)q+6p—9
_ 2 _
(p=6)p*=3)
2
_ 9)2
_p(p=3)F
2

6p—9
0.

The equality holds fora=b=c=1.

P 1.122. If a, b, ¢ are nonnegative real numbers such that
ab+bc+ca=3, a<b<1<c,

then
ab?+ bc? + ca® + 3abc > 6.

(Vasile C., 2008)

Solution. Denote
p=a+b+c.

Since
ab?+bc? +ca®>—(a®*b+b*c+c?)=(a—b)(b—c)(c—a)=>0,
it suffices to prove that
ab?+ bc? 4 ca® + (a®b + b?c + ¢?) + 6abc > 12;

that is,
(a+b+c)(ab+ bc+ca)+3abc>12,
a+b+c+abc >4,

which is equivalent to
(a—1)(b—1)(c—1)=0.

The equality holds fora=b =c =1.
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P 1.123. If a, b, c are nonnegative real numbers such that
a®+b*+c*=3, a<b<1<g,

then
2(a®b + b%c + c%a) < 3abc + 3.

(Vasile C., 2008)

Solution. Consider two cases.
Case 1: a+c > 2b. Denote

x=a+c, x=2b.
From a®+ b?+c2 =3 and (b —a)(b—c) <0, we get in succession

b%2+x%2-3
ac=——,
2
bx > b? +ac,

bx>b2+w
- 2 b

(x —b)* <3—2b%
x<b+d, d=+v3-2b%
Since
ab?+ bc? +ca®>—(a®*b+b*c+c*)=(a—=b)(b—c)(c—a) =0,
it suffices to prove that
a?b + b*c + ca + (ab* + bc* + ca®) < 3abc + 3;

that is,
(a+b+c)(lab+ bc+ca) <6abc+3,
(x+b)(bx +ac) < 6abc+ 3,
ac(x —5b)+ bx(x+b)—3<0.
Thus, we need to show that f(x, b) < 0, where
f(x,b)=(x*+b*>—3)(x—5b) +2bx(x+b)—6
= x>—3bx?*+3(b*—1)x —5b%+ 15b—6.

We will show that
f(x,b) < f(b+d,b) <O0.
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Since x < b+d and

flx,b)—f(b+d,b)=(x—b—d)[x*+x(b+d)+(b+d)*—3b(x+b+d)+3b*>—3]
=(x—b—d)[x?*—(2b—d)x —b*—bd],

we need to show that g(x) > 0, where
g(x)=x*—(2b—d)x —b*—bd.
Since x —2b >0 and d — b > 0, we have
g(x)=(x—2b)(x+d)+b(d—Db)>0.
To prove the right inequality f (b +d, b) < 0, from
f(b+d,b)=2bd(d—4b)+2b(b+d)(2b+d)—6=2(6b—2b>—3—b?d),
it follows that we need to show that
6b—2b*—3 < b?V/3—2b2

1
for 0 < b < 1. This inequality is true for b < B because

6b—2b>—3<3(2b—1)<0.

So, it suffices to prove the inequality for 1/2 < b < 1. By squaring, the inequality
becomes
(6b—2b>—3)* < b*(3—2b?),

2b°—9b* +4b% + 12> —12b+3 <0,
(b—1)*(2b*+6b%2+3b—3) < 0.

We only need to show that
2b®>+6b*+3b—3>0.
Indeed,
2b*+6b*>+3b—3>3(2b*+b—1)=3(2b—1)(b+1) > 0.
Case 2: a + ¢ < 2b. Consider the nontrivial case a < c, denote

a+c a2z + c2
b1: , bzz
2 2

(by < by),

and write the inequality in the homogeneous form E(a, b,c) < 0, where

a2+b2+c2)3/2
3 )

E(a,b,c)=2(a®b+ b%c + c%a) —3abc — 3(
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From a®?+ b%+c? =3 and b < 1, it follows that b < b,. For fixed a and c, consider
the function
f(b)=E(a,b,c), bel[by,b,].
We will show that
f(B) < f(by)) <0.
The left inequality is true if f'(b) > 0 for b € [ by, b,]. Since

a® + b? +c2\"?
=)
= 2a% 4+ 4bc —3ac —3b = 2a* — 3ac + b(4c —3)
(a+c)(4c—3)
2

_(a—c)P+3(a*+c?—a—c)

B 2
> 3(a?+c?—a—c)

2

f'(b) = 2a> +4bc—3ac—3b(

> 2a®—3ac +

2

it suffices to show that
a?+c?>a+c.

From a® + b?+c2 =3 and b < 1, it follows that a®? + ¢2 > 2. If a + ¢ < 2, then
a?+b*>2>a+c.
Also, if a + ¢ > 2, then
a’+b*> %(a+c)22a+c.
To prove the right inequality f (b,) < 0, we see that

a® +c?

f(b,) =2a*b, + (a* + c*)c + 2c*a — 3ab,c — 3b,

2 )
:c(a+c)2—(3c +62ac a)b2

:c(a+c)2_(302+62ac—a2),| a2—2|—c2'

Thus, we need to show that

(3c2 + 6ac —a?®)?*(c% + a?)
8 J

Alc+a)t <
which is equivalent to
c® +4ac® —9a?c* —8a®c® + 23a*c®? —12a°c +a® > 0,
(c—a)*(c+ 7c2a+9ca®—a®) < 0.

The proof is completed. The equality holds fora=b=c =1.
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P 1.124. If a, b, c are nonnegative real numbers such that
a®+b*+c*=3, a<b<l1<g,

then
2(a®b + b3c +c2a) < abc +5.

(Vasile C., 2008)

Solution. Let
p=a+b+c, q=ab+bc+ca.

Since
ab®*+ b +ca®*—(a®b+b3c+c)=(a+b+c)a—b)b—c)(c—a)>0,
it suffices to prove that
(a®b+ b3c+c2a)+ (ab® + bc® +ca®) < abc + 5,
which is equivalent to
(a®>+ b*+c*)(ab+bc+ca)<abcla+b+c+1)+5,

3q <abc(p+1)+5.

From
(a—1)(b—1)(c—1)=>0,

we get
abc>q—p+1.

Therefore, it suffices to show that
3¢<(q—p+1)(p+1)+5,

which is equivalent to
6—p*>q(2-p),
12—2p* > (p*—3)(2—p),
p>—4p*>—3p+18>0,
(p—3)(p+2)=0.
The proof is completed. The equality holds fora=b=c=1.

P 1.125. If a, b, c are real numbers, then
(a®+ b2 +¢?)? > 3(ab + b3c + c2a).

(Vasile C., 1992)
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First Solution. Write the inequality as
E,—2E, >0,
where
E,=a*(a—b)+b*(b—c)+c3(c—a),
E, =a*b(a—b)+ b%*c(b—c) +c*a(c —a).

Using the substitution
b=a+p, c=a+q,

we have
E,=a*(a—b)+ b [(b—a)+(a—c)]+c3(c—a)
=(a—b)*(a®+ab+b*)+(a—c)(b—c)(b*>+bc+c?)
=p%*(a®*+ab+b*)—q(p —q)(b*+ bc +c?)
=3(p*—pq +q*)a* +3(p° —p*q +¢*)a+p*—p’q +¢*
and

E,=a*b(a—Db)+ b*c[(b—a)+(a—c)]+c?a(c—a)
= (a—b)b(a®—bc) + (a—c)c(b*—ca)
= pb(bc —a?) +qc(ca— b?)
=(p* —pq+q*)a*+(p® +p*q—2pq* +¢°)a + p’q —p*q>.
Thus, the inequality can be rewritten as
Aa®*+Ba+C =0,
where
A=p*—pq+q’,
B=p’—5p’q+4pq*+¢’,
C=p*—3p°q+2p°¢*+q".
For the non-trivial case A > 0, it is enough to show that § < 0, where § = B>—4AC
is the discriminant of the quadratic function Aa? + Ba + C. Indeed, we have
& =—3(p° —2p°q —3p*q* + 6p°¢’ + 2p’q* — 4pq° + ¢°)
=—3(p*—p*q—2pq* +q°)* <0.

The equality holds for a = b = ¢, and also for
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(or any cyclic permutation).
Second Solution. Let us denote
x=a’*—ab+ bc,

y = b%*—bc +ca,

2=c?>—ca+ab.

x2+y2+22:Za4+22a2b2—22a3b

Xy +yz+zx =Za3b.

We have
and

From the known inequality
x>+ y*+2>>xy +yz +2x,
the desired inequality follows.
Third Solution. Let us denote
x =ala—2b—c),

y=b(b—2c—a),
z=c(c—2a—D>b).
We have

x2+y2+22=Za4+52a2b2+4acha—4Za3b—ZZab3
Xy +yz+zx =BZazbZ+4acha—Za3b—22ab3.

The known inequality

and

X2+ y*+22 > xy +yz+ax

leads to the desired inequality.

Remark 1. Let
E=(a?+b*>+c2)?—-3(a®b+ b3c +c3a).

Using the notations from the first solution, the formula
4A(Aa® 4+ Ba + C) = (2Aa + B)* -6,
leads to the following identity

4E,E = (A, —5B; +4C;)* + 3(A; —B; — 2C; + 2D, )?,
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where
Ai=a®+b*+c* B,=da’b+b’*+c%a, C,=ab*+bc*+ca?, D,=3abc,

E,=a*+b*+c*—ab—bc—ca.

Remark 2. Let
E=(a?+Db?>+c2)?—-3(a®b+ b3c +c3a),

The identity
x> +y* 4zt —xy—yz—zx = %Z(x—y)z,
where x, y,z are defined in the second or third solution, leads to the identity
2E = Z:(a2 —b%—ab +2bc—ca)’.
In addition, the following similar identities hold:

6F = Z:(2a2 —b%2—c?2—3ab+3bc)?,

4E = (2a* — b*—c*—3ab +3bc)* + 3(b* —c*—ab — bc + 2ca)*.

Remark 3. The inequality in P 1.125 is known as Vasc’s inequality, after the author’s
username on the Art of Problem Solving website.
O]

P 1.126. If a, b, c are real numbers, then
a*+b*+c*+ab® + b +ca® > 2(a’b + b3c + c2a).
(Vasile C., 1992)
First Solution. Making the substitution
b=a+p, c=a+q,

the inequality turns into
Ad*+Ba+C >0,

where
A=3(p*—pq+q*), B=3(p°—2p°q+pq®+q’), C=p*—2p°q+pg’+q".
Since the discriminant of the quadratic trinomial Aa? + Ba + C is nonpositive,

5 = B*—4AC = —3(p° —6p*q +2p°q> + 9p*q* — 6pq° + ¢°)
=-3(p°—-3pq¢* +¢°)* <0,



186

Vasile Cirtoaje

the conclusion follows. The equality holds for a = b = ¢, and also for

a b C

131
9

. E - . 7_71; .
Sin 9 sSin 9 sSin

(or any cyclic permutation).

Second Solution. Let us denote

x =a(a—Db),
y=b(b—o),
z=c(c—a).
We have
x*+y* +2° =Za4+Za2b2—ZZa3b
and

Xy +yz+zx= Z:azb2 —ZabB.
Applying the known inequality
x*+y*+2°> xy +yz +2x,
the desired inequality follows.

Third Solution. Let
x =a*+ bc+ca,

y=>b*+ca+ab,
2=c?>+ab+ bc.
We have

x2+y2+22ZZa4+ZZazb2+4acha+ZZab3
Xy +yz+zx =22a2b2+4abc2a+22a3b+Zab3.

and

The known inequality
X2+ y*+2°>xy +yz+azx

leads to the desired inequality.

Remark 1. The inequality is more interesting in the case abc < 0. If a,b,c are
positive, then the inequality is less sharp than Vasc’s inequality in P 1.125, because

it can be obtained by adding Vasc’s inequality and

ab(a—Db)*+ bc(b—c)*+ca(c—a)*>0.



Cyclic Inequalities 187

On the other hand, if a, b, ¢ are positive, then the inequality
3(a*+b*+cM +4(ab® + bc® +ca®) > 7(a®b + b3c + ca)
is a refinement of the inequality in P 1.126. To prove this inequality, we write it as
3(a*+b*+c*—a*b—b3c—ca) +4(ab® + bc® +ca® —a*b—b3c—c*a) >0,
consider a = min{a, b, c} and use the substitution

b=a+p, c¢=a+q, a>0,p=0,qg=0.

Za4—2a3b=2a3(a—b)

=3(p*—pq+q*)a*+3(p°—p’*q+q°)a+p*—p’q+q*

Since

and
Zab3—Za3b =(a+b+c)la—b)(b—c)(c—a)
=pq(q—p)(Ba+p+q),

the inequality becomes
Aa’+Ba+C>0,

where
A=9(p*—pq+q*), B=3(3p®—7p*q+4pq*+3¢°),

C =3p*—7p3q+4pqg® +3q*.
The inequality Aa® + Ba + C > 0 is true for a > 0 and p,q > 0, because
A>0,
B =p(3p—49)* +q(p —3q)* +2pq(p +q) 2 0,

3C =p(p+q)(8p—5q)° +5¢° (p = %)2 + %q“ >0.
Remark 2. Let

E=a*+b*+c*+ab®+ bc® +ca®—2(a®b + b3c + c2a).
Using the notations from the first solution, the formula

4A(Aa* +Ba+C)=(2Aa +B)*—§

leads to the following identity

4E,E = (A; —3C; +2D;)*+ 3(A; —2B; + C;)?,
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where
A,=a®+b*+c* B, =da’b+b’*+c%a, C,=ab*+bc*+ca?, D,=3abc,
E,=a*+b*+c?*—ab— bc—ca.
Remark 3. Let
E=a*+b*+c*+ab®+bc® +ca®—2(a’b + b3c + c2a).
The identity
x*+y*+2* —xy —yz—zx = %Z(x—y)z,
where x, y, 2z are defined in the second or third solution, leads to the identity
2E = Z:(a2 —b%—ab + bc)*
In addition, the following similar identities hold:

6F = Z:(Za2 —b%2—c?—2ab+ bc+ca)?

4E = (2a® — b?>—c?>—2ab + bc + ca)® + 3(b* — 2 — bc + ca)®.

Remark 4. The inequalities in P 1.125 and P 1.126 are particular cases of the
following more general statement (Vasile Cirtoaje, 2007).

o Let
fala,b,c) = Za4 +AZ:a2b2 +Bacha + CZaBb + DZabB,
where A, B, C, D are real constants such that
1+A+B+C+D=0, 3(1+A)>C%>+CD+D>
If a, b, c are real numbers, then
fala,b,c)=0.
Note that the following identity holds:

C—D \*
4Sf,(a,b,c) =[U+V+(C+D)S]*+3 (U—V+ 3 s) +g(3+3A—C2—CD—D2)SZ,

where

S= Zazbz—Zazbc,
U= Za?’b—Zazbc,
V= Zab?’—Zazbc.
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For the main case
3(1+A)=C?+CD+D?,

the inequality f,(a, b,c) > 0 is equivalent to each of the following two inequalities
> [2a>—b*—c?+ Cab—(C + D)bc + Deal* 2 0,

> [3b%=3c*+(C +2D)ab +(C — D)bc — (2C + D)cal* > 0.

P 1.127. If a, b, c are positive real numbers, then

(@ N Y
ab+2c2  bc+2a2 ca+2b2 "
3 b3 3
O] - >l

+ + >
a2b+2c3  b2c+2a3 c2a+2b3

Solution. (a) By the Cauchy-Schwarz inequality, we have

s @ () (2e)

ab+2c2 ~ >la2(ab + 2c2) N > adb+2> a2b?’

Therefore, it suffices to show that

(Zaz)z > ZZazbz—l—ZaSb.

We get this inequality by summing the known inequality

%(Z az)z > Zz:azb2
%(Zaz)z > ZaBb.

The equality holds fora=b =c=1.

and Vasc’s inequality

(b) By the Cauchy-Schwarz inequality, we have

s @ _(5e) (Ee)  _(z@)

a?b+2c3 ~ > a(a?b + 2c3) - Satb+2>acd 3> a®h’

Therefore, it suffices to show that

(Z a2)2 = BZ a’b,

which is just Vasc’s inequality. The equality holds fora=b=c =1.
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P 1.128. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

a b c 3
+ + > =
ab+1 bc+1 ca+1 2

Solution. We use the following hint

a a’b b b?c c c2a

=a— ) = - ) =C— )
ab+1 ab+1 bc+1 bc+1 ca+1 ca+1

which transforms the desired inequality into

a’b b?c c2a

+ +
ab+1 bc+1 ca+1

3
< -.
2
By the AM-GM inequality, we have
ab+1>2+vab, bc+1=2vbc, ca+1=24/ca.

Consequently; it suffices to show that

a’b b?c c2a

3
+ + <-
2vab 2vVbc 2+4ca” 2

which is equivalent to

avab+bv bc+cyca<3,
3(avVab+ bV bc+cvca)<(a+b+c).

Replacing va, Vb, /¢ by a,b,c, respectively, we get Vasc’s inequality in P 1.125.
The equality holds fora=b =c=1.
O

P 1.129. If a, b, c are positive real numbers such that a+ b + ¢ = 3, then

a N b 4 ¢ . §
3a+b%2 3b+c? 3c+az 2
(Vasile C., 2007)
Solution. Since
a 1 b? b 1 c? c 1 a®

3a+b> 3 3Ba+b?) 3b+c2 3 3(3b+c2) 3c+a> 3 3Bcta)
the desired inequality can be rewritten as

b? c? a?

+ +
3a+b2 3b+c?2 3c+a?

3
= —.
2
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By the Cauchy-Schwarz inequality, we have

p? )y &)
Z Sa+ b2 > b2(3a+b2) Sat+(>la) (3 ab?)
_ (Za) X3
da*+> a2b2+abcdy a+ D abd (Za2)2+zab3'

Thus, it is enough to show that

(Z a2)2 > BZ ab3,

which is Vasc’s inequality. The equality holds fora =b =c =1.

P 1.130. If a, b, c are positive real numbers such that a + b + ¢ = 3, then

a + b + c - §
b24+c¢ c2+a a2+b 2
(Pham Kim Hung, 2007)

Solution. By the Cauchy-Schwarz inequality, we have

o, (ZO _geeagens
b2+c = Y a2(b2+c)  Dla?b2+>.ab?

Thus, it is enough to show that

2> +4> a®?p¥? 23> a?b?+3 > ab?,
which is equivalent to the homogeneous inequality
2(S0) (S) +4() (L) 20 T aebe +3(Fa) (L)
In order to get a symmetric inequality, we use Vasc’s inequality. We have
3(D>1a)(D]ab?)=3> ab>+3abc > a+3> ab’
< :%Z:azb2 + 3acha + (Z az)2
= Za“ +52a2b2 +3acha.

Therefore, it suffices to prove the symmetric inequality

2 (Z a) (Z a3)+4 (Z a) (Z a3/2b3/2) > 92 a2b2+2 a4+52 a2b2+3abcz a,
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which is equivalent to
Za“ + ZZ:ab(a2 +b?) +4abcz vVab+4A> 14Z:a2b2 +3acha,

where

A= Z(ab)3/2(a +b).

A22) b,

Since

it suffices to prove that

Za4+22ab(a2+ b2)+4abcz Vab > 6Za2b2+3abc2a.

According to Schur’s inequality of degree four

Za4 > Z:ab(a2 + bz)—acha,

it is enough to show that
BZ:ab(a2 + b?) +4ach vab > 6Z:a2b2 +4acha.

Write this inequality as

BZ:ab(a—b)2 > 2ach(\/E— \/3)2,
Zab(ﬁ—ﬁ)Z[B(ﬁ+ x/E)Z—zc] > 0.

We will prove the stronger inequality

Zab(ﬁ—\/g)z[(\/a+ ﬁ)z—c]zo,

which is equivalent to

Z(ﬁ%ﬁ)z(ﬁﬂﬁ—ﬁ)zo.

Substituting x = v/a, y = Vb, z = 4/c, the inequality becomes

Z(x;y)z(x+y—z)20.

Without loss of generality, assume that x > y > z. It suffices to show that

(%)2(y+z—x)+(xy;z)2(z+x—y)2O.
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Since

(57) =05

(y_z)z(y +z—x)+($)2(2+x—y)2

we have

X

> (y;Z)z(y+z—x)+(?)Z(Z‘HC—J’)

_ 2
=22(y Z) > 0.
X

The equality holds fora=b=c=1.

P 1.131. If a, b, c are positive real numbers such that abc = 1, then

a 4 b + c
b3+2 ¢3+2 a3+4+2 "

Solution. Using the substitution
J C = ZJ x’ yJ Z > 07
Z

the inequality turns into

S = >1.
y(2x3 +23)

By the Cauchy-Schwarz inequality, we have

N
Zy(2x3+z3) T y@x3+23) 2D a3y 4+ D xy?

Thus, it is enough to show that

(sz)z > 22x3y+2xy3.

According to Vasc’s inequality, we have

(sz)z > BZxBy
(sz)z > 3ny3.

Thus, the conclusion follows. The equality holds fora =b =c = 1.

and
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P 1.132. Let a, b, ¢ be positive real numbers such that
a™+b"+c"=3,

where m > 0. Prove that

Solution. Making the substitution
1 1 1
X = ak, y:b?) 2 = CFk,

where

X2k y2k gk
- + >3,
which is equivalent to
2 32 22

TR e

1
Applying Jensen’s inequality to the convex function f (u) = —, we get

uk’
x> 2 22 X2+ y? 422
P T - P = z K
(xy) (yz) (Zx) chxy+y2.yz+22.zx
X2+ y2+ 22

3k+1

T (Cy + 3z + 2k

Thus, it suffices to show that x°y + y3z + z°x < 3. This is just Vasc’s inequality in
P 1.125. The equality holds fora=b=c=1.
O

P 1.133. If a, b, c are positive real numbers, then

1 1 1 1 1 1 1 1 1
(@ —+—+—+ + + >3 + + ;

4a 4b 4c a+b b+c cH+a 3a+b 3b+c 3c+a

1 1 1 1 1 1 (1 1 1)
>2 .

—+—+—+ - - > + -
®) 4a 4b 4c¢ a+3b b+3c c+3a 3a+b 3b+c¢c 3c+a

(Gabriel Dospinescu and Vasile Cirtoaje, 2004)
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Solution. We will prove that the following more general inequalities hold for t > 0:

t4a l'4b t4c t2a+2b t2b+2c t2c+2a
—t—+—+ + + -3 + + >0,
4a 4b 4 a+b b+c cH+a 3a+b 3b+c 3c+a

t4a t4b t4c ta+3b tb+3c tc+3a ( t3a+b t3b+c t3c+a )
> 0.

t3a+b t3b+c t3c+a

+ + —
4a 4b 4c a+3b b+3c c+3a
For t = 1, we get the desired inequalities.

—+—+—+ + -
3a+b 3b+c 3c+a

(a) Denoting the left hand side of the former inequality by f (t), the inequality
becomes f(t) > f(0). This is true if f'(t) > 0 for t > 0. We have the derivative

EF/(£) = £49 4 £90 4 g4 4 (2092 4 2b+2c 4 p2e42ay_ g(pdatb 4 p3bte 4 yBetay
Using the substitution x = t%, y = t°, z = t¢, the inequality f’(t) > 0 turns into
xt+y 2t 2007y + y22? +22x?) > 3(xXPy + ¥z + 2°x),
which is Vasc’s inequality in P 1.125. The equality holds fora = b =c.
(b) Similarly, we have the derivative
tf/(t) — t4a + t4b + t4c + ta+3b + tb+3c + tc+3a _ 2(t3a+b + t3b+c + t3c+a).
Denoting x = t%, y = t?, 2 = t°, the inequality f’(t) > 0 turns into
xt+yt et xyP +y2 +axd > 23y + yiz 4+ 22x),

which is the the inequality in P 1.126. The equality holds for a = b =c.

P 1.134. If a, b, c are positive real numbers such that a® + b® + c® = 3, then

a® b> ¢°

—+—+—2=3.
b c a

(Tran Quoc Anh, 2007)
Solution. By Holder’s inequality, we have

(as b° c5)3> (a®+b°+c%* 81

—F+—+—| > = :
b ¢ a a®b3 + b3 +c°a®  a®b3+ b3 +c%ad

Therefore, it suffices to show that
a’b®+b%c +c%a® < 3.
This is equivalent to
3(a°b® + b2+ c%a®) < (a® + b8 +¢%)?,

which is Vasc’s inequality (see P 1.125). The equality holds fora =b =c.
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P 1.135. If a, b, c are positive real numbers such that a®> + b? + c? = 3, then

a’ b3 c3

+ +
a+b> b+c¢5S cH+ad

3
> —.
2
(Marin Bancos, 2010)

Solution. Write the inequality as

S(me)rsz
a+ bs 27
Z a’b® 3

< -.
a+b> 2

a+b>>24abs,

Since

it suffices to show that

Zabz\/ESB.

In addition, since 24/ ab < a + b, it suffices to prove that

> a?b?+ > ab® <6.
This is true since .
Z:azb2 < E(a2 +b*+c?)?* =3,

and, according to Vasc’s inequality,
3 1 2 2 232
E ab Sg(a +b*+c%)* =3.

The equality holds fora=b=c=1.

P 1.136. If a, b, c are real numbers such that a*> + b + ¢*> = 3, then
a’b+b%c+c?a+9>4(a+b+c).
(Vasile C., 2007)
First Solution (by Nguyen Van Quy). Since

2a’b =a*(b*+1)—a*(b—1)?%
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we have
4> a?b=2> a?h?+2) a’—2>» a*(b—1)*
- (Za2)2—2a4+22az—22c2(a—1)2
=15-> a*-2> c*a—1)%
Therefore, we can write the desired inequality as follows:
[15—Za4—2zc2(a—1)2] +36>16 a,
> (17-16a—a*)>2> X(a—1)%,
> (17—16a—a*)+10 Y (a?—1)>2> cHa—1),
> (7-16a+10a>—a*) > 2> cX(a—1)%,
Da—1A(7—2a—a*)>2> Aa—1)?,

D (a—1)*(7—2a—a®—2c?) > 0.

Since
7—2a—a’—2c>=(a—1)*+2(83—a®?—c?)=(a—1)*+2b%>0,
the conclusion follows. The equality holds fora=b=c=1.

Second Solution. Consider only the case where a, b, c are nonnegative and a + b+
¢ > 0. Multiplying both sides by a + b + ¢, the inequality can be restated as

(a+b+c)a*b+b*c+c?a)+9(a+b+c)>4(a+b+c)
Using the known inequality ».a%b? > %(Z ab)2 and Vasc’s inequality Y ab® <
> az)z, we have
(Za)(Zazb) =Za3b+Za2b2+acha
(33)(Sot)+ Shori- et
1 1
(Za) (X ar)+5(>oab) —5(at)
=32ab+%(2ab)2—3.

Therefore, it suffices to prove the symmetric inequality

3Zab+%(2ab)2—3+92a24(Za)2.

1
3

\%
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Setting Y. a = p, which involves

the inequality becomes

3(p*—3) N (p*—3)?
2 12

—3+9p > 4p?,

(p—3)*(p*+6p—9) = 0.

The last inequality is true since

P2+ 6p—9>6p—9>6va2+b2+c2—9=6V3-9>0.

P 1.137. If a, b, c are real numbers such that a*> + b + ¢*> = 3, then
a’b+b*c+c*a+3>a+b+c+ab+bc+ca.
(Vasile C., 2007)

Solution. Write the inequality as follows:

> (1—ab)—> a(1—ab)>0,
Z(a2+bz+c2—3ab)—Za(a2+b2+c2—3ab) >0,
B(Zaz—Zab)—Za(a—b)z—Za(cz—ab)20,
%Z(a—b)z—za(a—b)2 >0,
> (a—b)*(3—2a) > 0.

Assume that
a =max{a, b, c}.

For 3 —2a > 0, the inequality is clearly true. Consider now that 3 —2a < 0. Since
(a—b)Y=[(a—c)+(c—Db)P <2[(a—c)*+(c—b)*],
it suffices to show that

2[(a—c)*+(c—b)*](3—2a)+(b—c)*(3—2b)+(c—a)*(3—2c) >0,
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which can be rewritten as
(a—c)*(9—4a—2c)+(b—c)*(9—4a—2b) > 0.

This inequality is true because 9 > 4a + 2¢ and 9 > 4a + 2b. For instance, the last
inequality is true if 81 > 4(2a + b)?; indeed, we have

1
%—(2a+b)2 >15—(2a+b)*=5(a®*+b*+c?*)—(2a+b)* = (a—2b)*+5c*> 0.

The equality holds fora=b =c = 1.
Remark. The inequality in P 1.137 is sharper than the inequality in P 1.136, namely

a’b+b%c+cla+9>4(a+b+c).
This claim is true if
a+b+c+ab+bc+ca—3=>4(a+b+c)—9;

that is,
ab+bc+ca+6=>3(a+b+c),

which is equivalent to
(a+b+c—3)?%>0.

P 1.138. If a, b, c are positive real numbers such that a+ b + ¢ = 3, then
12
<3+—
a2b + b%c + c2%a abc

(Vasile Cirtoaje and ShengLi Chen, 2009)

Solution. Let
p=a+b+c=3, g=ab+bc+ca, r=abc<1.

Write the inequality as

24r

2(a®b + b*c +c?a) > .
3r+1

From

(a—b)*(b—c)*(c—a)*=—27r*+2(9pq — 2p*)r + p*q* — 4¢®
= —27r? 4+ 54(q — 2)r + 9¢*> — 44>,
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we get

(a—Db)(b—c)(c—a) < /—27r2 +54(q — 2)r + 992 — 4¢3,
hence
2(a®b + b%c +c%a) = Z ab(a+b)—(a—b)(b—c)(c—a)
=pq—3r—(a—Db)(b—c)(c—a)
> 3q —3r — \/—27r2 + 54(q — 2)r + 9¢2 — 4q3.

Therefore, it suffices to show that

24r

3 —3r —+/—27r2 +54(q — 2)r +9q2 — 4q3 > .
qr\/r(q)rqqgrﬂ

which is equivalent to

3[(3r +1)q—3r2—9r] > (3r + 1)4/—27r2 + 54(q — 2)r + 992 — 4q3.

Before squaring this inequality, we need to show that (3r + 1)q — 3r?> —9r > 0.
Using the known inequality g* > 3pr, we have

(3r+1)q—3r*—9r > 3(3r + 1)v/r—3r*—9r
=3y7 (1—v7) 0.
By squaring, the desired inequality can be restated as
Ag® + C > 3Bq,
where
A=4(3r+1)% B=72r(3r+1)(r+1), C=108r(r+1)(3r*+12r +1).

By the AM-GM inequality,

) ;s C C_ 3 Y
Aq° +C =Aq +—+—23\Aq3 —1;
2 2

so, it is enough to show that
AC* > 4B°,

which is equivalent to
(3r*+12r +1)*>32r(3r + 1)(r + 1).
Indeed,

(3r2+12r+1)?=32r3r+ 1)(r+1)=(r—1)*(3r—1)*>0.
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1 5
The equality holds fora = b = ¢ =1, and also for r = 3 and q = % = 2; that

is, when a, b, ¢ are the roots of the equation
3 2 1
x?—=3x"+2x— 3 =0

suchthata<b<corb<c<aorc<a<hb.

P 1.139. If a, b, c are positive real numbers such that a+ b + ¢ = 3, then

24 + 1
a2b + b2c +c2a abc

> 9.

(Vasile C., 2009)
Solution (by Vo Quoc Ba Can). Let us denote
p=a+b+c=3, q=ab+bc+ca, r=abc.
Write the inequality as
24r > (9r —1)(a®b + b?*c + c?a),

and consider further the nontrivial case

1
r=-—.
9
From
(a—b)*(b—c)*(c—a)*=—27r*+2(9pq — 2p*)r + p*q* — 4¢®
= —27r*+54(q — 2)r + 9¢* — 4¢°,
we get
—(a—b)(b—c)(c—a) < \/—271”2 +54(q —2)r + 992 — 4¢3,
hence

2(a?b + b%c +c%a) = Z ab(a+b)—(a—b)(b—c)(c—a)
=pq—3r—(a—>b)(b—c)(c—a)
< 3q—3r +4/—27r2 + 54(q — 2)r + 992 — 4¢3

Therefore, it suffices to show that

48r > (9r—1) [Sq —3r 4 4/—27r2 + 54(q — 2)r + 9¢2 —4613],
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which is true if

3[9r% + 151 — (9r — 1)q] = (9r — 1)4/—27r2 + 54(q — 2)r + 9¢2 — 4¢3

We need first to show that 9r? + 15r — (9r — 1)q = 0. From Schur’s inequality

p®+9r > 4pq,
we get
q< 3(r+ 3)’
4
hence

3(r+3)(9r—1) _ 9(r—1)>? -

9r2 +15r —(9r —1)q > 9r? + 15r — 2 T2

0.

By squaring the desired inequality, we get
Aq® +C > 3Bgq,
where
A=9r—1), B=18r(9r—1)(3r+1), C=27r(27r®+99r%>+r +1).
Using the AM-GM inequality, we have

cC C 3 C)?
AP +C=A+—=-+—=2>3 A3(—);
q T+ t3 T\ 3

thus, it is enough to show that
AC? > 4B,

which is equivalent to
(27r +99r? + r +1)* > 32r(9r — 1)(3r + 1),

729r° —2430r° + 2943r* — 14761 + 19912 +34r + 1 > 0,
(r—1)%(27r*—18r—1)>> 0.

2
The equality holds for a = b = ¢ =1, and also for r = % and g =1+ +/3;

that is, when a, b, ¢ are the roots of the equation

3+2V3

x2=3x2+ (14 V3)x— 5

0

suchthata>b>corb>c>aorc>a>b.
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P 1.140. Let a, b, c be nonnegative real numbers such that

2(a?+ b2 +c?) =5(ab + bc + ca).

Prove that
(v 8(a*+ b*+c*)>17(a®b + b3c + c3a);
(b) 16(a*+ b* +c*) > 34(a®b + b3c + ca) + 81abc(a + b +¢).

(Vasile C., 2011)

Solution. (a) Let
x=a*+b*+c* y=ab+bc+ca, 2x=05y.

Since the equality holds fora =2, b =1, ¢ = 0 (when abc = 0), we will use the
inequality
a’b?+ b%c* + c*a®* < y?
to get
a*+ b*+¢* = x> —2(a?b* + b%*c? + c?a?) > x? — 2y 2,
hence

17
at+bt+ct>x? -2y =—"(2x+vy).
Y 144( y)

Therefore, it suffices to prove that
(2x + y)*> > 18(a®b + b3c + c2a).

We will show that this inequality holds for all nonnegative real numbers a, b, c.
Assume that a = max{a, b,c}. There are two possible cases: a > b > c and a >
c>b.

Case 1: a > b > c. Using the AM-GM inequality gives

2ab + (a®+ bc +¢?) ]2

2(a®b + b3c+c3a) < 2ab(a®+ bc +c*) < [ 5

Therefore, it suffices to show that
2x+y > %(Zab +a*+bc+c?),
which is equivalent to the obvious inequality
(a—2b)*+c(2a—b+c)>0.
Case 2: a > c > b. Since

ab®+ b +ca®—(a®b+b3c+cca)=(a+b+c)a—b)b—c)(c—a) >0,
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we have
2(a®b+ b3c+c2a) < (@®b + b3c + c2a) + (ab® + bc® +ca®) < xy.
Thus, it suffices to prove that
(2x +y)* > 9xy.
Since x > y, we get
2x+y)—9xy=(x—y)4x—y)=>0.

Thus, the proof is completed. The equality holds for a = 2b and ¢ = 0 (or any
cyclic permutation).

(b) For a = b = c =0, the inequality is trivial. Otherwise, let us denote
p=a+b+c, g=ab+bc+ca, r=abc,
and write the inequality as

16Z:a4 > 17Z:ab(a2 + b3 + 17(Za3b—2ab3) +81acha.

Due to homogeneity, we may assume that p = 3, which involves ¢ = 2. Since

acha = 3r,
St = () -2 T

= (p*—2q)*>—2q*+4pr =17 +12r,

Z:ab(a2 +b?) = (Z ab) (Z az) —acha
=q(p*—2q)—pr =10-3r,
Za?’b —Z:ab3 =—p(a—b)(b—c)(c—a)
<py/(a—b)2(b—c)2(c—a)?
= pv/p2q2 —4q® + 2p(9q — 2p?)r — 27r2

=3vV4—-27r2,

it suffices to prove that

16(17 4+ 12r) > 17(10 — 3r) + 51/ 4 — 27r2 + 243r,

which is equivalent to the obvious inequality

2> vV4-—27r2,

The equality holds for a = 2b and ¢ = 0 (or any cyclic permutation).
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P 1.141. Let a, b, c be nonnegative real numbers such that
2(a?+ b2 +c?) =5(ab + bc + ca).

Prove that
() 2(a®b + b3c + c3a) > a®b? + b%c? + c2a® + abc(a + b +¢);

(b) 11(a*+ b*+c* > 17(a®b + b3c + c®a) + 129abc(a + b + ¢);

14 + v102
8

(©) ab+Db3c+cla< (ab? + b%c? + c%a?).

Solution. For a = b = ¢ = 0, the inequalities are trivial. Otherwise, let us denote
p=a+b+c, gq=ab+bc+ca, r=abc.

Due to homogeneity, we may assume that p = 3, which involves ¢ = 2. From

‘Z:agb—Z:ab3

=|—p(a—b)(b—c)(c—a)
=py/(a—b)2(b—c)*(c —a)?
= pv/p2q% — 4¢3 + 2p(9q — 2p?)r — 27r?

=3v4—-27r2,

it follows that
3v4—27r2 < ZaBb—ZabB < 3v4—27r2.

In addition, we have
abc Z a=3r,

Z:azb2 =q*—2pr =4—6r,
Z:ab(a2 + b?) =q(p*>—2q)—pr =10—3r,

Za“ =p*—4p’q+2¢*+4pr =17+ 12r.

(a) Write the inequality as

Z:ab(a2 +b2) + (Za3b—2ab3) > Z:azb2 +acha.

It suffices to prove that

10—3r—3v4—27r2>4—6r +3r,



206 Vasile Cirtoaje

which is equivalent to the obvious inequality

2>V4-27r2.

The equality holds for a = 0 and 2b = ¢ (or any cyclic permutation).

(b) Write the inequality as

ZZZ:a4 > 172 ab(a*+ b*) + 17(2 a’b —Zab?’) + 258acha.

It suffices to prove that

22(17 +12r) > 17(10—3r) + 514/ 4 — 27r2 + 774r

for0<r< 2 Write this i lit
or Srs——. rite 1S 1nequailil as
373 q y

4—9r=>v4-—27r2.

We have 4 —9r > 4—2+4/3 > 0. By squaring, the inequality becomes
(4—9r)* = 4—27r%
(3r—1)*>0.

1
For p = 3, the equality holds when q =2, r = 3 and (a—b)(b—c)(c—a)<0. In

general, the equality holds when a, b, ¢ are proportional to the roots of the equation
3x*—9x*+6x—1=0

and satisfy
(a—b)(b—c)(c—a)<O.
This occurs when (Wolfgang Berndt)

2
asin?Z = psin2 2F = csin24—n.
9 9 9

(c) Write the inequality as
Z ab(a®+ b?) + (Z a’b —Z ab3) < k(a?b? + b%c? + c2a?),

where

_ 14+ 4/102
=

k

It suffices to prove that

10—3r+3v4—27r2 < k(4—6r),
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where r < 2 Write this inequality as
T 33 !

3vV4—27r2 < 4k—10—3(2k— 1)r-.

We have

2(2k—1) ( 1) 2
4k—10—32k—1Dr>4k—10— "2 = 41— — |k—10+ — > 0.
( ) V3 V3 V3

By squaring, the inequality becomes
9(4—27r*) <[4k —10—3(2k—1)r]?,

which is equivalent to
(r—ky)*>0,

where

~ 0.3483.

2 \J 787 + 724/102
129 3

For p = 3, the equality holds when g =2, r = k; and (a—b)(b—c)(c—a) <0. In
general, the equality holds when a, b, ¢ are proportional to the roots of the equation

ky

x*—3x?+2x—k; =0

and satisfy
(a=b)(b—c)(c—a)<O.

P 1.142. If a, b, c are real numbers such that

a’b+b3c+c2a <0,

then
a*+ b*+c*> k(ab + bc +ca),
where
1++v21
k=" > +8Y7 . 37468,

(Vasile C., 2012)
Solution. Let us denote
p=a+b+c, g=ab+bc+ca, r=abc.

If p =0, then
3(ab+bc+ca)<(a+b+c)*=0,
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hence
a*+b*+c*> 02> k(ab + bc +ca).

Consider now that p # 0 and use the contradiction method. It suffices to prove that
a’+ b%+c? < k(ab + bc +ca)

involves
a®b+ b3c+c3a>0.

Since the statement remains unchanged by replacing a, b, ¢ with —a,—b,—c, re-
spectively, we may consider that p > 0. In addition, due to homogeneity, we may
assume that p = 1. From the hypothesis a® + b% + ¢ < k(ab + bc + ca), we get

- 1
1 k+2

Write the desired inequality as
Z:ab(a2 +b?) +Za3b —Z:ab3 > 0.

> ab(a®+b?) =q(p?—2q)—pr =q—2¢*—r

Since

and

> a®b—> ab®=—p(a—b)(b—c)(c—a) = —py/(a—b)x(b—c)X(c —a)?

= —p+/p2q? — 43 + 2p(9q — 2p2)r — 2712 = —4/q% — 4q® + 2(9q — 2)r — 2772,

it suffices to prove that

q—2¢*—r> \/q2—4q3+2(9q—2)r—27r2.

From p? > 3q, we get
1
——<qg< =,
k+2 173

and from g2 > 3pr, we get r < q*/3; therefore,

2 7
q—2q2—r2q—2q2—%=q(1—?q)>0.

By squaring, the desired inequality can be restated as
(@—2q*—r)* > q*—4q> +2(9q — 2)r — 27r?,

7r*+(1—5q+q*)r+q*>0.

This is true if the discriminant

D=(1-59+¢*>)*—28q¢*=[1-5q+ (1 +2v7)q*][1—5q + (1 —2v7)q?]
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is negative. Since

5¢\? 8+7-—21
1—5q+u+2¢ﬂ¢%:@f~£)4_12r—q2>a

we only need to show that f(q) > 0, where

f(@=(2v7-1)¢* +5q—1.

Since g > ! e ha
i — W ve
17 %2
2v7—1 5

+ —1=0
(k+2)2 k+2

flq)>

For p = 1, the equality holds when (a — b)(b —c)(c —a) > 0 and
_ 1
k+2’ V7 VT(k+2)?

In general, the equality holds when a, b, ¢ are proportional to the roots of the equa-
tion

q

1
k2’ " V7(k + 2)2
and satisfy (a —b)(b—c)(c —a) > 0.

we—w? +

P 1.143. If a, b, c are real numbers such that

a’b+b3c+c2a>0,

then
a’?+b2+c?+k(ab+bc+ca)=>0,
where
—14+v21+8
k= 5 V7 A 2.7468.

(Vasile C., 2012)

Solution. Let us denote
p=a+b+c, g=ab+bc+ca, r=abc.

At least two of a, b, c have the same sign; let b and ¢ be these numbers. If p =0,
then the hypothesis a®*b + b3c + c*a > 0 can be written as

—(b+c)Pb+b3c—c3(b+c)>0.
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Clearly, this inequality is satisfied only for a = b = ¢ = 0, when the desired in-
equality is trivial. Consider further that p # 0 and use the contradiction method.
It suffices to prove that

a*+b*+c*+k(ab+bc+ca)<0

involves
ab+b3c+cca<O.

Since the statement remains unchanged by replacing a, b, c with —a, —b, —c, respec-
tively, we may consider p > 0. In addition, due to homogeneity, we may assume
p = 1. From the hypothesis a® + b® + c? + k(ab + bc + ca) < 0, we get

—1

Write the desired inequality as
Z:ab(a2 + b?) +Za3b—2ab3 <0,

> ab(a® +b?) =q(p?—2q)—pr =q—2¢*—r

Since

and

> a®b—> ab®=—p(a—b)(b—c)(c—a) < py/(a—b)x(b—c)(c—a)

= p/p2q? — 4¢3 + 2p(9q — 2p)r — 27r2 = 4/q? — 4q3 + 2(9q — 2)r — 2712,

it suffices to prove that

\/q2—4q3+2(9q—2)r—27r2 <r+2q¢*—q.

Since g < —1, we have
1—2¢q

3

2 24 233 _ 3 _ 4
rZ:aszczs(a i ) :(1 Zq) <(ﬂ) ’
3 3 3

1—29)?
(122
3

1—29)? 29 —1)(7qg +1
r+2q2_q>_( Bq) togi—q= 2 )9(q ) oo

> 1,

hence

which implies

Therefore,
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By squaring, the desired inequality becomes
q*—4q¢> +2(99 —2)r —27r* < (r + 2> —q)?,
7r*+(1—5q+q*)r+q*>0.
This is true if the discriminant
D=(1-5q+¢*)*—28q¢*=[1-5q+ (1 +2v7)q*][1—5q + (1 —2v7)q*]

is negative. Since
1—5q+(1+2v7)q¢*> 0,

we only need to show that f(q) > 0, where
f@=0V7-1)¢* +5q—1.
Since the derivative
f(@Q)=202V7—1)q+5<22vV7—1)(-1)+5=7—4v/7 <0,

f(q) is strictly decreasing, hence
f( )>f(—_1 )—o
1 k—2)

For p = 1, the equality holds when (a — b)(b —c)(c —a) < 0 and

. -1 —q? -1
= —’ r = i .

k—2 V7 V7(k—2)>
In general, the equality holds when a, b, ¢ are proportional to the roots of the equa-
tion

1 Wt 1
k=2 V7(k—2)2
and satisfy (a —b)(b—c)(c—a) < 0.

W3—W2—

P 1.144. If a, b, c are real numbers such that
2 2 2 —1
k(a®+ b*+c“)=ab + bc+ca, kE(—,l),
then

ab+ b3c+¢c3
ak S S ﬁk:
(a?+ b2% +c2)?
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where
27a, =1+ 13k —5k*—2(1—k)(1+ 2k)\ 71(1;2];)
27B, =1+ 13k —5k* +2(1—k)(1 + 2k)\ 71(1;2?

(Vasile C., 2012)

Solution. Let us denote
p=a+b+c, g=ab+bc+ca, r=abc.

The case p = 0 is not possible, because p = 0 and k(a?® + b? + ¢2) = ab + bc + ca
lead to
ab+ bc+ca=0,

a(b+c)+bc=0,
—(b+c)*+bc=0,
b2+ bc+c%=0,

which involves a = b = ¢ = 0. Consider further that p # 0. Since the statement
remains unchanged by replacing a, b, c with —a,—b, —c, respectively, it suffices to
consider the case p > 0. In addition, due to homogeneity, we may assume p = 1,
which implies

_k

142k

(a) Write the desired left inequality as

20, (a® + b* +c?)?* < Z:ab(a2 + b3+ (Z a’b —Zab?’).

q

Since
Zaz =p>—2q=1-2q,

D,ab(@* +b%) =q(p*~20)—pr =q—2¢°—r,
> a®b—> ab®=—p(a—b)(b—c)(c—a) = —py/(a—b)x(b—c)X(c —a)?

4(p%2—3q)° —(2p®—9pq + 27r)? 4(1—-3q)°*—(2—9q +27r)?
P 27 T 27 :

it suffices to prove that

4(1—3q9)—(2—9q+27r)2
27 '

2a;(1—2q)? Sq—2q2—r—\J
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Applying Lemma below for

—1
a=—, =—, x=2(1-3 1—3q, =2—9q+ 27r,
Nori 5 7 ( q)V y q

we get

\J 4(1-3qP —(2—9¢+27r)*  2-9q _4(1-39)v7(1-3q)
27 27~ 27 ’

with equality for

1
(1-3q) Tq—2+9q—27r —0.
Thus, it suffices to show that

2—9q 4(1—-39)v/7(1—3q)

2a,(1—29)? <q—2¢*+
o ( q)°"<q—2q 77 7

which is equivalent to

7(1—k)
1+2k

270, <1+ 13k —5k*—2(1—k)(1 + 2k)
For p = 1, the equality holds when (a — b)(b—c)(c —a) >0, g = k/(1 + 2k) and

1-3
27r = (1—3q) Tq_2+9q: N

142k’

1—k
=5k—2+(1—k)\| =————.
r, = 5k +(1—k) 7011 26)

Therefore, the equality holds when a, b, ¢ are proportional to the roots of the equa-
tion

where

ry
_ =0
1+2k" 27(1+2Kk)
and satisfy (a —b)(b—c)(c—a) = 0.

(b) Write the desired right inequality as

2B (a® + b2+ 22 > ab(a®+ b2+ (D a®b— > ab?).

W3—W2+

Since
D> a?=p?—2q=1-2q,

D ab(a®+b?) =q(p*—2q)—pr =q—2¢*—,

> a®b—Y ab®=—pla—b)(b—c)(c—a) < py/(a—b)2(b—c)X(c—a)?
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4(p%—3q)® —(2p®—9pq + 27r)? 4(1—-3q)* —(2—9q+27r)?
—F 27 - 27 ’

it suffices to prove that

1-3q)32—(2— 27r)2
2/5k(1—2q)22q—2q2_r+\J4( 3¢ —(2—9q+27r)

27
Applying Lemma below for
1 1
a=—, =—, x=2(1-3 1—3q, =2—9q+ 27r,
Wox p=5 (1-3q)v y q

we get

27 27 27

1-3
(1-39)\ — 949 _9q+27r=0.

Thus, it suffices to show that

\J 4(1-3q°—(2—-9¢+27r)> __2-9q _4(1-39)v7(1-3q)

with equality for

2-9q _ 401-30)y7(1=30)

2B.(1—29)*>>q—2q*>+
Bi( q)"=q—2q 77 7

which is equivalent to

7(1—k)
27B; =1+ 13k —5k* + 2(1 —k)(1 + 2k)'\ i
7B, =1+13 5k +2( )(1 + 2k) Y

For p = 1, the equality holds when (a — b)(b—c)(c—a) <0, q = k/(1 + 2k) and

27r =9q —2—(1—3q)\ =
r=9% ( 9) 7 142k’
1—k
=5k—2—(1-k)\| ——.
o ( )\J7(1+2k)

Therefore, the equality holds when a, b, c are proportional to the roots of the equa-
tion

where

o
_ =0
142k 27(1+2Kk)
and satisfy (a —b)(b—c)(c—a) <0.

Lemma. If a, 3, x, y are real numbers such that

w? —w? +

a>0, x>0, x2>y?
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then
avx?—y?2<xya?+ 2+ By,

with equality if and only if

Px+yy a2+ p2=0.

Proof. Since
xya?+p2+ By =|Blx+py=|Bllyl+By =0,

we can write the inequality as

2
a’(x*—y?) < (x\/oc2 + 32 +/5y) ,
which is equivalent to

(b’x +yya? +ﬂ2)2 > 0.

P 1.145. If a, b, c are positive real numbers such that a+ b + ¢ = 3, then

a’? b? c? 3
> —

+ + > =,
4a+ b2 4b+c2 4c+a?2” 5
(Michael Rozenberg, 2008)

Solution. By the Cauchy-Schwarz inequality, we have

Z a? - |:Za(2a+c):|2 B (22a2+2ab)2

4a+b2 7 Dl(4a+b2)(2a+c)>  D(4a+b2)(2a+c)?’

Therefore, it suffices to show that

5 (ZZaz + Z:ab)2 > 32(4a + b?)(2a + ¢)?,

which is equivalent to the homogeneous inequalities
2
5 (22 a’+ Z ab) > Z[4a(a +b+c)+3b%](2a +c)?,
2
5 (ZZ a’+ Z ab) > Z:(4a2 +3b? + 4ab + 4ac)(4a® + c* + 4ac),
ZZ:a“+SZ:a2b2 > acha+6Zab3.

Using Vasc’s inequality
BZ ab® < (Z az)z ,
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it is enough to prove the symmetric inequality

22a4+52a2b2Zacha+2(Za2)2,

which is equivalent to the well-known inequality

Z:azb2 > acha.

The equality holds fora=b=c=1.

P 1.146. If a, b, c are positive real numbers, then

a’+bc b +ca cz+ab< (a+b+c)
a+b b+c c+a ~ 3(ab+bc+ca)

(Michael Rozenberg, 2013)

Solution (by Manlio Marangelli). Write the inequality as

Z(a2+bc_a)< (a+b+c) Catbto)
a+b ~ 3(ab + bc +ca) ’

Zb(c—a) < (a+b+c)

—(a+b+
a+b ~ 3(ab+bc+ca) (a )

> b(c*—a*)(b+c) - (a+b+c)

(a+b)(b+c)(c+a) ~ 3(ab+ bc+ca)
3> ab®—3abc > a - (a+b+c)?
(a+b)(b+c)(c+a)  ab+bc+ca

—(a+b+c),

—3(a+b+c).
By the known Vasc’s inequality

BZ:ab3 < (Z az)z ,

it suffices to prove the symmetric inequality

(Xa?)’ —3abcSa o la+b+cy
(a+b)(b+c)(c+a)  ab+bc+ca

—3(a+b+c).

Using the notation

p=a+b+c, gq=ab+bc+ca, r=abc,
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this inequality can be written as

(p*—2q)*—3pr
pq—r

3
<E_3)
q
which is equivalent to
q¢*(p* —4q) — (p* — 69)pr > 0.
Case 1: p>—6q > 0. Since 3pr < g*, we have

202 202
q(p3 69) _ 29 (p3 39 S o,

Case 2: p?> —6q < 0. Using Schur’s inequality of fourth degree

6pr = (p*>—q)(4q —p?),

¢*(p*>—4q) — (p*>—6q)pr = ¢*(p* —4q) —

we get

(p*—6q)(p* —q)(4q — p*)
6

¢*(p*—4q) — (p*> —6@)pr = ¢*(p* —4q) —

_ =39 —49)¢ _

6 >

The equality holds fora=b=c=1.

P 1.147. If a, b, c are positive real numbers such that a+ b + ¢ = 3, then

Vab2+be2+ vV be2 +ca?+ v ca2 +ab? < 3v2.
(Nguyen Van Quy, 2013)
Solution (by Michael Rozenberg). By the Cauchy-Schwarz inequality, we have

(Z v/ ab2 + bcz)2 < Z abi_ccz Z b(a+c).

a

Therefore, it suffices to show that

Zab+cz< 9
a+c ~ ab+bc+ca’

which is equivalent to the homogeneous inequality

z:ab+c2 < (a+b+c)
a+c ~ 3(ab+bc+ca)
which is the inequality from the preceding P 1.146. The equality holds fora = b =

c=1.
O
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P 1.148. If a, b, ¢ are positive real numbers such that a® + b°> + c> = 3, then

a? b?> c?

—+—+—2=3.
b c a

Solution. We will prove the inequality under the more general condition a™+b™+
¢™ =3, where 0 < m < 21/4. First, write the inequality in the homogeneous form

a? b* 2 (am+bm+cm)l/m

By the Power Mean inequality, we have

(am Lpma Cm)l/m 3 (a21/4 4 p2l/4 021/4)4/21
3 3 '

Thus, it suffices to show that

2 b 2 Q214 4 p2U/A o p21/4 4/21
—+—+—23 .
b c a 3

By the known Vasc’s inequality in P 1.125, namely
(x2+y?+22)?>3(x°y + y’2+2°x), x,y,z€R,

we have

a2 b* 2 a® b3 c?
—+—+—= 23( + + ).
( b c a ) vbc +ca +ab
Therefore, it suffices to prove the symmetric inequality

a3 b3 3 Q214 4 p21/4 4 (217482
ot ——>3 ,
vbc +vca +ab 3

which is equivalent to

a’ b3 3\ 24
+ + 21/4 21/4 | .21/4\2
Vbe ca +ab >3(a +b +c )
3 o 3 ’

Setting
a=x*", b=y¥", c=2*", x,y,2>0,

the inequality becomes

X+ v 4+ z\21/4 x3/2 4 y3/2 4 53/2)2
(2372 (225
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By the Cauchy-Schwarz inequality, we have
(x+y+2)(x2+y? +22) > (32 + y3/2 + £5/2),

Thus, it is enough to prove that

x+y -ty 1
(L) > —(xyz)* 4 (x?+ y2 +22).
3 3
Due to homogeneity, we may assume that x + y + 2 = 3, when the inequality
becomes
(xyz)**(x*+y*+2?) < 3.

Since
s, 1
4 /2
this inequality follows from the inequality in P 2.89 from Volume 2:
1
k(.2 2 2
xyz) (x*+y“+2°)<3, k=>—
(xyz)"(x*+y ) 7

The proof is completed. The equality holds fora=b =c=1.

P 1.149. Let P(a, b,c) be a cyclic homogeneous polynomial of degree three. The in-

equality
P(a,b,c)=0

holds for all a, b,c = 0 if and only if the following two conditions are fulfilled:
(@) P(1,1,1) = 0;

(b) P(0,b,c)=>0 forall b,c>0.
(Pham Kim Hung, 2007)

Solution. The conditions (a) and (b) are clearly necessary. Therefore, we will
prove further that these conditions are also sufficient to have P(a, b,c) > 0. The
polynomial P(a, b, c) has the general form

P(a,b,c) =A(a®+ b+ )+ B(a?*b + b*c + c?a) + C(ab?* + bc? + ca®) + 3Dabc.
Since
P(1,1,1)=3(A+B+C+D), P(0,1,1)=2A+B+C, P(0,0,1)=A4,
the conditions (a) and (b) involves

A+B+C+D=0, 2A+B+C=0, A=0.
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Assume that a = min{a, b, c}, and denote
b=a+p, c¢c=a+q, p,q=0.
For fixed p and g, define the function
f(a)=P(a,a+p,a+q), a=0.

Since
a=b=c=1,

we have the derivative

f'(a)=3A(a*>+ b*+c*)+(B+C)a+b+c)*+3D(ab + bc + ca)
=(BA+B+C)(a®+ b*>+c*)+(2B+2C +3D)(ab + bc +ca)
=(3A+B+C)a®+b*+c?—ab—bc—ca)+3(A+B+C+D)ab+ bc+ca).

Because f’(a) = 0, f is increasing, hence f(a) = f(0), which is equivalent to
P(a,b,c) = P(0,p,q) = P(0, b,c).

According to the condition (b), we have P(0, b,c) = 0, hence P(a, b,c) > 0.
Remark 1. From the proof of P 1.149, the following statement follows:

e Let P(a, b, c) be a cyclic homogeneous polynomial of degree three. The inequality
P(a,b,c)>0
holds for all nonnegative real numbers a, b, c satisfying
a<b<c

if and only if P(1,1,1) > 0 and P(0,b,c) =0 forall0 < b <c.

Remark 2. From P 1.149, using the substitution
a=y+z, b=z+x, c=x+Y, x,y,2=>0,

we get the following statement:

e Let P(a,b,c) be a cyclic homogeneous polynomial of degree three, where a, b, c
are the lengths of the sides of a triangle. The inequality

P(a,b,c)=>0

holds if and only if P(1,1,1) > 0 and P(b+¢,b,c) >0 for all b,c > 0.
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P 1.150. If a, b, c are nonnegative real numbers such that a + b + ¢ = 3, then
8(a*b + b*c +c*a) +9 > 11(ab + bc +ca).
Solution. Write the inequality in the homogeneous form P(a, b,c) > 0, where
P(a,b,c) =24(a®*b + b%c+c2a)+(a+b+c)*—11(a+ b +c)(ab + bc +ca).

According to P 1.149, it suffices to show that P(1,1,1) > 0 and P(0, b,c) > O for
all b,c > 0. We have
P(1,1,1)=0

and
P(0,b,c) =24b%*c +(b+c)*—11bc(b +c¢)
= b3 +16b%c —8bc% +¢*
> 16b%c —8bc% +c2 =c(4b—c)*>0.

The equality holds fora=b=c=1.

P 1.151. If a, b, c are nonnegative real numbers such that a + b + ¢ = 6, then
a’® + b3+ ¢ +8(a’b + b%c + c%a) > 166.
(Vasile C., 2010)

Solution. Write the inequality in the homogeneous form P(a, b,c) > 0, where

a+b-+-c)3

P(a, b,c)=a3+b3+c3+8(a2b+bzc+cza)—166( c

According to P 1.149, it suffices to show that P(1,1,1) > 0 and P(0, b,c) > O for

all b,c > 0. We have

83 25
P(1,1,1)=27——"="">0

and
3, .3 2 83 3
P(0,b,c)=b"+c’+8b°c———(b+¢c)
108

1
= ﬁ(%bg + 615b%c — 249bc? + 25¢°)

1
= ——(5b—c¢)*(b+25¢) > 0.
108( c)°(b+ 25¢) >

The equality holds for a =0, b =1, ¢ =5 (or any cyclic permutation).
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P 1.152. If a, b, c are nonnegative real numbers, then

a®+ b3+ —3abc > V9+6v3(a—b)(b—c)c—a).

First Solution. Write the inequality as P(a,b,c) = 0. According to P 1.149, it
suffices to show that P(1,1,1) > 0 and P(0,b,c) > O for all b,c > 0. We have
P(1,1,1)=0and

P(0,b,c)=b>+c®+ V9+6v3 be(b—c).
The inequality P(0, b,c) > 0 is true if
(b +¢%)* > (94 6v3)b*c*(b—c)?,
which is equivalent to
(b +c)*(b*>—be +c*)* = (9 +6v3 )b*c*(b—c)*.

For the non-trivial case bc # 0, denoting

x—b+c 1
¢ b 7

we can write this inequality as
(x+3)x* > (9+6V3)(x—1),

(x—+3)2(x+3+2v3)>0.

The equality holds for a = b =, and also fora=0and b/c+c/b=1++/3,b <c
(or any cyclic permutation).

Second Solution. Assume that a = min{a, b, c}. Since the case a < ¢ < b is trivial,
consider further that a < b < c. Write the inequality as

(a+b+)(a—b)?+(b—c)?+(c—a)*]=2V9+6V3 (a—b)(b—c)(c—a).
Using the substitution b = a+p, ¢ = a+q, where ¢ > p > 0, the inequality becomes
(3a+p+q)(p*—pq+¢*) = V9+6v3 pqlg—p).

Since p2—pq+q?* > 0, it suffices to consider the case a = 0 (as in the first solution).
O
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P 1.153. If a, b, c are nonnegative real numbers, no two of which are zero, then

a N b 4 c 4 >£( a 4 b 4 c )
b+c c¢c+a a+b ~ 3\a+b b+c cH+a)’
(Vasile C., 2007)

Solution. Write the inequality as P(a, b,c) = 0, where

P(a,b,c) = » (3a—17b)(a+ b)(a+c) +21(a+ b)(b +c)(c +a)
=3(a®+ b +c*)—10(a®b + b*c + c*a) + 7(ab® + bc? + ca?).

According to P 1.149, it suffices to show that P(1,1,1) > 0 and P(0, b,c) > 0 for
all b,c > 0. We have P(1,1,1) =0 and

P(0,b,c) =3(b% +c3)—10b%c + 7bc?.

Consider the nontrivial case b,c > 0. Setting ¢ = 1, we need to show that f(b) > 0,
where
f(b)=3b>—10b*+7b+3.

Case 1: b > 3. We have
f(b)>3b>—10b*+7b=(b—1)(3b—7) > 0.
Case 2: 2 < b < 3. We have
f(b)>3b>—10b%>+8b=Db(b—2)(3b—4) > 0.
Case 3: 0 < b < 2. We have
f(b)>3b%—10b%+7b+1.5b = b(3b%2—10b +8.5) > 3b(b—5/3)> > 0.

The equality holds for a = b =c.

P 1.154. Let a, b, c be nonnegative real numbers, no two of which are zero. If 0 <
k <5, then

ka+b kb+c kc+a 3
+ + > —(k+1).
a+c b+a c+b 2

(Vasile C., 2007)

First Solution. Write the inequality as

b c a 3 a b C 3
+ + —S+k + + —=]>o0.
a+c b+4+a c+b 2 a+c b4+a c+b 2
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Since
b C a 3

+ +
a+c b+a c+b 2
it suffices to consider the case k = 5, when the inequality can be written as follows:

—_ >

> (5a+b)(b+a)(c+b)=9(a+c)(b+a)c+b),

ZZ:ab2 +Z:a3 > SZazb,
4 1
2 3 3 2
ZZab +§Za —§Zb ZBZa b,
> (6ab? +4a— b* —9a%b) > 0,
(a—b)*(4a—b)+ (b—c)*(4b—c)+ (c —a)*(4c—a) > 0.

Assume that a = min{a, b, ¢}, and use the substitution

b=a+p, c=a+q, p,q=0.
The inequality becomes

p’(Ba—p)+(p—q)*(Ba+4p—q)+q*(3a+4q) >0,

24a+B >0,

where
A=p*’—pq+q*>, B=p’—3p*q+2pq°+4°.

Since A > 0, we only need to show that B > 0. For ¢ = 0, we have B = p> > 0,
while for g > 0, the inequality B > 0 is equivalent to

1> x(x—1)(2—x),

where x = p/q > 0. For the non-trivial case x € [1,2], we get this inequality by
multiplying the obvious inequalities

1>2x—1

and
1> x(2—x).

The proof is completed. The equality holds for a = b =c.

Second Solution. We can write the inequality in the form P(a, b,c) > 0, where
P(a,b,c) is a cyclic homogeneous polynomial of degree three. According to P
1.149, it suffices to show that the desired inequality holds for a = b = ¢, and
also for a = 0. If a = 0, then the inequality becomes

k

1 3
X+k+—+——2=-(k+1),
x 14x 2
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x+1

where

x=—>0.
c

For 0 < x <1, we have

kx(x—1)

2(x—12*+x>0>
x+1

For 1 < x <5, it suffices to consider the case k = 5, when the inequality is equiva-

lent to
S5x(x—1)
> 7

T ox+1
x2=3x%2+2x+1>0,

x(x—2)*+(x—1)*>0.

2(x—1)* +x

J

Remark. As in the second solution, we can prove that the inequality in P 1.154

holds for
0<k<k,, ko =V 13 +16v2 ~ 5.969.

For a = 0 and k = k,, the inequality becomes

dx—1P+xs XEZD by
x+1 C

2x% — (ko + 1)x*+ (kg —1)x +2 >0,

1
(x —x)? (x + F) >0,

0
where
_1+vV2+ V2421

X 5

~ 1.883.

If k = k,, then the equality holds for a = b = ¢, and also for a = 0 and b + % =
c

1+ +/2 (or any cyclic permutation).
O

P 1.155. Let a, b, c be nonnegative real numbers. Prove that

2
(a) if k <1———, then
4 5V3

ka+b kb+c kc+a 3
+ + > —(k+1).
2a+b+c¢c a+2b+c a+b+2c 4
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2
(b) if k >1+ ——, then
f 545

ka+b kb+c kc+a 3

+ + < —(k+1).
2a+b+c a+2b+c a+b+2c 4( )

(Vasile C., 2007)

Solution. (a) Write the inequality in the form P(a, b,c) > 0, where P(a, b,c) is a

cyclic homogeneous polynomial of degree three. According to P 1.149, it suffices

to show that the desired inequality holds for a = b = ¢, and also for a = 0. For
a = 0, the inequality becomes

X kx+1 k 3

+ > —

x+1 2x+1 x+2 4

(x+2)2x2—=x+1)>k(x+1)(2x%*—x +2),

(k+1),

where b
x=—-2=0.
c
2
It suffices to consider the case k =1 — ﬁ’ when the inequality is equivalent to
(x—x)z(x+ 2 )>0
0 5vV5x%)
where
3—+/5
Xy = .
2

The equality holds fora=b=c. If k =1— %, then the equality holds also for

b ¢ . .
a=0and — + 3= 3 (or any cyclic permutation).
c

(b) According to P 1.149, it suffices to show that the desired inequality holds
for a = b =, and also for a = 0. If a = 0, then the inequality becomes

X kx+1 k 3
+ + < —(k+1),
x+1 2x+1 x+2 4

(x +2)(2x%>—x+1) < k(x +1)(2x*—x + 2),

where

x=-—2=0.

N oS

It suffices to consider the case k =1+ %, when the inequality is equivalent to

(x—x)z(x—l— 2 )>O
! 5V5x2)
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where

2
The equality holds fora=b =c. If k =1+ ﬁ, then the equality holds also for

b ¢ . .
a=0and —+ 3= 3 (or any cyclic permutation).
c

OJ

23
P 1.156. Let a, b, c be nonnegative real numbers, no two of which are zero. If k < rE

then

ka+b kb+c kc+a
>k+1.
2a+c¢c 2b+a 2c+b
(Vasile C., 2007)

Solution. We can write the inequality in the form P(a, b,c) > 0, where P(a, b,c) is
a cyclic homogeneous polynomial of degree three. According to P 1.149, it suffices
to show that the desired inequality holds for a = b = ¢, and also for a = 0. For
a = 0, the inequality becomes

k 1 k
x+-+—+ >k+1,
2 2x 2+4+x
kZ
X2+ (x—1)>%> X )
x+2
where
b
x=—>0.

c
It suffices to consider that k = 23/8, when the inequality is equivalent to

) 23x>
2x*=2x+1=2 ————,
8(x+2)

16x° — 7x%*—24x +16 >0,
16x(x —1)*+ (5x —4)* > 0.
The equality holds for a = b =c.

Remark. For k = 2, we get the inequality in P 1.21.

P 1.157. If a, b, ¢ are positive real numbers such that a < b < c, then
(a+ b b+c c+a)
+ + :
b+c c¢c+a a+b

a b ¢
—+—-+—+3>2
b ¢ a
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Solution. Write the inequality as follows:
b+ c
1 2
Z(a—b)(g+—) >0,

(a—b)(l+C+ia)+(b—c)(%+%)+[(c—b)+(b a)]( bic)zo,
2 1 2 2 1 2
(b—a)( b+c_g_c+a) (C_b)( b+c_z_a+b)20’
el o2 O B N
(b—a) [ab (b+c)(c+a)]+(c b)e a)[ac (b+c)(a+b)]20
The inequality is true since
1 2 _c(a+b+c)—ab> a(c—>b)
ab (b+c)c+a) (b+c)c+a) (b+c)c+a)
and
1 2 _b(a+b+c)—ac> c(b—a)) >0,

ac (b+c)a+b) (b+c)a+b) ~ (b+c)a+b)
The equality holds fora = b =c.

P 1.158. [fa>b>c >0, then

3a+b 3b+c 3c+a
+ + = 4.
2a+c¢ 2b+a 2c+b

(Vasile C., 2007)

First Solution. Write the inequality as follows:

Z(Ba + b)(2b+a)(2c + b) > 4(2a + ¢c)(2b + a)(2c + b),

ZZ:a3 + IBZ:ab2 + 72 a’b + 42abc > 4(42 ab?+ ZZazb +9abc),
ZZ:a3 + 6abc > I%Z:ab2 +Za2b,
2E(a, b,c) = F(a, b,c),
E(a,b,c) = Za3 + 3abc —Z:ab2 —Zazb,
F(a,b,c) = Z:ab2 —Zazb.

where
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The inequality is true since E(a, b,c) = 0 (by Schur’s inequality of degree three)
and
F(a,b,c)=(a—b)(b—c)(c—a)<O0.

The equality holds for a = b = ¢, and also for a = b and ¢ = 0.
Second Solution. Denote
x=a—b=>0, y=b—c=>0,

and write the inequality as follows

(3a+b 4)
(2t )20
2a+c¢ 3

Za+3b—4c >0

5

2a+c¢
a+3b—4c+b+36—4a c+3a—4b>
2a+c 2b+a 2c+b 7

x+4y_4x+3y+3x—y>
2a+c 2b+a 2c+b
xA+yB >0,

where

1 4 3

A= — +
2a+c 2b+a 2c+b
(1 1 1 1

_(Za—i-c_2b+a)+3(2c+b_2b+a)
. —x+y N 3(x+2y)
- (2a+c)2b+a) (2b+a)(2c+b)

and

4 3 1

:2a+c_2b+a_2c+b
B 1 1 1 1

) 5)
2a+c 2b+a 2a+c 2c+b
_ 3=x+y) 2x+y
 (2a+0)2b+a) (2a+¢)(2c+b)’

Thus, the inequality is equivalent to
x[(—x+y)(2c+b)+3(x+2y)2a+c)+y[3(—x+y)(2c+b)—(2x+y)(2b+a)] = 0,

x*(6a—b+c)+xy(10a—6b+2c)—y*(a—b—6¢)> 0,
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It suffices to show that
xy(10a —6b +2c¢)— y*(a—b—6c) > 0,
which is true is
x(10a—6b+2c)—y(a—b—6¢) > 0.
We have

x(10a—6b+2c)—y(a—b—6¢c)=x(10x +4y + 6¢) — y(x —6C)
=10x%+3xy +6¢c(x + y) > 0.
Third Solution. According to Remark 1 from P 1.149, it suffices to prove that the

inequality holds for ¢ = 0 and a > b; that is, to show that

3 1
—+—+
2 2x 2+x

+x =>4,

where

x=-—2>1.

Sl Q

The inequality is equivalent to
2x3—x?2—=3x+2>0,

(x —1)(2x*+x—2)>0.

P 1.159. Let a, b, c be nonnegative real numbers such that
a>b>1>c¢c, a+b+c=3.

Prove that
1 1 1

+ + <
az+3 b2+3 c2+3

3
Y
(Vasile C., 2005)

First Solution. Let
r=abc, q=ab+bc+ca.

From
(a—1)(b—1)(c—1)<0O,

we get
r<q-—2.

The desired inequality is equivalent to

3a®b%c? +5(a®b* + b%c? + c?a?) + 3(a® + b* +c?)—27 >0,
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3r?—30r +5¢*—6q >0,
3(5—r)*+5¢*—6q—75>0.

Since
3g<(a+b+c)=9

and
5—-r>5—(q—2)=7—q>0,

it suffices to show that
3(7—q)*+5¢>*—6q—75>0.
This is equivalent to the obvious inequality
(g—3)*=>0.
The proof is completed. The equality holds fora=b =c=1.

Second Solution (by Nguyen Van Quy). Write the inequality as follows:

( 1 _3—a)+( 1 _3—b)+( 1 _3—c)<0
a2+3 8 b2+3 8 c2+3 8 )77
(a—1)° (b—1)3<(1—0)3
a’+3 b2+3 = 243 °

Indeed, we have

(1=c) _(@=1+b=1F _(a=1P+(}-1°_(@-1° (617
c2+3 c2+3 - c2+3 ~ a2+3 b2+3

Third Solution. Denoting
d=2—c,

we have
a+b=14d, d=a=b>1.

We claim that
1 1

+ <
c2+3 d2+3

1
>
Indeed,

1 1 1 (cd—1)2

2 243 d2+3  20c2+3)(d2+3) "
Thus, it suffices to show that

1 + 1 < 1 +1
a2+3  b2+37 d2+3 4
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Since
1 1  (d—a)d+a) (b—1)d+a)

a2+3 d2+3  (a2+3)(d2+3) (a2+3)(d2+3)
1 1 (b=1)(b+1)

4 b2+3  4(b2+3)

we need to prove that

d+a < b+1
(@2+3)(d2+3) = 4(b2+3)

We can get this inequality by multiplying the inequalities

d+a a+1
<

d2+3~ 4~
a+1 < b+1
a?+3 "~ b2+3’
We have
a+l d+a :(d—l)(ad+a+d—3)>0
4 d2+3 4(d2+3) -
b+1 a+1 (a—b)lab+a+b—3)
2+3 a2+3  (a2+3)(b2+3)

P 1.160. Let a, b, c be nonnegative real numbers such that
a>1>b>c, a+b+c=3.
Prove that

1 + 1 + 1 >
az+2 b2+2 2427

(Vasile C., 2005)

First Solution. Let
r=abc, q=ab+ bc+ca.

From
(a—1)(b—1)(c—1)=0,
we get
r=q—2
Also, we have
(a+b+c)
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1
q< §(a+b+c)3=3.
The desired inequality is equivalent to
3> a?b%c? + a?b? + b%c? + c2d?,
4>r*—6r+q?
(3—r)+q*<13.
Consider further two cases: ¢ <2 and 2 <q < 3.

Case 1: q¢ < 2. We have
(3—r)+¢*<3*+22=13.
Case 2: 2<q < 3. Fromr < q—2, we get
B-r)?+¢*<(5—q)*+q*=2(q—3)(g—2)<0.

The proof is completed. The equality holds fora = b =c =1, as well as for a =2,
b=1and c=0.

Second Solution. First, we can check that the desired inequality becomes an equal-
ityfora=b =c=1, and also fora =2, b =1, ¢ = 0. Consider then the inequality
f(x) >0, where

X)= —A—Bx.
f) x2+2
We have the derivative 9
—2x
(x)=——"-—=—B

From the conditions f(1) =0 and f’(1) = 0, we get A=5/9 and B = —2/9. Also,
from the conditions f(2) =0 and f'(2) =0, we get A= 7/18 and B = —1/9. Using
these values of A and B, we obtain the relations

1 _5—2x_(x—1)2(2x—1)
X242 9  9(x2+2)

b

1 7-2x  (x—=2)(2x+1)
x2+2 18 18(x2+2)

which involve
1 S 5—2x

x2+2 9
1 7—2x
= )

x2+4+2 18

\
N =

, X

\Y%
o

X

Consider further two cases: ¢ >1/2 and ¢ < 1/2.
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1
Case 1: ¢ > > By summing the inequalities

1 5—2a 1 5—2b 1 5—2c
> , > , >
az+2 9 b2+2 9 c2+2 9

J

we get

1 1 1 15—2(a+b+c¢)
+ + > =1
az+2 b24+2 242 9

1
Case 2: ¢ < 5 We have

1 7—2a
> .
a’+2 18
Consider now the similar inequalities
1 B—2b
= )
b2 +2 18
1 C—2c
= )
c2+2 18
which are satisfied as equalities for b=1and c=0if B=8 and C =9:
1 8—2b
> )
b2+2 18
1 > 9—2c
c2+2 18
Since
1 8-2b _ (1—b)(1+3b—b?)
b2+2 18 9(b2 + 2)
and

1 9-2c_c(A—-2c)4—0)
c2+2 18  18(c2+2) ’
these inequalities holds for 0 < b <1 and 0 < ¢ < 1/2. Therefore, we have

1 1 1 7—2a 8—-2b 9—2c
> + + =

+ + = 1.
az+2 b2+2 242 18 18 18

P 1.161. Let a, b, c be real numbers such that
a>b>1>c>-5 a+b+c=3.

Prove that
L +1> L
aA+b3+c3 T a2+ b2+c2
(Vasile C., 2015)
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Solution. First, we will show that
a+b>+c2>0.
Indeed, for the nontrivial case —5 < ¢ < —2, we have

4a*+b*+c)>(a+b)P+4cd =B—c)+4c3
=3¢ +9c¢?—27c+27 > —15¢* + 9c* — 27¢ + 27
=3(—2c2—=9c+9) > 3(—2c¢2—9c +5)=3(c +5)(1 —2c) > 0.
From
(a—1)(b—1)(c—1)<0,
we get
r<q-—2,

where ¢ =ab + bc + ca and r = abc. Write the desired inequality as follows:

2 8
—_—+t1>—.
r+9—3q 9—2q
Since
r+9—3¢<(@—2)+9—3¢q=7-—2q,

it suffices to show that
+1>

7—2q 9—2q
This is equivalent to the obvious inequality

(2g—5)*=>0.

1 1
The equality holds fora=14+—,b=1,c=1——.
uatly /2 V2

P 1.162. Ifa>1=>= b > c > —3 such that ab+ bc + ca = 3, then

1 1 1
+ + >1
a2+ab+b%2 b2+bc+c?2 c24+ca+a?

(Vasile C., 2015)

Solution. We will show first that ¢ > —1 and p > 0, where p = a + b +c. We have
p=l+c+c=1+2c,

hence
p—c=c+1.
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On the other hand, from
(a—1)(b—1)<0O,

we find
ab—(a+b)+1<0,
3—cla+b)—(a+b)+1<0,
4<(c+1)(a+Db),
4<(c+1)(p—oc),
hence

plc+1)>c*+c+4>0.

From p(c + 1) > 0, it follows that ¢ > —1 involves p > 0. To show that ¢ >
—1, we use the contradiction method. The case ¢ = —1 contradicts the inequality
(c+1)(p—c) =4, and the case ¢ < —1 leads to

c+1< ,
c+1

(c+1)?>4,

hence ¢ < —3, which is false. Therefore, we have ¢ > —1 and p > 0. According
Lemma below, we can write the inequality as

p*abc—27 +(p*—9)* > 0.
From (a—1)(b—1)(c—1) = 0, we get
abc>4—p.
Thus,
pPabc—27+ (p2—9)2 > p3(4—p)—27+ (p>2—9)> = 2(2p + 3)(p — 3)*> > 0.

The equality holds fora=b =c =1.

Lemma. Let a, b, ¢ be real numbers, p=a+b+cand q=ab+ bc+ca. If g >0,
then the inequality

1 1 1 3
+ + >
az+ab+b%2 b24+bc+c2 c2+4ca+a? ab+bc+ca

is equivalent to
3(p*abc—q°) +q(p*—3q)* = 0.
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Proof. Write the inequality as

qZ(x +ab—c*)(x +ac—b?)> Sr[(x + bc—a?),

where
x=a*+b*+c*=p?—2q.
From
Z(ab —c*)(ac—b*) =q* —xq,
Z(x+ab—cz)(x+ac—b2) = x?%+xq +q*
and

l_[(bc —a?)=q*—pabc,
l_[(x + bc—a?) = xq*+q* —p3abc,

the conclusion follows.

P1.163. Ifa=b>12>c>0such that a+ b+ c =3, then
1 1 1 3
+ + < .
az+ab+b%2 b24+bc+c2 c24ca+a?2  ab+bc+ca
(Vasile C., 2015)

Solution. By Lemma from the preceding P 1.162, we need to show that
3(p*abc—q°) +q(p*—3q)* <0,
where p =3 and q = ab + bc + ca; that is
27abc —q®+3q(3—q)* <0.
From p? > 3q, we get ¢ < 3, and from (a —1)(b—1)(c —1) < 0, we get
abc<q—2, qg=2.
Thus,
27abc—q*+3q(3—q)* <27(q—2)—q¢*+3q(3—q)* =2(q—3)* < 0.
Thus, the proof is completed. The equality holds fora=b=c=1.
Remark. Actually, the inequality holds for
a>b>1>c>1-+3.
To prove this, it suffices to show that ab + bc + ca > 0. Indeed, we have

ab+bc+ca=(a—1)(b—1)—1+a+b+cla+b)=—-1+(1+c)(a+b)
=—14+(1+c)(3—c)=0.
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P 1.164. If a, b, c are positive real numbers such that
a>1>b>c, abc=1,
then
1—a 4 1-b + 1—c
34+a%2 3+b%2 3+4c2

(Vasile C., 2009)

First Solution. Denote the left side of the inequality by E(a, b,c). We will show
that
E(a,b,c) > E(ab,1,c) > 0.

Let
a+b=s, ab=p.
We have
p=abc=1, s=>2,/p=2.
Therefore,
1—a 1—-b ab—1
E(a,b,c)—E(ab,1,c) = + +
(@b,c)=E(ab,1,0) = =5 + 3075 T 37 o2
_s*—(B4+p)s+2(3—p)  p—1
B 352+ (p —3)2 3+ p2
_ B+p)s—p—1)(ps+p—3)
(B+p2)[3s2+(p—3)2]
Since

s—p—1=(a—1)(1—-b)=0, ps+p—3=2p+p—3=0,

it follows that
E(a,b,c)—E(ab,1,c)>0.

Also, we have

(1—c)* 0
(3c2+1)(3+c2)

E(ab,1,c) =E(1/c,1,¢c) =

The equality holds fora=b=c=1.
Second Solution. Let p=a+ b +c and g =ab + bc + ca. From
(a—1)(b—1)(c—1)=>0,

we get
p=q.

The desired inequality is true because it is equivalent to

2(1 —a)(9+3b%+3c2+ b%c2) > 0,
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27+6Za2+2b2c2—9p—3pq+9—q20,
27 +6(p*—2q) +(¢* —2p) —9p—3pq+9—q =0,
6p>+q*>—3pq—11p —13q+36 >0,
(p+q—6)*+5p*>~5pq+p—q=0,
(p+q—6)*+(5p+1)(p—q) = 0.

P 1.165. If a, b, c are positive real numbers such that
a=>1>b>c, abc=1,

then
1 1 1

+ +
V3a+1 V3b+1 3c+1

3
= —.
2

(Vasile C., 2007)
Solution. Let
bl == 1/b, bl Z 1.

We claim that
1 1

+
v3b+1 /3b,+1

This inequality is equivalent to

1
= —.
2

1 b 1
——t\ ===
J3b+1 \b+3°2
Making the substitution
= f<e<l
v3b+1 27 7

the inequality becomes

1—t2
>1—t.
J1+8t2

t(1—t)(1—2t)*>0,

By squaring, we get

which is clearly true. Similarly, we have

11
V3c+1 /3¢ +1

1
=7
2
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where
c¢g=1/c, ¢ =1.

Using these inequalities, it suffices to show that
1 1 1 1
— =2 + ,
V3a+1 2 /3b;+1 4/3¢;+1

which is equivalent to

1 1 1 1
—+ -2 + :
V3bic;+1 2 /3b;+1 /3¢ +1

According to P 2.88 in Volume 2, the conclusion follows. The equality holds for
a=b=c=1.

]

P 1.166. If a, b, c are positive real numbers such that
a=>1>b=>c, abc=1,

then
1 1 1 1

+ + > -
a?+4ab+b? b2+4bc+c?2 c2+4ca+a? 2
(Vasile C., 2015)

Solution. Write the inequality as
2E > F,
where
E= Z:(a2 +4ab + b*)(a®* +4ac+c?), F= l_[(b2 + 4bc +c?).
Using Lemma below for k =4 and r = 1, we get
E=18pr+p*—3¢*=18p+p* — 34>

F =27r*+2p°r + p?q* + 2¢®> = 27 + 2p° + p%¢* + 2¢°,

hence
2E—F = 2p*—2p3 +36p — 27 — (p* + 6)q* — 2¢°.

From (a—1)(b—1)(c—1) > 0, we get

p=q.
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Thus,

2F —F > 2p* — 2p® + 36p — 27 — (p* + 6)p* — 2p°
=p*—4p>—6p*+36p—27=(p—1)(p—3)*(p +3) > 0.

Thus, the proof is completed. The equality holds fora=b=c=1.
Lemma. If a, b, c are real numbers,

p=a+b+c, q=ab+bc+ca, r=abc

and
E= Z:(a2 +kab + b*)(a®* + kac +c?), F= l_[(b2 + kbc +c?),
then
E=(k—1)(k+2)pr +p*+ (k—4)p>q + (5—2k)q>,
F=(k—1Pr*+[(k—2)p*+ (k—1)(k—4)q]pr + p*q* + (k—2)q>.
Proof. Let
x=a*+b*+c*=p*—2q.

Since

E= Z(x + kab —c?)(x + kac — b?)

=x?+kxq+ (k—1)(k +2)pr + q*

and

F = l_[(x + kbc —a?)
=x[(k—1)(k+2)pr+q*]1+(k—1)*r*—k[kp*—3(k—1)q]lpr + kq>,

the conclusion follows.

P 1.167. Let a> 1> b > ¢ > 0 such that
a+b+c=3, ab+bc+ca=q,
where q € [0,3] is a fixed number. Prove that the product r = abc is maximal for

b = ¢, and minimal for b =1 or ¢ =0.
(Vasile C., 2015)
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Solution. For q = 3, from (a + b +¢)?> = 3(ab + bc + ca), which is equivalent to
(a—b)+(b—c)*+(c—a)*=0,

we get a = b = ¢ = 1. Consider further that g € [0,3), whena > 1> b >c¢ > 0.
We will show first that ¢ € [¢;, ¢,], where

1—4/3—q, 2<q<3

0, 0<qg=<2

%=1—M1—%

(a—1)(b—1) <0,

C1:

and

From

which is equivalent to
ab—(a+b)+1<0, gq—(a+b)(c+1)+1<0, g—B—c)c+1)+1<0,

we get

c2—2c+q—2<0,
hence ¢ > 1—4/3—q. In the case 2 < q < 3, when 1 —4/3—q > 0, the equality
¢ =1—4/3—q is possible because it implies

b=1, a=1++/3—q=>1.

In the case 0 < q < 2, the equality ¢ = 0 is possible because it implies a + b = 3
and ab = g, hence

3+4/9—4 3—4v/9—4
az—qu, b:—qe[O,l].
2 2
In conclusion, we have ¢ > ¢, in all cases, with equality for b = 1 or ¢ = 0. Also,
from

(b—c)a—c)=c*—2c(a+b)+q=c*—2c(3—c)+q=3c*—6c+q >0,
we get ¢ < ¢,, with equality for b = c. On the other hand, from
abc=c[g—(a+b)c]=c[q—(83—c)c],
we get
r(c)=c*—3c*+qc.
Since
r'(c)=3c*—6c+q=3c*—2(a+b+c)c+q=(c—a)(c—b)>0,

r(c) is strictly increasing on [c,,¢,], and hence r(c) is minimal for ¢ = ¢;, when
b =1 or c =0, and is maximal for ¢ = ¢,, when b = c.
OJ
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P 1.168. Let p and q be fixed real numbers such that there exist three real numbers
a, b, ¢ satisfying

a>1>b>c>0, a+b+c=p, ab+bc+ca=q.
Prove that
(a) the product r = abc is maximal for b = c;
(b) the product r = abc is minimal fora=1or b=1orc=0.

(Vasile C., 2015)

Solution. (a) According to P 3.57 in Volume 1, under the weaker condition a >
b>c>0instead ofa>1>b > c > 0, the product r = abc is maximal for b =c,

when
qoPt2vpi—3q . P—vpP—3q
3 ’ 3 '
Thus, it suffices to show that
P+2vp2—3q 1> P~ v P*>—3q
3 - 3 )

The left inequality is true if

4(p*—3q) = (3—p)%,

which is equivalent to
(p+1)*>4(qg+1);

indeed,
(p+1)¥—4(qg+1)=(b—c)*+(a—1)(a+3—2b—2c)>0.
The right inequality is equivalent to
Vp*—3q=p-3.
This is true if p*> —3q > (p — 3)* for p > 3; indeed,

p*>—3q—(p—3)?
3

=2p—q—3
=(a—=1)(1-b)+(1—c)a+b-2)
=(a—1A-b)+1-9)[(1-c)+(p—3)]=0.

(b) We will show that abc is minimal fora =1or b =1if p < g+ 1, and for
c=0ifp>q+1.

Case 1: p <q+1. From

(a—1)(b—1)(c—1)=>0,
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we get
abc>ab+bc+ca—a—b—c+1=q—p+1=>0,

with equality for a =1 or b = 1. If one of a, b is 1, then the other two of a, b, c are

p—1++vD p—1—+D
_— C=——
2 ’ 2 ’

where

D=(p+1)—4(g+1)
=(b—-c)+(a—1)a+3—2b—2c)>0.

We only need to show that ¢ > 0, which is equivalent to
p—1=> VD,

p<q+1.

Case 2: p > q+ 1. We will show that abc is minimal for ¢ = 0. For this, we only
need to prove that there exist two real numbers a and b such that

a>1>b>0, a+b=p, ab=q.

Since
P—VP*—4q

2 J

Lo Pt VP4
2 3

b=

where
p*—4q>(q+1)—49=(q—1)*=>0,

the inequality a > 1 is equivalent to

Vp?—49=2—p,

while the inequality b < 1 is equivalent to

Vp2—4q=p—2.

These inequalities are true if
p*—4q9=(p—2),

which reduces to p > g + 1.
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P 1.169. Let p and q be fixed real numbers such that there exist three real numbers
a, b, ¢ satisfying

a=b>c>1, a+b+c=p, ab+bc+ca=q.

Prove that
(a) the product r = abc is maximal for b = c;

(b) the product r = abc is minimal fora =b or c = 1.
(Vasile C., 2015)
Solution. From a > b > ¢ > 1, it follows that
p=a+b+c=>3.

(a) According to P 3.57 in Volume 1, under the weaker conditiona > b >c¢ >0
instead of a > b > ¢ > 1, the product r = abc is maximal for b = ¢, when

a:p+2\/p2—3q b:C:p—\/pz—Bq
3 ’ 3 '
Thus, it suffices to show that
P—Vp*—3q 1
3 = L

which is equivalent to
p—32+/p2=3q,
(p—3)*>p®—3q,
q+3=2p.
We have

g+3—2p=(a—1)(b—1)+(b—1)(c—1)+(c—1)(a—1)=>1.
(b) We will show that abc is minimal fora = b if p+1 < 24/q+1, and for

c=1lifp+1>24/q+1.

Case 1: p+1 < 24/q+1. According to P 2.53 in Volume 1, under the weaker
condition a > b > c instead of a > b > ¢ > 1, the product r = abc is minimal for

a = b, when
_p++vp?—3q C_p—2 p*—3q
3 ’ '

a=>b

Thus, it suffices to show that
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which is equivalent to

p—3>24/p2—3q,
(p—3)*=4(p*—39),
(p+1)<4(q+1),
p+1<24/q+1.

Case 2: p+1>24/q+1. From
(a—1)(b—1)(c—1)=0,

we get
abc>ab+bc+ca—a—b—c+1=q—p+1=0,
with equality for ¢ = 1. In addition, ¢ = 1 involves
a_p—1+1/5 b_p—l—\/ﬁ
- 2 > _Tﬁ

where
D=(p+1)*—4(qg+1)=0.

To end the proof, it suffices to show that
IHT—‘/B 1

which is equivalent to
p—3= \/5,

(p—3Y=(p+1)—4(q+1),
qg+3=2p,
(@a=1)(b—=1)+(b—1)(c—1)+(c—1)a—1)= 0.

P 1.170. Leta> b > 1> ¢ = 0 such that
a+b+c=3, ab+bc+ca=q,
where q € [0,3] is a fixed number. Prove that the product r = abc is maximal for

b =1, and minimal for a=b or ¢ = 0.
(Vasile C., 2015)
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Solution. From ;
ab+bc+ca< §(a+b+c)2=3

and
g—3=ab+(a+b)c—a—b—c=(@—1)(b—1)+(a+b—1)c—1=>—1,

it follows that 2 < q < 3. Since g = 2 involves b =1 and ¢ = 0, and q = 3 involves
a = b =c =1, we consider further that ¢ € (2,3), whena>b >1>c¢ > 0. We
will show first that ¢ € [¢;, ¢, ], where

1-24/1—¢q/3, 9/4<q<3

‘=] o, 2<q<9/4
and
¢, =1—4/3—q.
From

(a—b)*=(a+b)*—4ab=(a+b)*+4c(a+b)—4q
=(3—c)*+4c(3—c)—4q=—3c*+6c+9—4q,

it follows that
3c?—6c+49—9<0,

hence ¢ > 1—24/1—q/3. In the case 9/4 < q < 3, when 1 —24/1—q/3 > 0, the
equality c =1 —24/1—q/3 is possible because it implies

a=b=1+4+4/1-q/3>1.

In the case 2 < g < 9/4, the equality ¢ = 0 is possible because it implies a + b = 3
and ab = g, hence

:3+M b_3—m>1
2 ’ N 2 ’

a

In conclusion, we have ¢ > ¢; in all cases, with equality for a = b or ¢ = 0. Also,
from
(a—1)(b—1)=0,

which is equivalent to
ab—(a+b)+1>0, gq—(a+Db)(c+1)+1=>20, gq—B—c)(c+1)+1=>0,

we get
c?—2c+q—2>0,
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hence ¢ < c,, with equality for b = 1. On the other hand, from
abc=c[g—(a+b)c]=c[q—(83—c)c],
we get
r(c)=c*—3c*+qc.

Since
r'(c)=3c2—6c+q=3c>—2(a+b+c)c+q=(c—a)(c—b)>0,

r(c) is strictly increasing on [c;,c,], and hence r(c) is minimal for ¢ = ¢;, when
a = b or c =0, and is maximal for ¢ = ¢,, when b = 1.
L]

P 1.171. Let p and q be fixed real numbers such that there exist three real numbers
a, b, c satisfying

a>b>1>¢>0, a+b+c=p, ab+bc+ca=q.

Prove that
(a) the product r = abc is maximal for b=1orc=1;
(b) the product r = abc is minimal for a = b or ¢ = 0.

(Vasile C., 2015)

Solution. (a) From
(a—1)(b—1)(c—1)<0,
we get
abc<q—p+1,

with equality for b =1 or ¢ = 1. If one of b, c is 1, then the other two of a, b, ¢ are

a=x-=

p—1++D _p—l—\/ﬁ
2 > .y_ 2 5
where

D=(p+1)*—4(qg+1).
Notice that
D=(a—b)*+(1—c)2a+2b—c—3)>0,

x=1,
xy=q—p+1=(a—1)(b—1)+c(a+b—1)=>0, y=>0.
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The inequality x > 1 is equivalent to /D > 3 — p, which is true if p < 3 involves
D> (3—p)

Indeed,

=(b—1)(1—c)+(a—1)2—b—c)
=(b-1)1-c)+(@a—1D[(a—1)+(B—=p)]=>0.

Also, we have y <1forp<3orp=>(q+3)/2,andy >1for3<p<(q+3)/2.
Therefore, there is a unique point (a, b, ¢) such that the product r = abc is maximal:

p—1++D 1 p—l—\/ﬁ)

(a,b,c)= (

2 T
+3
forZSpSBOIquT;
144D p—1—+D
(a’b’c): p +J_’p J_)]'
2 2
+3
forSSquT.

(b) According to P 3.57 in Volume 1, under the weaker conditiona > b > ¢ >0
instead of a > b > 1> ¢ > 0, the product r = abc is minimal for a = b (if p?> < 4q)
or ¢ = 0 (if p% > 4q).

For a = b, we have

a=>b

_p++vp*—3q C_p—2 p*—3q
3 T 3 '

Thus, it suffices to show that

p+VP2—3q>1
3 -

_ 2

p—2 3p 3q51.

The first inequality holds if p < 3 involves

(p*—3¢9) = (3—p),

that is
2p—q—3=0.
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We have

2p—q—3=2(a+b)—ab—3—(a+b—2)
1
22(a+b)—Z(a+b)2—3—(a+b—2)c

_ (a+b—2)(6—a—b)—4(a+b—2)c
4
_ (a+b—2)(6—a—Db—4c)
4
_ (a+b—-2)(3—p)+3(1—c)]
4

= 0.

The second inequalities holds if p > 3 implies
4(p*—39) = (p—3)%
which is equivalent to the obvious inequality
(a—b)?+(1—c)2a+2b—c—3)>0.

For ¢ = 0, we have

Lo Pt VPi—4q _P—+VP*—4
2 b

Thus, it suffices to show that

P—VpP—4q .
2 = b

that is
p—2>=4/p%2—4q.

Sincep—2=(a—1)+(b—1)+c >0, we only need to show that

(p—2)*=p*—4q,

which is equivalent to
q+1—p=0,

(a—1)(b—1)+(a+b—1)c=0.
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P 1.172. Let p and q be fixed real numbers such that there exist three real numbers
a, b, ¢ satisfying

1>a>b>c>0, a+b+c=p, ab+bc+ca=q.

Prove that
(a) the product r = abc is maximal for b=cora=1;
(b) the product r = abc is minimal for a = b or ¢ = 0.

(Vasile C., 2015)

Solution. We have p < 3 because
p—3=(a—1)+(b—-1)+(c—1)<0.

(a) We will show that abc is maximal for b =c if p+1 < 24/g+1, and for
a=1lifp+1>24/q+1.

Case 1: p+1 < 24/q+ 1. According to P 3.57 in Volume 1, under the weaker

conditiona > b > c > O instead of 1 > a > b > ¢ > 0, the product r = abc is
maximal for b = c, when

qoPt2vpi—3q . P—vpP—3q
3 ’ 3 '
Thus, it suffices to show that
P—Vp*—3q
—— >0
3
and
p+ZVP2—3q<1
3 <1.

The first inequality is clearly true, and the second inequality is equivalent to

3—p=>24p>—3q,

(3—p)* = 4(p*—3q),
(p+17<4(qg+1),

pt+1<24q+1.

Case 2: p+1>24/q+1. From
(a—1)(b—1)(c—1)=0,

we get
abc>ab+bc+ca—a—b—c+1=q—p+1=>0,
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with equality for a = 1. In addition, a = 1 involves

b_p—1+\/5 C_p—l—\/ﬁ
- 2 b _T)

where
D=(p+1)*—4(qg+1)>0.

To end the proof, it suffices to show that

p—1—+/D >0
2
and
p—1+vD _,
2
Write the first inequality as
p—1=+VD.

Since
p=—1+24y/q+1=>2-1+2=1,

the inequality is equivalent to
(p—1)=D,

1-p+q=0,
(1—a)(1—0b)(1—c)+abc=>0.

Write the second inequality as
3—p=>=+D,

(3—p)*=D,
q+3=2p,
(1—a)(1=b)+(1—=b)(1—c)+(1—c)(1—a)=>0.

(b) We will show that abc is minimal for a = b if p? < 4q, and for ¢ = 0 if
2
p* = 4q.

Case 1: p? < 4q. According to P 2.53 in Volume 1, under the weaker condition
a=>b=>cinstead of 1 >a>b > c >0, the product r = abc is minimal for a = b,

when
_p++vp?—3q C_p—2 p*—3q
3 ’ '

a=>b =
3

Thus, it suffices to show that

p—2vP2—3q>0
2 >
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and
PHVPE=34
3 <1.
Write the first inequality as
p=2+/p*—3q,
p* = 4(p*—3q),
p? < 4q.

Write now the second inequality as

3—p=+p?—3q,

(3—p)*=p*—3q,
q+3=2p,
1—-a)A-b)+(1A-=-b)(1—c)+(1—c)(A—a)=0.
Case 1: p* > 4q. From
0<p’—4qg=(a—b)y’—cla+b—c)<(a—b)Y—c*=(a—b—c)la—b+c),

we get a > b + ¢, hence
p=a+b+c<2a<2.

For ¢ = 0, we have

JPtvPi—4e | p—vpim4q
2 > 2 b .
Since p — 4/p? —4q = 0, we only need to show that
pP+vpi—4q
2 — 4
which is equivalent to
2_p2 Vp2_4 5
(2—p)* 2 p*—4q,
1-p+q=0,

(1—a)(1—0b)(1—c)+abc=>0.
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P1.173. Ifa>12> b >c > 0such that a+ b+ c = 3, then

9

abc+ — >
ab+ bc+ca

(Vasile C., 2015)

Solution. Let
q=ab+ bc+ca.

First Solution. According to P 1.167, for fixed q, the product abc is minimal when
b =1 or c = 0. Therefore, it suffices to consider these cases. If b =1, then a+c = 2,
and the inequality becomes

ac+ >4,

2+4ac
(ac—1)*>>0.

For ¢ = 0, we need to show that a + b = 3 involves 4ab < 9. Indeed,
4ab < (a+b)*=0.
The equality holds fora=b =c=1.
Second Solution. From (a—1)(b—1)(c—1) > 0, we get
abc > q—2.
Therefore,

—3)2
abet —2— 43 q-2+2-4=11"3)
ab+ bc+ca q q

> 0.

P 1.174. Ifa>1> b > c > 0 such that a + b + ¢ = 3, then

2 S5

abc + > .
ab+bc+ca  a?+b2+c2

(Vasile C., 2015)
Solution. Let
q=ab+bc+ca, ¢q<3.

First Solution. According to P 1.167, for fixed q, the product abc is minimal when
b = 1 or ¢ = 0. Therefore, it suffices to consider these cases. For b = 1, when
a + c = 2, the inequality becomes

2 5
= )
24+ac 5—2ac

ac+
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ac(l1—ac)(1+2ac)>0.

The last inequality is true since
4 =(a+c)* > 4ac.

For ¢ = 0, we need to show that a + b = 3 involves

S

2
R —
ab ™~ 9—2ab

that is ab < 2. Indeed,
ab—2=ab—a—b+1=(a—1)(b—1)<0.
The equality holds fora =b=c =1, and also fora =2, b =1 and ¢ =0.

Second Solution. Write the inequality as

2 5
abc+ - > )
q 9—2q

Case 1: g < 2. We have

2 5 2 5 -2
abc+———2—— == 9(q ) ZO.
q 9—-2¢ q 9—2q q(9—2q)

Case 2: 2<q<3.From (a—1)(b—1)(c—1) >0, we get

abc>q—2,
hence
2 5 2 5 3— —2)(2g —3
abe+2——> _>q—24+2_ _ B=9)(g—2)(2q )20'
qg 9—2q q 9—2q q(9—2q)

P 1.175. Ifa=b>1>c > 0such that a+ b+ c =3, then

+2>2 —MmM8M.
abc ab+ bc+ca

(Vasile C., 2015)
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Solution. Let
q=ab+ bc+ca.

First Solution. According to P 1.170, for fixed q, the product abc is maximal for
b = 1. Therefore, it suffices to consider the case b = 1, when a + ¢ = 2, and the

inequality becomes

1 9

—+2> ,
ac 24+ ac
(ac—1)*>0.

The equality holds fora=b=c=1.
Second Solution. From (a—1)(b—1)(c—1) <0, we get
abc<q—2, q>2.

Thus, it suffices to show that

1
L 422
q—2 q
which is equivalent to
(@—3)*=0

P 1.176. Ifa>b>1>c > 0such that a+ b+ c =3, then

1 1 1
—+ =+ -+11=4(a*+b*+?).
a b c

Solution. Let
q=ab+ bc+ca.

First Solution. Write the inequality as

4 4 8q>25.
abc

(Vasile C., 2015)

According to P 1.170, for fixed g, the product abc is maximal when b = 1. There-
fore, it suffices to consider the case b = 1, when a + ¢ = 2, and the inequality

becomes
L +4ac = 4,
ac
(2ac—1)*>>0.
The equality holds fora =1+ i, b=landa=1- i
V2 V2
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Second Solution. From (a—1)(b—1)(c—1) <0, we get
abc<q—2, q>2.

Thus, it suffices to show that

9 111> 409-29),
qg—2

which is equivalent to
(2g—5)*>>0.

P1.177. Ifa=b>12>c > 0such that a+ b+ c =3, then

1 2 5
+ = .
abc a2+ b2+4+c2" ab+bc+ca

(Vasile C., 2015)

Solution. Let
q=ab+ bc+ca.

First Solution. According to P 1.170, for fixed q, the product abc is maximal
when b = 1. Therefore, it suffices to consider the case b = 1, when the inequality
becomes

+ = s
ac 5—2ac 2+ac
(ac—1)*>0.

1 2 5
>

The equality holds fora=b =c=1.
Second Solution. From (a —1)(b—1)(c —1) <0, we get
abc<q—2, q>2.

Thus, it suffices to show that

Y
Q| u

+
q—2 9—2q

which is equivalent to
(g—3)*>0.
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P1.178. Ifa>=b>12>c > 0such that a+ b+ c =3, then

9 15
——t+t2 ——7—.
a®+ b3 +¢3 a?+ b2 +c?

(Vasile C., 2015)

Solution. Write the inequality as

3 15
— - 42< )
abc+9—3q 9—2q
where
q =ab + bc +ca.
From
3g<(a+b+c)*=9
and

g=0—-a)1-b)A—c)+abc—1+a+b+c=>—-1+a+b+c=2,
it follows that
2<q<3.
First Solution. Consider the following two cases.

Case 1: 2 < q <9/4. Since abc > 0, it suffices to prove that

1 15
—+2< ,
3—q 9—2q

which is equivalent to the obvious inequality
(49—9)(q—2)<0.
Case 2: 9/4 < q < 3. By Schur’s inequality of third degree
(a+b+c)®+9abc>4(a+Db+c)ab+ bc+ca),

we get
3abc > 4q—9.
Therefore, it suffices to show that

9 15
+2< ——
49—9+3(9—3q) 9—2q

b

which is equivalent to
22 >
18 —5¢q 9—2q
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4q*> —21q+27 <0,

(q—3)(4g—9)<0.
The equality holds fora = b =c =1, fora = b = 3/2 and ¢ = 0, and also for
a=2,b=1andc=0.
Second Solution. According to P 1.170, for fixed g, the product abc is minimal
when a = b or ¢ = 0. Therefore, it suffices to consider these cases.

Case 1: a = b €[1,3/2]. The desired inequality is equivalent to

9 15
+2< .
2a3+(3—2a)3 2a2+ (3 —2a)?

(a—1)*(3—2a)(9a—2a*—3) >0,

which is true since
9a—2a*—3>3(8a—a*—2)=3(a—1)(2—a)>0.
Case 2: ¢ =0. We have 2 < q < 9/4, because

1 9
=ab<=(a+b)*=">.
q=a 4(a ) 2

The desired inequality is equivalent to

1 15
—42< ,
3—q 9—2q

(49—9)(g—2)<0.

Clearly, the last inequality is true.

P 1.179. Ifa>b > 12> c > 0 such that a+ b + ¢ = 3, then

36 65
49—
a3+ b3 +¢3 a2+ b2 + c2
(Vasile C., 2015)

Solution. Write the inequality as

12 65

—+9< ———,
abc+9—3q 9—2q
where
q=ab+ bc+ca.
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From
3g<(a+b+c)=9

and
g=(1—-a)1-b)(A1—c)+abc—14+a+b+c=>—-1+a+b+c=2,

it follows that
2<q<3.

First Solution. Consider the following two cases.
Case 1: 2 < q <7/3. Since abc > 0, it suffices to prove that
4 65
=< )
3—q 9—2q

which is equivalent to the obvious inequality
(3¢—7)g—2)<0.
Case 2: 7/3 < q < 3. By Schur’s inequality of third degree
(a+b+c)®+9abc>4(a+b+c)ab+ bc+ca),

we get
3abc > 4q —9.

Therefore, it suffices to show that

36 65
+9< ————,
49—9+3(9—3q) 9—2¢q

which is equivalent to
198 —45¢q < 65

18—5¢ ~ 9—2q
We will prove the sharper inequality

200-459 _ 65
18—5¢ ~ 9—2¢°

which is equivalent to

40—9q < 13
18—5q ~ 9—2q’
(@—3)(Bg—7)<0.
The last inequality is clearly true. The equality holds fora=2, b =1 and ¢ =0.

Second Solution. According to the preceding P 1.178, it suffices to show that

4(1—5_2)+9<6—5
a2+ b2 + c2 T a2+ b24c?’
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which is equivalent to
a’+b*+c*>5,

ab+ bc+ca>2.

P1.180.If a=b>c>0 and ab+ bc+ca=2, then

vVa+ab+vb+bc++/c+ca>3.

(KaiRain, 2020)

Proof. Consider the main case a > b > ¢ and show that

vVa+ab+vVb+bc+vc+ca>3.

For ¢ = 0, we need to show that ab = 2 involves

va+ab++vVb=>3,

that is

2
Jaxa+\ 223,
a

) [a
Denoting x = > we need to show that

1
V2x24+2>3——.
X

This is true if )
1
2(x%+1)> (3— —)
x
for x > 1/3, which is equivalent to the obvious inequality
(x —1)*(2x*+4x—1) > 0.

Using this result, it suffices to show that

\/a+ab+\/b+bc+x/c+ca2\/a+2+\lé,
a

that is equivalent to

Ve+tca>va+2— a+ab+\l§—vb+bc,
a
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2—ab N 2—ab—abc
Ja+2++va+ab v2a+avb+bc

c(a+b) N c(a+b—ab)
Ja+2+va+ab +2a+avb+bc

vc+ca>

vc+ca>

So, we need to show that

- vc(a+b) N vc(a+b—ab)
“ Va+2++Va+tab +V2a+avb+bc

We get this inequality by summing the inequalities

v1+a> Jvc(a+b) 1/1+a> Jvc(a+b—ab)
2 " Ja+2++va+ab 2~ V2a+avb+bc

2
From ab + bc + ca = 2, it follows 3 <ab<2and b < v/2. Since

va+ab<+va+2

and

a\/ESJZ_a, a\/ESavb+bc,

it suffice to prove the inequalities

Jvc(a+b) Jvec(a+b—ab)
v1+a2—m, vi+a> T3 .

By squaring, the first inequality becomes
a(l+a)(1+b)>c(a+b)?,

a(l1+a)(1+b)=(a+b)(2—ab).

Since 2a > a + b, it suffices to show that
(1+a)(1+Db)=2(2—ab),

that is
a+b+3ab>3.

Indeed, we have

2
a+b+3ab22\/ab+3ab22\l;+2>3.

Since v'b > /¢, the second inequality is true if

avl+a=a+b—ab,
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that is

a(vl+a—1)=b(1—a).
For the nontrivial case a < 1, it suffices to show that
a(vl+a—1)=a(l—a),

that is

vi+a+a=2.

Since 3a? > ab + bc + ca = 2, we have

v1+a+a>\1+ \li>2

The inequality is an equality fora =2, b =

Remark. The following sharper inequality holds in the same conditions:

Va+ab+Vb+/c>3,

with equality fora=2,b=1,c=0.
For fixed b, according to the relation ab + bc + ca = 2, we may consider that a
is a function of c. Differentiating this equation, we get

,_atb
~ b+c’
o = (a+b+(b—c)a’ (a+Db)a—Db+2c)
B (a+c)? B (a+c¢)3

Write the required inequality as f(c) > 0, where

f(e)=va+ab+Vb++/c—3, c<[0,b].

We have
, av1l+b 1
fe —+ ,
f'(e) WG /e
ue ~_ (2aa”—(a))V1+b 1
fe= 4a3/?  4c3/2

_ (a+b)(@®+3ac—3ab—bc)vi+b 1

B 4a3/2(a +c)3 4c3/2°
Since

a®+3ac—3ab—bc=a*—3a(b—c)—bc < d?,
we have

(a+b)y/a(l1+b) 1

4(a+c)? 4¢3

)<
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From b%? < ab <ab+ bc+ca=2, we get b < v2, V1+b < 4, hence

f7()

(a+b)yva 1 Jay’ 1
< (a+c)3 _403/232(a+c) _4(\/3)330

Since f is concave and 0 < ¢ < b, it is enough to show that f(0) > 0 (for c = 0 and
ab=2) and f(b) > 0 (for c = b and 2ab + b* = 2). We have

242b . (=Vb)2+4vb-b)
b +v/b 3_\/b(2+2b)—b«/5+3b20

f(0)=

2
For ¢ = b, when 2 = 2ab + b? > 3b?, hence b < \/;, we have

(1+Db)(2—b2) A
b = b— =
f(b) \J 2b +2vb -3 V2b(1+b)(2—b2)—4bVb +6b

2
where, for x = vb < q/;< 1,

A=(1+x?)2—xMN—2x*(3—2x)* = (1 —x)(2+ 2x — 14x% + 10x> + x* + x°).
Since
24+2x —14x* +10x3 + x* + x> =2—13x% + 13x3 + (1 — x)*x(2 + 3x + x?)

13x®  13x2
+
2

13x3 13x3 16
23\]2-—x B g =312 15250,
2 2 2

we have A> 0, hence f(b) > 0.

>2413x—13x2=2+ —13x?

P 1.181. If a = b = ¢ are nonnegative numbers such that ab + bc+ca =3, then

va+2ab+ Vb +2bc+vc+2ca > 4.
(Vasile C., 2020)

Proof. We will prove the sharper inequality

va+2ab++b+bc++c+tca >4.
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For ¢ = 0, we need to show that ab = 3 involves

va+2ab+ vV b=>4,

3
a+6+ \|—=4.
Ja

It is easy to show that this inequality is true for all a > 0. Using this result, it suffices
to show that

that is

3
vVa+2ab++vVb+bc+vctca>Va+6+ -,
Ja

that is equivalent to

Ve+ca> \/a+6—\/a+2ab+\l§—\/b+bc,
a

2(3—ab N 3—ab—abc
va+6++Va+2ab +3a+avb+bc

2c(a+b) N c(a+b—ab)
Va+6++va+2ab +3a+avb+bc

c+ca>

c+ca=>

So, we need to show that

2y/c(a+b) vc(a+b—ab)
v1 > .
ta va+6++va+2ab +3a+avb+bc

We get this inequality by summing the inequalities

24/c(a+b)

S vc(a+b—ab)

kvl+a> 5 1—-k)V1+a> 5
vVa+6++a+2ab ( ) v3a+av'b+ bc
where
k=12
3

From ab + bc + ca = 3, it follows 1 < ab < 3 and b < +/3. Since

va+2ab < \/a+6,

the first inequality is true if

that is
2a(1+a)(1+2b) > 3c(a+ b)?,
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2a(1+a)(1+2b)>3(3—ab)(a+ b).

Since 2a > a + b, it suffices to show that
(1+a)(1+2b)=>3(3—ab),

that is
(5b+1)a+2b>8.
For a > b > 1, this inequality is obvious. For 0 < b < 1, from
_3—ab
~a+b

we get
3—b?

az=
2b

Therefore,
(5b+1)(3—b?)

(5b+1)a+2b—8> b +2b
_ 3—b+3b*—5b> (1—Db)(3+2b+5b%) -0
B 2b B 2b -

1
Since 1 —k > e the second inequality is true if

44/c(a+ b—ab)
vi+a> s
v3a+avb+bc

Consider the nontrivial case a+b—ab > 0, and claim that +/3a > a+' b + bc, which
is equivalent to 3 > ab + abc. Indeed, we have

ab(3—ab) (3—ab)(a+b—ab) >0

3—ab—abc=3—ab— =
a ape a a+b a+b

Thus, it suffices to show that

JTa> 21/E(a+b—ab)'

av'b+ bc

Since

a+b—ab

- <1,

a
it suffices to show that
Vitaza2\—
b(1+¢)

that is
b(1+a)(1+c)>4c.
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Since ab > 1, we have
b(l1+a)=b+1>c+1,

therefore,
b(1+a)(1+c)—4c=>(1+c)—4c=(1—-c)*=0.

The inequality is an equality fora=3,b=1,c=0.

P 1.182. If a, b, c are nonnegative real numbers such that ab + bc + ca = 3, then

vVa+3b++vb+3c+Vc+3a>6.

Solution. Use the substitution

va+3b=2x, Vb+3c=2y, +c+3a=2z,

which yields

x2—3y?%+ 932 y? —322 + 9x? 22 —3x2+9y?

a= 3 a= ) a= )
7 7 7
—3 4 4 4 10 2,,2 2.2 2.,.2

ab+ b+ cq — (x*+y*+2M)+ 7(xy +y°z +zx).

So, we need to show that
xX+y+z=>3

for
3(x*+ y*+2H) + 21 = 10(x%y? + y22% + 22x?).

By the contradiction method, we need to prove that

x+y+z<3

involves
3(x*+ y*+2Y) + 21 > 10(x%y? + y22% + 22x2).

It suffices to prove the homogeneous inequality f (x, y,z) = 0, where
flx,y,2)=81(x*+y* +2) + 7(x + y +2)* —270(x%y? + y?2% + 22x?).

According to P 3.68 from Volume 1, it is enough to show that f(0, y,z) > 0 and
f(x,1,1) >0 for x, y,z = 0. We have

£(0,y,2) =81(y*+2") + 7(y +2)* — 270y2z>

> 162y%2% + 112y%2* — 270y%2*> = 4y?22 > 0
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and
f(x,1,1) =81(x*+2) + 7(x + 2)* — 540x? = 4(22x* + 14x> — 93x* + 56x + 1)

=(x—1)*(22x*>+58x+1)>0.

The equality occurs fora=b =c=1.

P 1.183. If a, b, c are the lengths of the sides of a triangle, then
(a b c) (b c a)
10 =+—+—]>9=+—+—].
b ¢ a a b c

Solution. According to Remark 2 from the proof of P 1.149, it suffices to show that
P(1,1,1)>0and P(b+c,b,c) = 0 for b,c > 0, where

P(a,b,c) =10(ab?®+ bc? + ca*) —9(a®b + b*c + c?a).
We have P(1,1,1) =3 >0 and
P(b+c,b,c)=b*>—7b% +12bc* +c>.

We need to show that
x3P—=7x*+12x+1>0,

where x = b/c, x > 0. For x € (0,3]U[4, c0), we have
P —T7x*+12x +1>x3—7x*+12x =x(3—x)(4—x) > 0.
For x € (3,4), we have

2x —7)?
x3—7x2+12x+1>x3—7x2+12x+§=%20.

P 1.184. If a, b, c are the lengths of the sides of a triangle, then

a 4 b + c >
3a+b—c 3b+4+c—a 3c+a—b
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Solution. Write the inequality as follows:
Z ( a 1 ) 1
- 2 -,
3a+b—c 4 4
Z a—b+c 51
3a+b—c
Applying the Cauchy-Schwarz inequality, we get

5 a—b+c [S(a—b+0)] (Za)’

3a+b—c  Dl(a—b+c)Ba+b—c) :Za2+22ab -

The equality holds fora = b =c.

P 1.185. If a, b, c are the lengths of the sides of a triangle, then

a?—b*> b>—c* c?—a?
+ <0.
az+bc b?2+ca c%2+ab

(Vasile C., 2007)
First Solution. Suppose that a = max{a, b,c}. Since
CZ _a2 — _(az _ bz) _(bz _CZ)’

the inequality can be written as follows:

1 1 1 1
2—b2( — )+ H—-Z( — )sq
(a ) az+bc c2+ab ( <) b24+ca c2+4+ab

_(@=ba=c)a=b+c) (B*=c*)(b—c)(b+c—a) <0
a2+ bc a2+ bc -

The equality holds for an equilateral triangle, and also for a degenerate triangle
having a side equal to zero.

Second Solution. The sequences
{a®, b% %

and

{ 1 1 1 }
a?+bc’ b2+ca’ c2+ab
are reversely ordered. Indeed, if a > b > c, then

1 1 1
< < .
a2+ bc  b?2+ca” c2+4+ab
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because
1 1 _(a—b)la+b—c)
b2+ca a2+bc (b2+ca)(a®+bc)”
1 1 (b=c)b+c—a) S

c2+ab b2+ca (c2+ab)(b®+ca)~
Then, by the rearrangement inequality, we have

1 1 1
2 2 2
a“ - +b . +c“- <
az+ bc b2+ ca c2+ab

2 L +c? L +a? —1
a2+ bc b2 +ca c2+ab’
which is the desired inequality.

P 1.186. If a, b, c are the lengths of the sides of a triangle, then
a?(a+b)b—c)+ b (b+c)c—a)+c3(c+a)a—b)=>0.
(Vasile C., 2006)
First Solution. Assume that
a =max{a, b, c},
use the substitution
a=x+p+q, b=x+p, c=x+q, x,p,q =0,

and write the inequality as

a’b? + b%c?+c2a® —abc(a+b+c) > ab® + b +ca® —a®b—b3c—c3a,

a’(b—c)*+b* (c—a)*+c* (a—b)*=>2(a+b+c)a—Db)(b—c)(c—a),

(x+p+q)°(p—q)* + (x +p)’p* + (x +9)*q* = 2(3x +2p +2q)pq(q — p),

which is equivalent to
Ax*+2Bx+C >0,

where
A=p*—pq+q¢*>0,

B=p’+q(p—q)* =0,
C=(p*+pq—¢*)*=0.
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The equality holds for an equilateral triangle, and also for a degenerate triangle

with
b c

a
2 1+45 3+45

(or any cyclic permutation).

Second Solution. Using the substitution

[ca .| ab 1I bc
X = R .y = ) z2= )
b C a

we can write the inequality as follows:
b%c? + c?a? + a?b? > ab(b? + > —a?®) + be(c? + a®> — b?) + ca(a® + b% —¢?),

b b
—C+%+a—22bcosA+2ccosB+2acosC,
a c

x4+ y*+2*> 2yzcosA+ 2zx cosB + 2xy cosC,
(x —ycosC —zcosB)?*+ (ysinC —zsinB)* > 0.

P 1.187. If a, b, ¢ are the lengths of the sides of a triangle, then

a®b + b%c +c2a > y/abc(a+ b + c)(a2 + b2 + ¢2).
(Vasile Cirtoaje and Vo Quoc Ba Can, 2005)

Solution. Without loss of generality, assume that b is between a and c; that is

(b—a)(b—c) <.
First Solution. By the AM-GM inequality, we have

4abc(a+b+c)(a®>+b*+c?) <[ac(a+b+c)+ b(a®+ b*+ )]
Thus, we only need to show that
2(a®b + b%*c +c?a) > ac(a+ b +c) + b(a® + b* + ¢2),
which is equivalent to
bla®?—(b—c)*]—ac(a+b—c) >0,

(a+b—c)(a—b)(b—c)=0.
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The equality holds for an equilateral triangle, and also for a degenerate triangle
with
c=a+b, b =a?*(a+b)

(or any cyclic permutation).

Second Solution. The desired inequality is equivalent to D > 0, where D is the
discriminant of the quadratic function

f(x)=(a*+ b*+c*)x*—2(a®b + b*c + c*a)x + abc(a + b +¢c).

For the sake of contradiction, assume that D < O for some a, b,c. Then, f(x) >0
for all real x. This is not true, because

F(b)=b(b—a)(b—c)a+b—c)<O0.

P 1.188. If a, b, c are the lengths of the sides of a triangle, then

b
az(——1)+b2(5—1)+c2(9—1) >0.
c a b
(Vasile Cirtoaje, Moldova TST, 2006)

First Solution. Using the substitution

1 1
a=—, b=—, c=-,
x Z

1
y
the inequality becomes

E(x,y,2) =0,

where
E(x,y,2) = yz*(z—Yy) +2x*(x —2) + xy*(y — x).

Without loss of generality, assume that
a =min{a, b,c}, x=max{x,y,z}.

We will show that
E(x,y,z) 2 E(y,y,2z) = 0.

We have

E(x,y,2)—E(y,y,2) =2(x* = y*) = 2*(x* = y*) + y* (x — y) = y*(x* = y?)
=(x—y)x—2)(xz+yz—y?*) =0,
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because

2b—c _(b—a)+(a+b—c)>0

xz+yz—y*>y(2z—y)= . To

Also,
E(y,y,Z) = yz(y—z)2 = 0.
The equality holds fora = b =c.

Second Solution. Write the inequality as F(a, b,c) > 0, where
F(a,b,c) =a®b®+ b3c? + c2a® —abc(a® + b* + ¢?).
Since
2E(a,b,c) = (Z a’b® + Z a’*b®— 2abcz az) — (Z a’*b? —Z a3b2)
= (Z a’b* + Z a’c?— 2abcz az) - (Z a*b? —Zazcg)
= Z a’(b—c)*— Z a’(b®—c?)

> la¥(bP =)= a*(b—c),

and

we get

E(a,b,c) = Zag(b —c)? —Zaz(b —c) = Zaz(b —c)*(a—=b+c)=>0.

Third Solution. By the Cauchy-Schwarz inequality, we have

Z a’*b > (Zazb)z

c  Dla?bc
Therefore, it suffices to show that
2
(Z azb) > abc(a+ b +c)(a®+ b*+c?),

which is the inequality from the preceding P 1.187.

P 1.189. If a, b, c are the lengths of the sides of a triangle, then
(@) a®b + b3c+ca > a®b?+ b?c? + c?a?;

(b) 3(a®b + b3c +c3a) > (ab + bc +ca)(a® + b? +c?);

ab+ b3c+¢c3 >(a+b+c)4

© 3 3
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Solution. (a) First Solution. Write the inequality as
a’b(a—b) + b%c(b—c) +c%a(c—a) > 0.

Using the substitution

a=y+z, b=z+x, c=x+y, x,y,2=>0,
the inequality turns into

xy?+yzd +2x° > xyz(x +y +32),

which follows from the Cauchy-Schwarz inequality

(xy*+y22 +2x®)(z+x+y) > xyz(y +z+x)%

The equality holds for an equilateral triangle, and also for a degenerate triangle
with a = 0 and b = ¢ (or any cyclic permutation).

Second Solution. Multiplying by a + b + c, the inequality becomes as follows:

Za4b +ach:a2 > Za2b3 +achab,
Z b*c + ach:a2 > Z b2c® + achab,

b* 5 bc?

—+ > > —+ b,

PREDILED Wb DI
b
2 Z(c2+ g% — b2
Z a® = Z —(c+a ),

a?+ b2+ c?>2bccosB + 2cacosC + 2ab cosA,
(a—bcosA—ccosC)?+ (bsinA—csinC)* > 0.
(b) Write the inequality as
> a?bla—b)+ Y b*a—b)(a—c)>0.

Since >’ a*b(a—b) > 0 (according to the inequality in (a)), it suffices to show that

> b¥a—b)a—c) = 0.
This is a particular case (x =c, y = a, z = b) of the following inequality
(x —=y)x —2z)a’+ (y —2)(y —x)b* + (z —x)(z — y)c* 2 0,
where x, y,z are real numbers. If two of x, y,z are equal, then the inequality is

trivial. Otherwise, assume that x > y > z and write the inequality as

a? c? b?
+ > .
y—2 Xx—Yy Xx—g2
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Applying the Cauchy-Schwarz inequality, we get

a? N c? (a+c)? _(a+c)2> b?
y—z x—y (y—2)+(x—y) x—z2 —x—z

The equality holds for a = b =c.
(c) According to the inequality (b), it suffices to show that

9(ab+ bc+ca)(a®*+b*+c?)>(a+b+c)*.

This is equivalent to
(A—B)(4B—A) >0,

where
A=a*’+b*+c%, B=ab+bc+ca.

Since A > B and

4B —A> 2(ab + bc +ca) —a* — b* —¢?
=a(2b+2c—a)—(b—c)?
>a’—(b—c)?
=(a—b+c)la+b—c)=0.

the conclusion follows. The equality holds for a = b =c.

P 1.190. If a, b, c are the lengths of the sides of a triangle, then

a> b? c? b*> * a®
2(b2+_+a2)>_+ﬁ+_+3

Solution. Write the inequality as follows:

a? b? a?

> ﬁ >3+ E - ﬁ,

RN s

c® a
ZC_ZZZ(”E_E)’

Putting
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we have xyz =1 and

Therefore, we can write the inequality as

x*+ y*+2%> 2yzcosA+ 2zx cosB + 2xy cosC,
which is equivalent to the obvious inequality

(x —ycosC —zcosB)*+ (ysinC —zsinB)* > 0.

The equality occurs fora=b =c.

P 1.191. If a, b, c are the lengths of the sides of a triangle such that a < b < c, then

a? b? c?

a2—b2+ b2—c2+c2—a2 <0.

(Vasile C., 2003)
Solution. Write the inequality as

a? b? c?
+ > .
b2—q2  c2—p2 " c2—q2

Since ¢ < a + b, it suffices to show that

a? N b2 >(a+b)2
bz_az CZ_bZ_ CZ_a2’

which is equivalent to

(1 1 paf 1 1 ). 2ab
T\ a2_g + 2—b2 2—a2) " c2—q2’

a®(c2—=b%) b%3(b2—a?)
b2 _az + 2

2_p ’
2__p2 b2 — q2 2
c2— —a
(a b2—a2_b c2—b2) > 0.

The equality occurs for a degenerate triangle with ¢ = a + b and a = xb, where
x & 0.53209 is the positive root of the equation x> + 3x%—1 = 0.

> 2ab

]
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P 1.192. If a, b, c are the lengths of the sides of a triangle, then

b
24215432
C a

(a+b b+c c+a)
5 }

+ +
b+c c¢c+a a+b

(Manlio Marangelli, 2008)

First Solution. Assume that ¢ = max{a, b,c}. If a < b < c, then the inequality
follows from P 1.157. Consider further that

b<a<c.

Write the inequality as follows:

2122251
zla—w(%+;%z)za

(a—b)( +%)+[(b—a)+(a—c)](i+i)+(c—a)(1+ 2 )zo,

+b a b+c

(a—b)(g+ 2 1 2 )+(c—a)(1 2 1 2 )>O

c+a ¢ a+b b+c ¢ a+b

O e e MO e s el
Since

1 2 c(a—b)+a(a+b) a(a+b) a

be (a +b)a+c)  be(a+b)a+c) ~ bc(a +b)(a+ c) be(a+c)
and
1 2 _ —c(a—b)+Dbla+b) —c(a—b)  —(a—b)

- = > =
ac (a+b)(b+c) ac(a+ b)(b+c) acla+b)b+c) ala+b)b+c)
it suffices to show that

(a=b)c=b)a (c— a)*(a—Db)

bc(a +c¢) a(a+ b)(b+c) — =0,

which is true if
(c—Db)a - (c—a)?

be(a+c)  ala+b)(b+c)
We can get this by multiplying the inequalities

c—b>c—a,
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1_ 1
_2_,
b a
1 1
_2 5
c a+b
a c—a
> .
a+c b+c
The last inequality is true since
a ¢-a_ a _ b cla—Db)

a+c b+c a+c b4+c (a+c)b+c)”

The equality holds for a = b =c.
Second Solution (by Vo Quoc Ba Can). Since

a+b a—c a—c
=>"(1+ )=3+ ,
Z b+c Z( b+c Z b+c
we can write the desired inequality as

I

Since
2
a . ) asc
(ab+bc+ca)(£ E—B)— E a—2 E ab+ E 5
and
a—c
b+c)+b E
= la(b+c)+be] b+c

be(a—c)
—Z — 2t T

the inequality is equivalent to

Za c ZZ bclEc+—Ca) —Zaz-
a’c 5
ZTZ a

(see the inequality in P 1.188), we only need to show that

Zbc(c—a) > 0.
b+c

Write this inequality as follows:

Since

Z be(c?—a®)(a+b) >0,
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b
Z:(c2 —a?) (1 + —) >0,
a
b
Z:(c2 —a*)= =0,
a

ZbTCZ_ ab.

According to P 1.188, we have

ZbTCZZ aZZZab.

P 1.193. Let a, b, c be the lengths of the sides of a triangle. If k > 2, then
akb(a—b)+ b c(b—c)+ cka(c—a) > 0.
(Vasile C., 1986)

Solution (by Darij Grinberg). For k = 2, we get the known inequality (a) in P
1.189:
a’b(a—b) + b%c(b—c) +c%a(c—a) > 0.

We will prove the following more general statement: if f is an increasing nonneg-
ative function defined on [0, o), then

E(a,b,c) =0,
where
E(a,b,c)=a’*bf(a)(a—Db) + b%*cf(b)(b—c)+c*af(c)(c—a).

For f(x) = x*72, k > 2, we get the original inequality. In order to prove the claimed
generalization, assume that a = max{a, b, c}. There are two cases to consider.

Case 1: a>b = c. Since

fl@=f(b)=f(c)=0,

we have

E(a,b,c) > a*bf(c)(a—Db)+ b*cf(c)(b—c)+c*af(c)(c—a)
= f(c)[a®*b(a—b) + b%c(b—c) +c*a(c—a)] = 0.

Case 2: a > c¢ > b. Since

fl@=f(c)=f(b) =0,



280 Vasile Cirtoaje

we have

E(a,b,c)>a’bf(a)(a—Db)+ b*cf(a)(b—c)+c*af(a)(c—a)
= f(a)[a*b(a—Db) + b*c(b—c) +c*a(c—a)] > 0.
The equality holds for a = b = ¢, and also for a degenerate triangle with a = 0 and

b = ¢ (or any cyclic permutation).
O

P 1.194. Let a, b, c be the lengths of the sides of a triangle. If k > 1, then

3(a* b + b* e + ¢ la) > (a + b+ ¢)(a*b + brc + cFa).

Solution. For k =1, the inequality is equivalent to
2(a®b + b*c + c*a) > ab® + bc? + ca® + 3abc,

(2c —a)b*+ (2a* —3ac — c*)b—ac(a—2c) > 0.
Assuming that a = min{a, b, c} and making the substitution

a+c
b=x+ ,
2

this inequality becomes
(2c —a)x? + (x + %Ta) (a—c)*>0.
It is true since
4x +3a=a+4b—2c=2(a+b—c)+(2b—a) > 0.
In order to prove the desired inequality for k > 1, we rewrite it as
akb(2a—b—c)+ b*c(2b—c—a) + cka(2c —a—b) > 0.

We will prove that if f is an increasing nonnegative function defined on [0, c0),
then E(a, b, c) > 0, where

E(a,b,c)=ab(2a—b—c)f(a)+ bc(2b—c—a)f(b)+ca(2c—a—b)f(c).

For f(x) = x*7', k > 1, we get the original inequality. In order to prove this
generalization, assume that a = max{a, b, c}. There are two cases to consider.
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Case 1: a > b > c. Since f(a) = f(b) = f(c) = 0, we have

E(a,b,c)=ab(2a—b—c)f(b)+ bc(2b—c—a)f(b)+ca(2c —a—b)f(c)
= b[2(a—b)(a—c)+ab—c*]f(b)+ca(2c —a—b)f(c)
> b[2(a—b)(a—c)+ab—c?]1f(c)+ca(2c—a—Db)f(c)
=[2(a®b + b%*c +c*a) —ab*— bc? —ca®* —3abc]f(c) > 0.

Case 2: a>c > b. Since f(a) > f(c) = f(b) = 0, we have

E(a,b,c)=ab(2a—b—c)f(c)+bc(2b—c—a)f(b)+ca(2c—a—Db)f(c)
=a[(c—b)(2c—a)+ b(a—b)]f(c)+ bc(2b—c—a)f (b).

Since
(c—=b)2c—a)+bla—Db)=(c—b)(b+c—a)+bla—Db)=0,

we get

E(a,b,c)=a[(c—b)(2c—a)+ b(a—b)]f(b)+ bc(2b—c—a)f(b)
=[2(a®b + b%c + c®a) —ab*— bc* — ca? — 3abc]f (b) > 0.

The equality holds fora =b =c.

Remark. For k = 1, the inequality has the form
(b c a) a b c
2l =+-+=-)=-+—-+-+3.
a b c b ¢ a
A sharper inequality is the following
(b c a) (a b c)
3l=+—+=|=2|-+—=+=|+3.
a c b ¢ a

Using the substitution
a+c

2 b

b=x+

this inequality turns into
c
(3¢ —2a)x? + (x+a—Z)(a—c)2 >0,
which is true since, on the assumption a = min{a, b, c}, we have 3c —2a > 0 and

4x+4a—c=2a+4b—3c=3(a+b—c)+(b—a)>0.
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P 1.195. Let a, b, c,d be positive real numbers such that a+ b+c+d = 4. Prove that

a b c d
+ + + >1.
3+b 3+¢c 3+d 3+a

Solution. By the Cauchy-Schwarz inequality, we have

2
Z a_ (Z a) _ 16
3+b >la(3+b) 12+>.ab
Therefore, it suffices to show that

ab+bc+cd+da<4.

Indeed,

2
ab+bc+cd+da=(a+c)(b+d)§[(a+c)+(b+d)]

2

The equality occurs fora=b=c=d =1.

P 1.196. Let a, b, c,d be positive real numbers such that a+ b+c+d = 4. Prove that

a 4 b 4 c + d >
1+b2 14c¢2 14d2 14a?2

Solution. Since
a ab?

a— )
1+ b2 1+ b2
the inequality is equivalent to
ab? N bc? N cd? N da?
1+b2 1+4c¢2 1+d? 1+a?

Since
ab? ab® ab

140220 2°

it suffices to show that
ab+bc+cd+da<4.

Indeed, we have

2
ab+bc+cd+da=(a+c)(b+d)§[(a+c);(b+d)] =2.

The equality occurs fora=b=c=d = 1.
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P 1.197. If a, b, c,d are nonnegative real numbers such that a+ b+ c +d = 4, then
a*bc + b%*cd + c*da + d?ab < 4.
(Song Yoon Kim, 2006)
Solution. Let (x, y,z,t) be a permutation of (a, b, c,d) such that
xXzy=z2t,

hence
Xyz = xyt=xzt = yzt.

By the rearrangement inequality, we have

a’bc + b%cd + c*’da+d*ab=a-abc+b-bcd+c-cda+d-dab
<x-xyz+y-xyt+gz-xzt+t-yzt
=(xy +zt)(xz + yt).

Consequently; it suffices to show that x + y +z + t = 4 involves
(xy +zt)(xz+ yt) < 4.

Indeed, by the AM-GM inequality, we have
1 2 1 2 2
(xy +zt)(xz+yt) < Z(xy +2t+xz+yt) = Z(X +t)(y+2) <4,

because ;
(x+t)(y+z)£Z(x+t+y+z)2=4.
The equality holds fora=b=c=d=1,and alsofora=2,b=c=1andd =0

(or any cyclic permutation).
O

P 1.198. If a, b, c,d are nonnegative real numbers such that a+ b +c +d =4, then

a(b+c)?+b(c+d)?+c(d+a)’+d(a+b)* < 16.

Solution (by Vo Quoc Ba Can). Write the inequality as
(a+b+c+d)P=>4[a(b+c)+blc+d)?+c(d+a)*+d(a+b)?].

Since
(a+b+c+d)*>4(a+b)c+d),
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we have
(a+b+c+d)P=>4(a+b)c+d)a+b+c+d)
=4(c+d)(a+b)*>+4(a+b)(c+d)>
Therefore, it suffices to show that
(c+d)a+b)?+(a+b)c+d)=a(b+c)>+blc+d)?+c(d+a)+d(a+b)?
which is equivalent to
cla+b)?*+a(c+d)?*=>a(b+c)*+c(d+a)
a[(c+d)*—(b+c)*]+c[(a+b)*—(d+a)*]>0,
(b+d)(b—d)(c—a)=0.
Similarly, due to cyclicity, the desired in equality is true if
(c+a)(c—a)(d—b)=0.

Since one of the inequalities (b —d)(c —a) = 0 and (¢ — a)(d — b) > 0 is true, the
conclusion follows. The equality holds for a =c and b =d.
O

P 1.199. If a, b, c,d are positive real numbers, then
a—b+b—c+c—d+d—a>0
b+c c¢c+d d+a a+b

Solution. We have

a—b c—d a+c a+c
+2= +
b+c d+a b+c d+a

B 1 1
_(a+c)(b—+c+d+a)
4
(b+c)+(d+a)

_ 4a+c)
a+b+c+d

> (a+c)

Similarly,
b—c+d—a+2> 4(b+d)
c+d a+b ~ a+b+c+d

Adding these inequalities yields the desired inequality. The equality holds for a = ¢
and b =d.

Conjecture. If a, b, c,d, e are positive real numbers, then

a—b+b—c+c—d+d—e+e—a>0
b+c c¢+d d+e e+a a+b
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P 1.200. If a, b,c,d are positive real numbers, then

a—>b b—c c—d d—a

(@)

) a b c d

+ + + =
a+2b+c¢c b+2c+d c+2d+a d+2a+b

Solution. (a) Write the inequality as
—b 1
St D)
a+2b+c 2

3a+c
I
a+2b+c

By the Cauchy-Schwarz inequality, we get

Z 3a+c S [Z(Ba-f—c)]z

a+2b+c Di(3a+c)a+2b+c)

16(3a)°

(Za2 +2>ab+ Y ac)
_4(Za) _
(e

The equality holds fora =b =c =d.

(b) Write the inequality as

(G-2v55e)
S(E gtz
2 2a+b+c

b+c
IR
2a+b+c
By the Cauchy-Schwarz inequality, we get

5 bte (S +0]

2a+b+c Di(b+c)2a+b+c)

4(Xa)

B 2(>la2+23ab+ Y ac)
B
(Za)’

4 + + <1
2a+b+c¢c 2b+c+d 2c+d+a 2d+a+b
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The equality holds fora =b =c =d.

Conjecture 1. If a, b, c,d, e are positive real numbers, then

a—>b 4 b—c + c—d N d—e + e—a >0
a+2b+c b+2c+d c+2d+e d+2e+a e+2a+b

Conjecture 2 (by Ando). If a;,a,,...,a, (n > 4) are positive real numbers, then

a4 a a,
+ oot <
(n—2)a; +a,+a; (n—2)a,+as;+ay (n—2)a,+a; +a,

P 1.201. If a, b, c,d are positive real numbers such that abcd = 1, then

1 1 1 1
+ + + > 2.
ala+b) b(b+c) clc+d) d(d+a)

(Vasile C., 2007)

Solution. Making the substitution

S A N LR
X y Z t

where x, y,z,t are positive real numbers, the inequality can be rewritten as

X t
PR A S > 2.
Y+4xz z+,4/yt t+4zx x+4/ty
Since
2xz<x+32, 24Yyt<y+t,
it suffices to show that
X y Z t 51

+ + + >
x+2y+z y+2z+t z+2t+x t+2x+Yy

By the Cauchy-Schwarz inequality, we have

Z x S (Zx) (Zx)

z2+2y 4z D x(x+2y+z) Dx2+2D . xy+D.xz
. 1 1
The equality holds fora =c = 5=
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Conjecture 1. If a;,a,,...,a, are positive real numbers such that a;a,---a, = 1,
then

1 1 1 n
5 +— tot —— =
ay +aya, a;+asas az+a,a; 2

Conjecture 2. If a;,a,,...,a, are positive real numbers, then

1 1 1 n?
- + — +o > .
ai +a,a, a;+a,a, a?+a,a; — 2(aia, +aaz +---+a,a;)

Remark 1. Using the substitution

n
2 2 et 2
X5+ X1X3 X5+ XXy X7+ x,x, 2

where x;, x,,...,x, > 0. This cyclic inequality is like Shapiro’s inequality

Xy X X n
Xo+ X3 X3+ X4 x;+x, 27

which is true for even n < 12 and for odd n < 23.

Remark 2. By the AM-GM inequality, we have

a,ay + ayas + -+ a,a; > ny/aia;---a,

Thus, the inequality in Conjecture 2 is weaker than the inequality in Conjecture 1.

Therefore, if Conjecture 1 is true, then Conjecture 2 is also true.

P 1.202. Ifa, b,c,d are positive real numbers, then

1 1 1 1 1
+ + + > 6 .
a(l1+b) b(Q+c¢) c(1+4+d) d(1+a) 1+8+vabcd

]

(Pham Kim Hung, 2007)

Solution. Let p = v/abcd. Putting
x x

a:pﬁ’ b:p—g’ C:p—4’
x x x

X
1 2 3 X

d=p=,
4
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where x;, x,, X5, X, are positive real numbers, the inequality turns into

X, +px; 1+8p?
By the Cauchy-Schwarz inequality, we have

Z X1 (le) (le)

Xy +pxz D, x1(xy + pxs) B (21 + x3) (x5 + x4) + 2p(x x5 + x5x,4)

Since

X1+ x3\2 X5+ x40\2
X1X3+ XoX S( ) +( ) s
1X3 2X4 5 5
it suffices to show that

(A+B)? o 8p
2AB +p(A2+B2) — 1+8p?’

where
A=Xx;+ x5, B =x, + x4.

This inequality is equivalent to
A®>+B%*+2(8p*—8p+1)AB >0,
which is true because

A%* + B%+2(8p*—8p + 1)AB > 2AB + 2(8p*—8p + 1)AB
=4(2p—1)*AB > 0.

1
The equality holds fora=b=c=d = 5

P 1.203. If a, b,c,d are nonnegative real numbers such that a? + b* + c? + d? = 4,
then

(@) 3(a+b+c+d)=2(ab+bc+cd+da)+4;
(b) a+b+c+d—4>(2—+v2)ab+bc+cd+da—4).

(Vasile C., 2006)
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Solution. Let p =a+ b+ ¢+ d. By the Cauchy-Schwarz inequality
(1+1+1+1)(a®>+Db*>+c2+d)>(a+b+c+d)
we get p < 4, and by the inequality
(a+b+c+d)?>a*+b*+c*+d?
we get p > 2. In addition, we have

2 2
ab+bc+cd+da=(a+c)(b+d)< (a+c+b+d) .y

4 4

(a) It suffices to show that

2

p

3p>—+4
P="
Indeed,
2
—p)p—2
3p—%—4= @=p)p—2) p)z(p )>o.

The equality holds fora=b=c=d =1.
(b) It suffices to show that

p—4> (2—«/5)(%2—4).
This inequality is equivalent to
(4—p)(p—2v2) =0,
which is true for p > 2+/2. So, it remains to consider the case 2 < p < 2+/2. Since
2(ab+bc+cd+da)<(a+b+c+d)*—(a®+b*+c*+d?) =p>—4,

it is enough to prove that

p—42(2—\/§)(p22_4—4).

Write this inequality as
(2+v2)(p—4)=>p*—12,

2vV2—p)(p—2++v2)>0.

The equality holdsfora=b=c=d =1,and alsofora=b=0and c =d = v2
(or any cyclic permutation).
O
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P 1.204. Let a, b, c,d be positive real numbers.

(a) Ifa,b,c,d = 1, then

1 1 1 1 1 1 1 1
_ —_ _ 1> [ I I T
(a+b)(b+C)(c+d)(d+a)_(a+b+c+d)(a+b+c+d),

(b) If abcd =1, then

(a+%)(b+%)(c+%)(d+%) S(a+b+c+d)(%+%+%+%).
(Vasile Cirtoaje and Ji Chen, 2011)
Solution. Let
A=(1+ab)(1+bc)(1+cd)(1+da)
=1+ Y ab+ Y abd +2abed +abed Y ab +a?b*c?d?
=(1—abcd)? + 4abed + (1 +abed) > ab+ » a’bd
=(1—abcd)? +4abed + (1 +abed)(a+c)(b+d) + Y a’bd

and
B=(a+b+c+d)abc+ bcd +cda+ dab)
=4abcd + » a*(be +cd +db)
=4abcd + » a’c(b+d)+ Y _a’bd
=4abed + (ac + bd)(a+c)(b+d) + Y _a*bd.
Thus,

A—B=(1—abcd)?*+ (1 +abcd)(a+c)(b+d)—(ac+bd)(a+c)(b+d)
=(1—abcd)*+ (1 —ac)(1—>bd)(a+c)(b+d).

(a) The inequality A > B is clearly true for a, b, c,d > 1. The equality holds for
a=b=c=d=1.

(b) For abcd = 1, we have
B—A= iu —ac)Xa+c)(b+d)>0.

The equality holds for ac = bd = 1.
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P 1.205. If a, b, c,d are positive real numbers, then

a \2 b \? c 2 d \?
1 1 1 1 .
( +a+b) +( +b+c) +( +c+d) +( +d+a) =7

(Vasile C., 2012)

First Solution. Assume that d = max{a, b,c,d}. We get the desired inequality by
summing the inequalities

a \2 b \? c 2
(1+ )+(1+ )+(1+ ) >6
a+b b+c c+a

and
c \2 d 2 c 2
(14— e (1) o1 (10 -5)
c+d d+a c+a
Let
x_a—b _b—c z_c—a
“a+b Y T b+e T cxa

We have —1 < x,y,z <1 and
x+y+z+xyz=0.

Since
a x+1 b y+1 c _z+1
a+b 2 7 b4+c 2 c+a 2
we can write the first inequality as follows:

J

(x+3)*+(y +3)*+(z+3)*> 24,

X2+ y*+22+6(x+y+2)+3>0,
x*+y*+2°+3 > 6xyz.
By the AM-GM inequality, we have

x?+y*+22+3> 64/x2y222 > 6xyz.

Write now the second inequality as
(1+ < )2—1>( c __d )(2+ ¢ 4 )
c+d cta d+a cta d+a)

c_ d  alc—d) <0
c+a d+a (c+a)d+a)”

c \2 C d c d
(1+ ) —1>0> - 2+ + .
c+d c+a d+a c+a d+a

Since

we have
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Second Solution. Using the inequality
(14+x)?>1+3x% 0<x<1,

we have

a \?2 b 2 c )2 d ?

(1+a+b) +(1+b+c) +(1+c+d) +(1+d+a) ~
a 2 b 2 c 2 d
>4+3[(a+b) +(b+c) +(c+d) +(d+a) ]

Therefore, it suffices to prove that

a \? b \? c 2 d \?
>1
(a+b) +(b+c) +(c+d) +(d+a) -7

which is equivalent to the known inequality in P 1.191 from Volume 2:

1 1 1 1
+ + + >1,
(I+x)2 (1+y)2 (1422 1Q+1t)>

where

a d
X=—, y=—, gz=-—, t=-—, xyzt=1.
b a

P 1.206. If a, b,c,d are positive real numbers, then

a’—bd N b%—ca N c2—db N d?—ac
b+2c+d c¢c+2d+a d+2a+b a+2b+c

(Vo Quoc Ba Can, 2009)

Solution. Write the inequality as follows:

2_4bd
Z(&de—za)zo,
b+2c+d

Z (b—d)?+2(a—c)(2a—b—d) -0
b+2c+d -
It suffices to show that

Z(a—c)(Za—b—d) S

0.
b+2c+d B
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This inequality is equivalent to
2a—b—d 2c—d-—b 2b—c—a 2d—a-—c
— — +(b—d — >0
(a C)(b+2c-+d d+2a+b) ( )(c+2d+a a+2b+c)_’
which can be written as
(a—c)(a*—c?) (b—d)(b*—d?)
(b+2c+d)(d+2a+Db) (c+2d+a)a+2b+c)

The equality occurs fora =c and b =d.

P 1.207. If a, b, c,d are positive real numbers such that a < b < ¢ < d, then
\J 2a +\J 2b +\J 2c +\J 2d _,
a+b b+c c+d d+a
Solution. According to the inequality in P 1.74, we have

\J 2a \J 2b Q 2c
+ + <3.
a+b b+c c+a

Therefore, it suffices to show that

2c 2d 2c
+ <1l+ .
c+d d+a c+a

By squaring, this inequality becomes

(Vasile C., 2009)

+ +2 <1+ + :
c+d d+a (c+d)(d+a) ™ c+a c+a

2¢  2d \J 4cd 2c 4 %
We can get it by summing the inequalities

2c 2d 2c
+ <1+ ,
c+d d+a c+a

2\J 4cd <2\Ji
(c+d)d+a)”  \Nc+a

The former inequality is true since
2¢c 2d 2c  (a—d)d—c)(c—a) <

+ - = 0,
c+d d+a c+a (c+d)(d+a)a+c) ™

while the second inequality reduces to
cla—d)(d—c)<O.
The equality holds fora =b =c =d.
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P 1.208. Let a, b, c,d be nonnegative real numbers, and let

. a . b g c - d
 b+c’ y_c+d’ “d+d’ a+b’
Prove that
(a) Vxz+,/yt<1;
(b) x+y+z+t+4(xz+yt) =4

(Vasile C., 2004)

Solution. (a) Using the Cauchy-Schwarz inequality, we have

_ @ Jbd
vxat \/ﬁ_\/(b+c)(d+a) " Jc+d)(a+b)
Jac N vbd

< =1.
vac+vbd ac+ vbd
The equality holds fora=b=c=d,fora=c=0,and forb=d =0

(b) Write the inequality as
A+B=>6,

where

2
2
A=x+z+4xz+1:(a+b)(c+d)+(a+c) +ab +2ac+cd

(b+c)(d+a)
_(a+b)c+d) (a+c)? La L
S (b+co)d+a) (b+c)d+a) d+a b+c’
(b+c)(d+a) (b+d)? b d

B=y+t+4yt+1=

C+d)@+b) C+d)ath) axb c+d

Since
(a+b)(c+d) (b+c)d+a) S

(b+c)d+a) (c+d)a+bd)

it suffices to show that

(a+c)? N (b+d)? +Z a

> 4.
(b+c)d+a) (c+d)a+b)

d+a

By the Cauchy-Schwarz inequality, we have

(a+c)? (b +d)? >(a+b+c+d)2
(b+c)d+a) (c+d)a+b) C ’

Z a >(a+b+c+d)2
d+a D ’
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where
C=(b+c)d+a)+(c+d)(a+Db),

DZZa(d+a):a2+b2+c2+d2+ab+bc+cd+da,
C+D=(a+b+c+d)
Thus, it is enough to show that

(C+D)(é+%)24,

which is clearly true. The equality holds fora=b =c =d.

P 1.209. If a, b, c,d are nonnegative real numbers, then

(1+ 2a )(1+ 2b )(1+ 2¢ )(1+ 2d )>9
b+c c+d d+a a+b) 7

(Vasile C., 2004)

Solution. We can rewrite the inequality as

a+c a+c b+d b+d
>0,
(1+a+b)(1+c+d)(1+ b+c)(1+d+a)_9

Using the Cauchy-Schwarz inequality and the AM-GM inequality yields

a+c a-+c a+c 2 2a + 2c¢ 2
(14 259) (14 25) 2 [ 1+ o (14 2a+2 Y
a+b c+d Va+b)c+d) a+b+c+d

( b+d)( b+d) b+d 2 ( 2b +2d )2
1+ 1+ =1+ 1+ — | .
b+c d+a Vb +o)(d+a) a+b+c+d

Thus, it suffices to show that

(1+ 2a + 2c¢ )(1+ 2b+2d )>3
a+b+c+d a+b+c+d)

This is equivalent to the obvious inequality

4(a+c)(b+d) S
(a+b+c+d)3?

The equality holds fora=c=0and b=d, aswell as for b=d =0 and a =c.
OJ
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P 1.210. Let a, b, c,d be nonnegative real numbers. If k > 0, then

(1+ ka )(1+ kb )(1+ ke )(1+ kd )>(1+k)2
b+c c+d d+a a+b) '

(Vasile C., 2004)

Solution. Let us denote

Since
l_[(1+kx)2 1+k(x+y+z+t)+k3(xy+yz+zt+tx+xz+yt),
it suffices to show that

X+y+z+t=2

and
xy+yz+zt+tx+xz+yt=>1.

The inequality x + y +z+t > 2 is the well-known Shapiro’s inequality for 4 positive
real numbers. This can be proved by the Cauchy-Schwarz inequality, as follows:

a b c d (a+b+c+d)?
+ + + > = 2.
b+c c¢c+d d+a a+b a(b+c)+b(c+d)+c(d+a)+d(a+b)

The right inequality reduces to the obvious inequality
(a—c)*+(b—d)*>0.

To prove the inequality xy + yz+zt +tx+xz+yt > 1, we will use the inequalities

X+2z

y+t
— > yt,
5 Yy
and the identity
xz(l+y+t)+yt(l+x+2)=1.
If these are true, then

y+t

x+z
xy+yz+zt+tx+xz+yt=T(y+t)+ (x+2)+xz+yt
>xz(y+t)+yt(x+2z)+xz+yt

=xz(l1+y+t)+yt(l+x+2z)=1.
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We have
xX+z __bc+da+(a—c)?

2 T abrod+a)

and )
y+t_yt:ab+cd+(b—d) >0,
2 2(a+b)(c+d)

To prove the identity above, we rewrite it as

nyz+xz+yt =1,

and see that

bc(a+b 2bc+ > a?bd
nyzzza c(a ):Za c+>.a
A A
and

ac(a+b)(c+d)+bd(b+c)d+a) _ > a*cd + (ac + bd)?

Xz+yt= 5
Y A A

where

A= l_[(a +b) :Zazbc +Za2bd +Za2cd + (ac + bd)>.

Thus, the proof is completed. The equality holds for a =c =0 and b =d, as well
asforb=d=0anda=c.

Remark. For k = 2, we get the inequality in P 1.209. For k = 1, we get the
following known inequality

(@a+b+c)(b+c+d)(c+d+a)d+a+b)=4(a+b)(b+c)(c+d)d+a).
A proof of this inequality starts from the inequalities

(a+b+c)*>(2a+b)(2c+b)

and
(2a + b)(2b+a) > 2(a + b)>.
We have
[ [a+tb+c?>] J2a+b)-] [2c+b)
=] [a+b)2b+a)
> 2*[ J(a+b)?,
hence

l_[(a+b+c)24l_[(a+b).
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P 1.211. Ifa, b, c,d are positive real numbers such that a+ b + c +d = 4, then

$+i+£+%2a2+b2+c2+d2.
(Vasile C., 2007)
Solution. Write the inequality as
(a+c)(b+d)>abcd(a®+ b*+c*+d?).
From (a—c)*>0and (b—d)* > 0, we get

(a+c)*>8ac(a®+c?), (b+d)*>8bd(b*+d?),

hence
bd(a+c)*+ac(b+d)* > 8abcd(a® + b* + c* +d?).

Therefore, it suffices to show that
8(a+c)(b+d)=>bd(a+c)*+ac(b+d)*
Since 4bd < (b +d)? and 4ac < (a + c)?, we only need to show that
32(a+c)b+d)=(b+d)*(a+c)*+ (a+c)(b+d)*

This inequality is true if
32> xy(x*+y?)

for all positive x, y satisfying x + y = 4. Indeed,
8[32—xy(x*+y)]=(x+y)*—8xy(x*+y*)=(x—y)*>0.

The equality occurs fora=b=c=d =1.

P 1.212. Ifa, b,c,d are positive real numbers, then

N

a? b? c? d?
+ + + > —.
(a+b+c)? (b+c+d)?2 (c+d+a)*> (d+a+b)2 9

(Pham Kim Hung, 2006)

First Solution. By Holder’s inequality, we have

Z a? S (Z a4/3)3
(@a+b+c)* " [Sa(a+b+c)]




Cyclic Inequalities 299

Since
Za(a+b+c)=(a+c)2+(b+d)2+(a+c)(b+d)

and

Za4/3 _ (a4/3+c4/3)+(b4/3+d4/3) > Z(a;-c)4/3+2(b—£d)4/3’

it suffices to show that
9[(a+c)? +(b+d)**] = 8[(a+c)?+(b+d)* +(a+c)(b+d)]

Due to homogeneity, we may assume that b +d = 1. Putting a + ¢ = t3, t > 0, the
inequality becomes
9(t*+1)° > 8(t° + 1+ t3)?,

2, 1Y s, 1Y
of 2+ >8(tP+—=+1]) .
t2 t3

Setting

the inequality turns into
9(x*—2)* > 8(x>—3x +1)%,

which is equivalent to

(x —2)*(x* + 4x® + 6x* —8x —20) > 0.
This is true since

x* 4+ 4x3 4+ 6x% —8x —20 = x* + 4x?*(x —2) + 4x(x —2) + 10(x* —2) > 0.
Thus, the proof is completed. The equality holds fora =b =c =d.
Second Solution. Due to homogeneity, we may assume that
a+b+c+d=1.

In this case, we write the inequality as

(1id)2+(1Ea)2+(1ib)2+(1ic)22g’

Let (x, y,z,t) be a permutation of (a, b, c,d) such that

x>y>z>t.



300 Vasile Cirtoaje

Since
1 1 1 1

< < < )
1-t " (1-2) @Q-y)P (@Q-x)
by the rearrangement inequality, we have

() )+ (55) () s
S(1id)2+(1Ea)2+(1ib)2+(1ic)2'

Therefore, it suffices to show that x + y +2z 4+t = 1 involves

vrvs2
9
where
x 2 t 2
v=(1=) + (=)
1—t 1—x
2 2
V:( Y )+( z )
1—2 1—y
Let
s=x+t, p=xt, s€(0,1),
Since

x?+t*=s*—2p, x*+t>=5>—3ps, x*+t*=s"—4ps*+2p?,

we get

X2+ 2 =20 + )+ xt

B (1—s+p)
_2p*—2(1—=s)(1—2s)p +s*(1—s)?
B p?2+2(1—s)p+(1—s)?

J

2-U)p*—2(1—-s)(1—-2s+U)p+(1—5)*(s>*—U)=0.
The quadratic trinomial in p has the discriminant
D=(1-5)[(1-2s4+U)’—=(2-U)s*-U)].

From the necessary condition D > 0, we get

4s —1—2s?
Uz —————
(2—s)?
Analogously,
4r —1—2r?

Vz——"—,
(2—r)?
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where r = y + z. Taking into account that

s+r=1,
we get
U+V> 4s —1—2s> N 4r—1-—2r?
(2—s)2 (2—r)?
_ 4s—1—2s7 N 4r—1—2r°
1+ (1+s)2
_5(s2+rA)—2(st + 1Y)
B (2+sr)?
_5(s*+1r?) —2(s* + r?)* 4 4s%r?
B (2 +sr)2 ’
hence
U+V—ﬂ - 5(* +r)—2(s*+r*)* +4s°r* 4
- (2+sr)? 9
_5(s2+r?)—2(s*+r?)?  2(1—4sr)*—18
B (2+sr)2 9(2 + sr)>2
- 5(s2+r?)—2(s>+r?)?—-2
- (2+sr1)2
_(@2-s2—rH)(2s?+2r?—1)
B (2 +s1)2 )

Thus, we need to show that (2—s2—r2)(2s2 4 2r2—1) > 0. This is true since since
2—s*—r*>2—(s+r)=1,

25> +2r2—1>(s+r)*—1=0.

P 1.213. If a, b,c,d are positive real numbers such that a+ b +c+d = 3, then
ab(b+c)+bc(c+d)+cd(d+a)+dala+b) <4.
(Pham Kim Hung, 2007)

Solution. Write the inequality as

ab*+ » abc <4,
PALEDD

(ab*+cd?*+ bed +dab) + (bc® +da® + abc + cda) < 4,
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(b+d)(ab+cd)+ (a+c)(bc+da) <4.
Without loss of generality, assume that a +c¢ < b +d. Since

(ab+cd)+(bc+da)=(a+c)(b+d),

we can rewrite the inequality as
(a+c)(b+d)?+(a+c—b—d)(bc+da) < 4.
Since a4+ c— b —d <0, it suffices to show that
(a+c)(b+d)? <4
Indeed, by the AM-GM inequality, we have
(a+c)(b+d)(b+d) < i(a+c+M+M)3= 1.

2 2 27 2 2

The equality holds fora = b =0, c =1 and d = 2 (or any cyclic permutation).

]

P1214. Ifa=b>c>d>0and a+b+c+d =2, then
ab(b+c)+ bc(c+d)+cd(d+a)+da(a+Db)<1.
(Vasile C., 2007)

Solution. Write the inequality as

Z:ab2 +Zabc <1.
Since

Z abz—Z a’b = (ab*+bc*+ca*—a*b—b?*c—c?a)+(cd*+da*+ac*—c*d—d*a—a*c)
=(a—b)b—c)c—a)+(c—d)d—a)la—c) <0,

it suffices to show that
Z:ab2 +Za2b +22abc < 2.

Indeed,

Zab2+Za2b+ZZabc=Z(ab2+a2b+abc+abd)
=(a+b+c+d)Zab
=2(a+c)(b+d)

2
Sz[(a+c);(b+d)] Y

1

N | =

The equality holds fora=b=tandc=d =1—t, where t € [
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P 1.215. Let a, b, c,d be nonnegative real numbers such that a+b+c+d = 4. If

37
k > —, then
27

ab(b + kc) + bc(c+ kd) +cd(d + ka) + da(a + kb) < 4(1 + k).
(Vasile C., 2007)
Solution. Write the inequality in the homogeneous form

(1+k)a+b+c+d)®

ab(b +kc)+ bc(c+kd)+cd(d + ka) +da(a+ kb) < 16

Assume that d = min{a, b, ¢, d} and use the substitution
a=d+x, b=d+y, c=d+z,
where x, y,z > 0. The inequality can be restated as
4Ad +B >0,

where
A=(Bk—1D(x*+y*+2*)—2(k+ 1Dy(x +2) + (6 — 2k)xz,

B=(1+k)(x+y+2)>—16(xy*+ yz*>+kxyz).
It suffices to show that A> 0 and B > 0. We have
A=Bk—1y*+Bk—1)(x+2)*—2(k+1)y(x+2)—8(k—1)xz
> (3k—1)y?+ (3k—1)(x +2)* —2(k + 1)y(x +2) —2(k — 1)(x + 2)*
=Bk—1)y*+(k+1)(x+2)*—2(k+1)y(x +2)
> 24/(Bk—1)(k +1)y(x +2) —2(k + 1)y (x +2)
=2vk+1(V3k—1-Vk+1)y(x+2)20.

Since
(x+y+2)—16xyz >0,
. . 37 ... 37 . .
the inequality B > 0 holds for all k > o7 if it holds for k = 27 In this particular
case, the inequality B > 0 can be written as
+y+
4 (x y+z
3

Actually, the following sharper inequality holds (see P 2.31)

a(rrs
3
Thus, the proof is completed. The equality holds fora = b =c=d = 1. If

)3>x 24 zz+£x Z
Z XYy Y 27 yz.

)3> 2, 2,3
> Xy +yz +§xyz.

3 8
k= 2—;, then the equality holds also for a = g, b= 3 and ¢ =d =0 (or any cyclic

permutation).
O
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P 1.216. If a, b,c,d are nonnegative real numbers such that a+ b+ c +d = 4, then

\J 3a \j 3b \J 3¢ \J 3d
+ + + <4
b+2 c+2 d+2 a+2

(Vasile Cirtoaje, 2020)

Solution. (after an idea of Michael Rozenberg) Let (al,a,, as;,a,) be an increasing
permutation of (a, b, c,d). Since the sequences

1 1 1 1
(al,a,,a;,a,) and , s ,
az+2 az3+2 a,+2 a,+2

are increasing, according to the rearrangement inequality, we have
\J 3a \J 3b Q 3¢ \J 3d
+ + + <
b+2 c+2 d+2 a+2
3a 3a 3a 3a
< 4 2+ >+ * =A+B,
a,+2 as+2 a,+2 a; +2

3a, 3ay 3a, 3a,
A= + , B= ++ :
a,+2 a; +2 as+2 a,+2

We need to show that A+ B < 2. According to Lemma below, we have

where

A+B < a1+§4+4+a2+§3+4:4'

The equality holds fora=b=c=d =1.

Lemma. If a, b are nonnegative real numbers, then

Q 3a \J 3b a+b+4
+ < .
b+2 a+2 3

Proof. Use the substitution

= 3a _ 3b
N \Jb+2’ Y= \Ja+2’

which yields xy < 3 and

2x%(y? +3) 2y%(x?+3) 4x%y? +6(x? + y?)
a=—7"-—, b=———— a+b= .
9—x2y? 9—x2y? 9—x2y?
Thus, we need to show that
4x%y? +6(x*+ y?
3(xty) g P HOTHYT) L,

9—x2y?
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which is equivalent to
20+ y)—(9—x*y*)x+y)+12—4xy >0,
(4x+4y—9+ xzyz)2 +15—32xy + 18x2%y* —x*y* >0,

(4x+4y—9+ xzyz)2 +(1—xy)*(3—xy)(5+xy)=>0.
The equality holds fora =b = 1.

P 1.217. Let a, b, c,d be positive real numbers such that a < b < ¢ < d. Prove that

2(g+2+g+§)>4+g+g+ﬁ+§
b ¢ d a)” c a d b
(Vasile C., 2012)
First Solution. Let
a b ¢ d a ¢ b d
E(a,b,c,d)=2|—+—+—-+— |—-4———————— .
(a,b,¢,d) (bcda)4cadb

We show that
E(a,b,c,d) > E(b,b,c,d) > E(b, b, c,c).

We have
1 2 2
B b.e,d)—E(b,be,d) = (b-a) (4 25— 2= =) >0,
c ab b ab
since
1,24 2 ¢ 1 2 2 ¢
¢c ab b ab ¢ ab b ab
_le 2.1, ¢ 2 (=
c ab b c¢c b2 b b2¢c
Also,
1 2c—b
E(b,b,c,d)—E(b,b,c,c)=(d—c)(—— ¢ )20,
b cd
since

1 2c—b_ 1 2c—b (b—=c)?

- 0.
b cd ~ b c2 bc2

Because E(b, b,c,c) = 0, the proof is completed. The equality holds for a = b and
c=d.

Second Solution. Using the substitution
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the inequality becomes as follows:
1

b

1 1
2(x+y+z—l——)24—l—xy—l——+yz—l—
Xyz xy yz

1/ 2 1 1
y@—x—2)+—|=—=—=|-2(2—x—2)>0,
y\xz x g
1
2—x—2z)|ly+—-—2]=0.
xXyz

The last inequality is true since 2—x —y = 0 and

1 1
y+——2>y+-—2>0.
xyz y

P 1.218. Let a, b, c,d be positive real numbers such that

a<b<c<d, abcd = 1.

Prove that b d
g —+£+—2ab+bc+cd+da.
a

+
b ¢ d
(Vasile C., 2012)
Solution. Write the inequality as follows:

a’cd + b*da + c%ab + d*bc > ab+ bc +cd + da,

ac(ad + bc) + bd(ab +cd) = (ad + bc) + (ab + cd),
(ac—1)(ad + bc) +(bd —1)(ab+cd) = 0.

Since 1
—1=——-1>1—-bd
ac bd >
and
bd > v abcd =1,
we have

(ac—1)(ad + bc) + (bd—1)(ab+cd) = (1 —bd)(ad + bc) + (bd —1)(ab + cd)
=(bd—1)(a—c)(b—d)=0.

The equality holds fora =b = 1 =
c

<1

Q|
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P 1.219. Let a, b, c,d be positive real numbers such that
a<b<c<d, abcd = 1.

Prove that

4+g+é+£+é22(a+b+c+d).
b ¢ d a

(Vasile C., 2012)

Solution. Making the substitution

_4fa 4| b _4fc <1
X = E’ y= Z’ z = E’ 0<x,y,z<1,

we need to show that E(x, y,z) > 0, where

1
E(x,y,2)=4+x*+2"+ y* + —2(X3yz+ﬁ+i+ )
X

x4y2g4 Xy xyz3
We will show that

E(x,y,2) = E(x,1,2) > E(x,1,1) > 0. ™
The left inequality is equivalent to

(1 _.y)El(X:.y’z) > O;

where

1+y 5 2 2(z 1
El(xayﬁz):_]-_y+ +2(X Z+—)—— -+ — .
x4y2z4 X y\x xz°

To prove it, we show that

El(xa.yaz) = El(x> 132) = 0.

We have
Ei(x,1,2) =2(1—x32) (ﬁ - 1) > 0.
Since
Ei(x,y,2—Ei(x,1,2) = (1 — y)Ey(x, y,2),
where

142 2 (z 1
EZ(X,J/:Z):1+ y__(__'__)a
xty2z4 oy \x xz3
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we need to show E,(x,y,z) > 0. Indeed,

Z 23

The middle inequality in (*) is equivalent to

(1—2)F(x,2) =0,

where
1 2 1+g2+2>
F(X,Z)I(l+z+z2+23)(—_1)+2(xz+_)_ -
x4z4 X X2
It is true since
3 142422
F(x,2)> 1=
.X'4Z4 X Xz
1 3 1+z+2>
> ——14-——
Xz X Xz
_ITxXTES

x
The right inequality in (*) is also true since

x*E(x,1,1)=x®—2x" +6x*—6x3+1
=(x—1)?*(x*—x*—2x3+3x2+2x+1)
> (x —1)*(x® —x*—2x%+2x?)
=x*(x —1D*x*+2x+2)>0.

The proof is completed. The equality holds fora=b=c=d = 1.

P 1.220. Let A= {a,, a,, as,a,} be a set of real numbers such that
a; +a,+as+a,=0.
Prove that there exists a permutation B = {a, b,c,d} of A such that

a’+b*+c*+d*+3(ab+ bc+cd+da)>0.
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Solution. Write the desired inequality as
a’*+b*+c*+d*+3(ab+bc+cd+da)>(a+b+c+d)>
ab+ bc+cd+da>2(ac+ bd),
(ab+cd—ac—bd)+ (bc+da—ac—bd)>0.
(a—d)(b—c)+(a—b)({d—c)=>0.

Clearly, this inequality is true for a < b < d < c¢. The equality occurs when A has

three equal elements.
O

P 1.221. Ifa, b,c,d are nonnegative real numbers such that
a>b>1>c>d, a+b+c+d=3,

then
a’+ b%>+c2+d?+10abcd < 5.

(Vasile C., 2015)
First Solution. Let
E(a,b,c,d)=a?+b%*+c?+d*+ 10abcd.

We will show that
E(a,b,c,d) <E(a,b,x,x) <5,

where
x=(c+d)/2, a+b+2x=3.

The left inequality is true since
1
E(a,b,c,d)—E(a,b,x,x)= E(C —d)*(1—5ab) <0.

The right inequality can be written as follows:
a®+b*+2x* + 10abx* < 5,
(a+b)*+2x*+2ab(5x*—1) < 5,
25>+ (3 —s)*+ab[5(3 —s)*—4] < 10,

where
s=a+b, se€[2,3]

Case 1: 5(3—5)>—4> 0. Since ab < s?/4, it suffices to show that

1
25>+ (3—s)*+ Zr52[5(3 —s)*—4] <10,
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which is equivalent to the obvious inequality
(s—1)(s—2)[5s(s—3)—2]<0.

Case 2: 5(3—s)>—4<0. From (a—1)(b—1) > 0, we get ab > s — 1. Therefore, it
suffices to show that

2524+ (3—s5)?+(s—1)[5(3—s)*—4] < 10,
which is equivalent to the obvious inequality
(s—2)(s—3)(5s—7)<0.

The equality holds fora=b=1,c=d=1/2,andfora=2,b=1,c=d =0.

Second Solution. From

(a—1)(b—1)(c—1)(d—1)=0,

we have
—2+Zab—2abc +abcd > 0.
sym
Since
ZZab =9—qa?—b2—c?—d?
sym
we get

9—a*—b*—c*—
+
2
a’+ b2+ c?+d? SS—ZZabc+2abcd.

—2

d2
—Zabc +abcd = 0,

Therefore, it suffices to show that
(5— ZZabc + 2abcd) + 10abcd < 5,
which is equivalent to

Zabc > 6abcd.

For the non-trivial case d # 0, this inequality is equivalent to

1+1+1+1>6
a b ¢ d

Since
4

E a+

oy

and

N

S

Q|
\%

o

+

Q.
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it suffices to show that

which is equivalent to
(a+b—1)(a+b—2)>0.

P 1.222. If a, b, c,d are nonnegative real numbers such that
a>b>1>c>d, a+b+c+d=6,

then
a’+ b% +c2+d?+ 4abcd < 26.

(Vasile C., 2015)
First Solution. Let
E(a,b,c,d)=a?+b%*+c%+d*+10abcd.

We will show that
E(a,b,c,d) <E(a,b,x,x) <5,

where
x=(c+d)/2, a+b+2x=3.

The left inequality is true since
1
E(a,b,c,d)—E(a,b,x,x) = E(c —d)*(1—2ab) <0.

The right inequality can be written as follows:
a’® + b+ 2x? + 4abx? < 26,

(a+b)*+2x%+2ab(2x?—1) < 26,
25>+ (6—s)*+2ab[(6—s)*—2] <52,

where
s=a+b, se[4,6].

Case 1: (6—s)>—2> 0. Since ab < s2/4, it suffices to show that
1
252+ (6—s)*+ 552[(6 —5)*—2] <52,

which is equivalent to the obvious inequality

(s—2)(s—4)[s(s—6)—4]<O0.



312 Vasile Cirtoaje

Case 2: (6—5)>—2<0. From (a—1)(b—1) > 0, we get ab > s — 1. Therefore, it
suffices to show that

25> +(6—5)* +2(s —1)[(6—s)* —2] < 52,
which is equivalent to the obvious inequality
(s—2)(s—6)(2s—7)<0.
The equality holds fora=b=2,c=d=1,and fora=5,b=1,c=d =0.
Second Solution. From

(a—1)(b—1)(c—1)(d—-1) =0,

we have
—5+Zab—2abc+abcd > 0.
sym
Since
22ab=36—a2—b2—c2—d2,
sym
we get

36 —a%?—b?—c?—d? B
2
a’+ b2+ c?+d? 326—2Zabc+2abcd.

Therefore, it suffices to show that

(26— 22 abc + 2abcd) + 4abced < 26,

Zabc +abcd =0,

5+

which is equivalent to

Z abc > 3abcd.
For the non-trivial case d # 0, this inequality is equivalent to
)
a b ¢ d—
Since
1,1 4
a b a+b
and
1,1 4
c d c+d’
it suffices to show that
4 N 4 >3
a+b c+d

which is equivalent to
(a+b—2)a+b—4)=>0,

(a+b—2)(2—c—d)=0.
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P 1.223. Let a, b, c,d be nonnegative real numbers such that
a>b>1>c>d, a+b+c+d=p, p=2.

Prove that )
—4p+8
PoPTE b+ 2 +d><p?—2p+2.

Solution. Write the right inequality as follows:
(p—1—-a*+(1-b*)—c*—d* >0,
(p—1—-a)p—1+a)+(1—-b)(1+b)—c*—d*>0.
Sincep—1—a=(b—1)+c+d>0and
(p—14+a)—(1+b)=2(a—1)+c+d =0,
it suffices to show that
(p—1—a)(1+b)+(1—=b)(1+b)—c*—d*>0,

which is equivalent to
(c+d)(1+b)—c?2—d?>>0.

Indeed,
(c+d)A+b)=>c+d>c*+d%

The right inequality is an equality for

(a,b,c,d)=(p—1,1,0,0).
Since (a+b)? < 2(a®+ b?) and (c +d)? < 2(c? +d?), the left inequality is true
) p*—4p+8<(a+b)*+(c+d)>
which is equivalent to
[(a+b)+(c+d)]>—4[(a+Db)+(c+d)]+8<(a+b)+(c+d)
(a+b)(c+d)—2(a+b)—2(c+d)+4<0,

(a+b—-2)(c+d—2)<0.

The left inequality is an equality for

—2 p—2
(a,b,c,d):(l,l,pT,pT), 2SPS4,

p—2p—2 )
)b) )d = 5 ’1)1 > 24’
(@ be.d)= (25225 b
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P 1.224. leta=b>1>c>d = 0 such that
a+b+c+d=4, a*+b*+c*+d*=q,

where q € [4,10] is a fixed number. Prove that the product r = abcd is maximal
whenb=1and c =d.
(Vasile C., 2015)

Solution. The condition q > 4 follows from the Cauchy-Schwarz inequality
4(a®>+b*+c2+d>)=>(a+b+c+d)>

The condition g < 10 follows from the inequality (a — 1)(b — 1) > 0, which is
equivalent to
ab>s—1,

where
s=a+b, se[2,4].

Indeed,

g<(a+b)*—2ab+(c+d)?<s*—2(s—1)+(4—s)?
=2(s—1)(s—4)+10 < 10.

Notice thatg=4fora=b=c=d=1,andq=10fora=3,b=1,c=d =0.
We will show that for any fixed g € [4,10], we have

abed < f(d) < f(d,),

where
f(d):d(d2—3d+5—%),
dy=1— %, d, €[0,1].

The left inequality abcd < f(d) is a consequence of the inequality
(a—1)(b—1)(c—1)<0O,
which leads to
abc<1—(a+b+c)+(ab+ bc+ca)
=1-(-d)+ o l(a+b+ef —(@+ b+ )]
=—3+d+[(4—dP —(g—d)]

—d*—3d+5—1,
2
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hence
abcd < f(d),

with equality for b = 1.
The right inequality f(d) < f(d,) follows immediately from

f(d)—f(dy)=(d—d)*(d +2d, —3) < 0.

This inequality is an equality for d = d;. In conclusion, for any fixed q € [4,10],
we have

abcd < f(d,),

with equality for b = 1 and d = d,. These equality conditions are equivalent to b =
landc =d. Indeed, fromb=1,d =d,,a+b+c+d =3 and a®>+b*+c*>+d> =q,
we get

2 —

P 1.225. Ifa, b,c,d are nonnegative real numbers such that
a>b>1>c>d, a+b+c+d=4,

then
a®+ b% +c2 +d?+ 6abcd < 10.

(Vasile C., 2015)

First Solution. According to P 1.224, it suffices to prove the inequality for b = 1
and ¢ = d. Thus, we need to show that a? + 2¢2 + 6ac? < 9 for a + 2c = 3; that is,

c(1—c)*>0.
The equality holds fora=b=c=d=1,and fora=3,b=1,c=d =0.
Second Solution. Let
E(a,b,c,d)=a?*+ b%+c?+d>+ 6abcd.

We will show that
E(a,b,c,d) < E(a,b,x,x) <10,

where
x=(c+d)/2.

The left inequality is true since

E(a,b,c,d)—E(a,b,x,x) = %(c —d)*(1—3ab)<0.
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The right inequality can be written as follows:
a’+b*+2x*>+6abx*<10, a+b+2x=4,

(a+b)*+2x*+2ab(3x*—1) < 10,
2524+ (4—s5)*>+ab[3(4—s)*—4] < 20,

where
s=a+b, se[2,4].

Case 1: 3(4—s)>—4>0. Since ab < s?/4, it suffices to show that
25>+ (4—s)*+ 252[3(4—5)2 —4]1< 20,
which is equivalent to the obvious inequality
(s—2)*[3s(s—4)—4]<0.

Case 2: 3(4—s)>*—4 < 0. From (a—1)(b—1) > 0, we get ab > s — 1. Therefore, it
suffices to show that

2524+ (4—5)?+(s—1)[3(4—5)*—4] < 20,
which is equivalent to the obvious inequality
(s—2)*(s—4)<0.
Third Solution (by Lingaszayi). From

(a—1)(b—1)(c—1)(d—1)=0,

we have
—3+Zab—2abc+abcd > 0.
sym
Since
22ab=16—a2—b2—c2—d2,
sym
we get

10—a®—b?—c*—d?> 2 abc—2abcd.
Therefore, it suffices to show that

22 abc—2abcd > 6abcd,

which is equivalent to
Z abc > 4abcd.
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For the non-trivial case d > 0, this inequality is equivalent to the Cauchy-Schwarz
inequality
1 1 1 1
(a+b+c+d)(—+—+—+—)2 16.
a b ¢ d

Fourth Solution (by Nguyen Van Quy). Write the inequality as
a’*+(b+c+d)*+6abcd—2(bc +cd +db) <10,

3abcd —(bc+cd +db) < (a—1)(3—a).
By the AM-GM inequality or the Cauchy-Schwarz inequality, we have

be+cd+db> —2¢4
b+c+d
hence
9bcd 3bcd(a—1)(3—a)
3abcd —(bc+cd +db) < 3abcd — = .
abed —(be +c )< 3abed =37 b+c+d
Since

3—a>4—a—b=c+d=>=0,

it suffices to show that
3bcd

b+c+d ™
Indeed, using the AM-GM inequality and b+c+d =4—a < 3, we get

3bcd (b+c+d)>?
< <

1.
b+c+d 9

P 1.226. If a, b, c,d are nonnegative real numbers such that
a>b>1>c>d, a+b+c+d=4,
then
a’?+b%>+c%2+d*+6+vabed < 10.
(Vasile C., 2015)

First Solution. According to P 1.224, it suffices to prove the inequality for b = 1
and ¢ = d. Thus, we need to show that a + 2c = 3 implies a® + 2c* + 6¢/a < 9;
that is,

a?+2c*+6¢cva < (a+2c)

c(c+2a—3+va)>0,
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_ 2
Selvaz1r o,
c+2a+34ya
The equality holds fora=b=c=d=1,andfora=3,b=1,c=d =0.

Second Solution. Let
E(a,b,c,d)=a?+ b*>+c*+d?+ 6+ abcd.

We will show that
E(a,b,c,d) < E(a,b,x,x) <10,

where
X_c+d _4—a-b

2 2
The left inequality can be reduces to the obvious form

(ve— x/E)Z [6\/@—(1/E+ x/E)Z] >0,

while the right inequality is equivalent to

a*+ b® + 2x% + 6xv/ ab < 10.
Since 2v/ab < a + b, it suffices to show that
a®+ b*+2x? +3x(a + b) < 10.
which can be rewritten as
2(a®>+ b)) +(@4—a—0b)*+3(4—a—>b)(a+b) <20,

2(a+b)?>—4ab+16—8(a+b)+(a+b)*+12(a+b)—3(a + b)? < 20,
4(a—1)(b—1)=0.

P 1.227. If a, b, c,d, e are positive real numbers, then

a b C d e
+ - + + >1.
a+2b+2c b+2c+2d c+2d+2e d+2e+2a e+2a+2b

Solution. The inequality follows by applying the Cauchy-Schwarz inequality:

o (9 ()

a+2b+2c ~ >lala+2b+2c) - >az+2>ab+2> ac -

The equality holds fora=b=c=d =e.
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P 1.228. Let a, b, c, d, e be positive real numbers such that a+b+c+d+e = 5. Prove

that
@ bpepdie gy
b ¢ d e a” abcde’

Solution. Let (x, y,z,t,u) be a permutation of (a, b,c,d,e) such that x >y >z >
t > u. By the rearrangement inequality, we have

X u y t
:(—+—+ﬂ+ TH-+2)-3

u x y
=4(p+q)=3,
where
1rx u y t
pz—(— v 2)21, g=-(Z+L42)>1
4\u x t y
From (p —1)(q—1) > 0, we get
p+q=1+pg,

4(p+q)—3<1+4pq,

hence

a b ¢ d e
—+—-+-+—-—+—-=<1+4pq.
b ¢ d e a

Thus, it suffices to show that

1
pq = >
xXyztu

2 2
Z(X-i-u) (y+t) <1
2 2

Indeed, by the AM-GM inequality, we get

which is is equivalent to

Z+x+u+x+u y+t+y+t5
Z(x+u)2(y+t)2< 2 2 2 2
2 2 - 5

=1.

The equality holds fora=b=c=d=e=1.

Remark. Similarly, we can prove the following generalization (Michael Rozenberg).

e Ifa;,a,,...,a, are positive real numbers such that a; +a, +---+a, = n, then
4 a, a a
n—4+———>—"2+24... 42
a4y ---d, dy ds a;
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P 1.229. Ifa,b,c,d,e are real numbers such that a+b+c+d +e =0, then

—\/§—1<ab+bc+cd+de+ea<w/§—1
4 T oa2+b2+c2+d2+e2 T 4

Solution. From
(a+b+c+d+e)*=0,

Za2+2Zab+ZZac=O.

Therefore, for any real k, we have

Za2+(2k+2)zab =Zza(kb—c).

By the AM-GM inequality, we get

we get

2a(kb—c) < a*+ (kb—c)?,

hence
> ia®+(2k+2) > ab < > [a*+(kb—c)]=(k*+2) > a®—2k » ab,
which is equivalent to
Z a*> 2(k22k—:11) Z ab.
Choosing k = ﬂ and k = _1%@, we get the desired inequalities. The

equality in both inequalities occurs when

a=kb—c, b=kc—d, c=kd—e, d=ke—a, e=ka—b;
that is, when

a=x, b=y, c=—x+ky, d=—k(x+y), e=kx—y,

where x and y are real numbers.

P 1.230. Let a, b, c, d, e be positive real numbers such that
a*+b*+c*+d*+e*=5.
Prove that
a? b? c? d? e?
+ + + +
b+c+d c+d+e d+e+a e+a+b a+b+c
(Pham Van Thuan, 2005)

S
= -
3
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Solution. By the AM-GM Inequality, we get
2b+c+d) < (B2+ D)+ (2+1)+(d*+1)=8—a%—¢2.

Therefore, it suffices to show that

2

> )
8—a2—e2 6

By the Cauchy-Schwarz Inequality, we have

v =) 25
8—a2—ez_za2(8_a2_e2) 40—Z:a4—zza2e2
50

50
= =
80— E :(a2 +e’)*  go— % [ E (a®+ ez)]2

The equality holds fora=b=c=d=e=1.

()W N

P 1.231. Let a, b, c,d, e be nonnegative real numbers such that a+b+c+d+e =5.

Prove that 799
(a® + b)) (B> + ) (2 +d>)(d?* +e*)(e* +a®) < 5

(Vasile C., 2007)
Solution. Write the inequality as
E(a,b,c,d,e) <0,
and, without loss of generality, assume that
e =min{a, b,c,d, e}.

We claim that it suffices to prove the desired inequality for the case e = 0. To prove
this, it suffices to show that

b

E(a,b,c,d,e)SE(a+§,b,c,d+E,0), ™

2

which is equivalent to

(a®+ b*) (2 +d*)(d*+e*)(e* +a*) <

< [(a + %)2 - b2] [cz - (d + %)Z] (d - 2)2 (a - %)2



322 Vasile Cirtoaje

Since )
a2+b25(a+§) + b2,

2
c2+d2Scz+(d+§) ;
e 2
@ +e*<di+de<(d+2),
e 2
ez+a2Sae+aZS(a+§) ,
the conclusion follows. Thus, we only need to show that

a+b+c+d=5

involves
E(a,b,c,d,0) <0,

where 799
E(a,b,c,d,0) = a?d?(a® + b*>)(b% + c?)(c* + d? )_T
Without loss of generality, assume that
¢ = min{b,c}.

We claim that it suffices to prove the inequality E(a, b, c,d, 0) < O for the case ¢ = 0.
To prove this, it suffices to show that

E(a,b,c,d,0) < E (a,b+%,0,d+%,0), ()
which is equivalent to
2 N2 o2
d(@+ )b+ +d) < (d+ 5 [az+ ](b+_) (a+5.
This is true since
d*(c* +d )s(d+ )

a?+b*<a’+(b+= ),

b>+c*<b*+bc < )
Thus, we only need to show that
a+b+d=5

involves
E(a,b,0,d,0) <0,



Cyclic Inequalities 323

where 120
E(a,b,0,d,0) = a’b*d*(a* + b*) — —~.
We will show that
E(a,b,O,d,O)SE(a;b’a;b’O,d’O)go. )

The left inequality is true if
32a®b?(a®+ b?) < (a + b)°.
Indeed, we have
(a+b)°®—32a%b%(a®+ b%) > 4ab(a + b)* — 32a%b?(a® + b?) = 4ab(a— b)* > 0.

To prove the right inequality, denote

a+b
u= .
2
We need to show that
2u+d=>5
implies
E(u,u,0,d,0) <0;
that is,
ubd* < E,
4
udd? < z
2

By the AM-GM inequality, we have

2u 2u 2u d d s(Zu)S t\2
5=+ 4+ +-+=->5( = (—)
3 3 3 2 2 3 2

from which the conclusion follows. The equality holds fora = b = %, c=0,d=2

and e = 0 (or any cyclic permutation).
O

P 1.232. Ifa,b,c,d,e €[1,5], then

a—b+b—c+c—d+d—e e—a>0
b+c c¢+d d+e e+a a+b

(Vasile C., 2002)
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Solution. Write the inequality as
(a —b 2) 1
(5 2)=
b+c 3 3

3a—b+2
P ()
b+c

Since
3a—b+2c>3—-5+4+2=0,

we may apply the Cauchy-Schwarz inequality to get

grdabre, [Y@Ba—b+20] 16(3a)’
b+c T (b+c)Ba—b+2) Da2+4>ab+3>ac

Therefore, it suffices to show that

S(Za)zz 5> a>+20 > ab+15 > ac.
(Za)222a2+22ab+22ac,

this inequality is equivalent to

32a2+2ac Z4Zab.
BZaz+Zac—4Zab= %Z:(a—2b+c)2 > 0.

The equality holds fora=b=c=d =e.

Since

Indeed,

P 1.233. Ifa,b,c,d,e, f €[1,3], then

a—b+b—c+c—d+d—e+e—f+f—a>
b+c c+d d+e e+f f+a a+b

(Vasile C., 2002)

Solution. Write the inequality as
—-b 1
(5 +3)=e
b+c 2

2a—b+c
Sh2abie g
b+c¢
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Since
2a—b+c>2—-3+1=0,

we may apply the Cauchy-Schwarz inequality to get
2 2
yrzabre, [BCa-brol | 2(3d)
b+c ~D(b+c)2a—b+c) Dlab+dac

Thus, we still have to show that

(>la) 23D ab+ > ac).

Let

x=a+d, y=b+e, z=c+f.
Since

Zab+2ac=xy+yz+zx,
we have

(Za)Z—S(Zab+Zac) =(x+y+2)?*—=3(xy+yz+zx)>0.
The equality holds fora=c=eand b=d =f.

P 1.234. If ay, a,, ..., a, (n = 3) are positive real numbers, then

n

a; n
2. <3
—~a_+2a+a,, 4

where a, = a, and a,,; = a;.
(Vasile C., 2008)

Solution. Applying the Cauchy-Schwarz inequality, we have

n n

D e e !
a1 +2a;+a, S (ag+a)+(a+ai,)

i=1
1 1
>l
— a;_;+aq; a; +a; ;4

The equality holds for a;, = a, =--- =a,,.
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P 1.235. Let a;, a,, ..., a, (n > 3) be positive real numbers such that a,a,---a, = 1.
Prove that

1 1 1
+ et
n—2+a;+a, n—2+a,+as n—2+a,+aq

<1

(Vasile C., 2008)
-2
First Solution. Let r = —=. We can get the desired inequality by summing the
n
following inequalities

n—2 <ag+a2+---+ar

n—2+a,+a,  aj+ay+---+a’

n—2 aj+a,+---+a
<
n—2+a,+a; ajta,+---+a

n—2 a,+a,+---+a’
<

n—2+a,+a, ~ aj+a,+---+a’

The first inequality is equivalent to
(a1 +ay)(a; +a, +---+a;)=(n—2)(aj +aj,).

By the AM-GM inequality, we have
a;+a,+---+a, = (n—2)aza, -a,)2 =

Therefore, it suffices to show that
a,+a; = (alaz)ﬁ(a; +a;),

or, equivalently,
1 n-2 n—2
a, +a, > (a,a,)» (al" +a," )

This is equivalent to the obvious inequality

ol ool 101
(al” —a," )(al” —az") > 0.
The equality holds for a; =a, =--- =a,,.

Second Solution. Since

Tl—2 a1+a2

n—2+a,+a, = n—2+a, +a,
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we can write the desired inequality as

n
Z a; + a4y >0,
= a;,+a; ., +n—2

where a,,; = a;. Using the Cauchy-Schwarz inequality, we get

n 2
n (Zv a; + ai+1)
i=1

a; t+a;
—'a;+a;,, +n—2

(a; + a1 +n—2)
i=1

ZZa +2 Z V0 +a;)(a; +aj)

1<i<j<n

ZZai +n(n—2)
i=1

Therefore, it suffices to prove that

Y V@ +a), +am)>Za +n(n—2).

1<i<j<n

Setting a,,, = a,, by the Cauchy-Schwarz inequality and the AM-GM inequality,
we have

Z \/(ai +a;1)(a;+a,) =

1<i<j<n

= Z \/(a +a;1)(@iy + A0) + Z \/(a +a;1)(aj+aj,)

1<i<j<n
jFI+1

n
2 Z (@i + Va@ia,) +n(n—3){/aa,-a,
i=1
n n
= Zai +n(n—3) +Z V4
i=1 i=1
n n
> Zai+n(n—3)+n1”/a1a2---an =Zai+n(n—2).
i=1 i=1

P 1.236. If a;,a,,...,a, = 1, then
1 s 11 1
[ [+ =+n—-2)>n"%a,+a+ - +a) [ = +—++—).

a, a a a
(Vasile C., 2011)
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Solution. Write the inequality as E(a,, a,, ...,a,) = 0, and denote

1 1 1
A=(a2+—+n—2)(a3+—+n—2)---(an_1+—+n—2).
as ay a,

We will prove that
E(ay,a,,...,a,) = E(1,a,,...,a,).

If this is true, then
E(ay,a,,...,a,) = E(1,a,,...,a,) = E(1,1,as,...,a,) = --- = E(1,1,...,1,a,) = 0.

We have
C
E(ay,a,,...,a,)—E(1,a,,...,a,) =(a; — 1) (B — a_) ,
1

where
1 1 1
B=A(an+n—2)—n”_2(—+_+...+_)’
Cl2 a3 an
1 n—2
C=Al—+n—2]|—n (a2+a3+...+an)'
az
Since a; —1 = 0, we need to show that

According to the AM-GM inequality, we have

a a a,_ a
iz (WZ) (Z) (=) =y

s a, a, a,

a,+n—2>(n—1)"Va,,

o L
Ala,+n—2)=>(n—1n"?*Y a,a;”" = (n—1)n"2,

therefore
1 1 1
B>n”_2(n—1 ————————— —)>O
a2 a3 an
and
1 n—2 1 n—2 1
a,B—C=B—C=A|aq,—— |+n a,—— |+---+n a,——]=0.
aZ a2 an

The equality holds when n —1 of the numbers a,, a,, ..., a,, are equal to 1.
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P 1.237. If a;,a,,...,a, = 1, then

1 1 1 n a, a, a,
a+—|lag+— ) |a,+— | +2"=2{1+—|(1+—=|---|1+— ).
a; a, a, a, as a;
(Vasile C., 2011)

Solution. Write the inequality as E(a,, a,, ...,a,) = 0, and denote

(o g) o)
A=lay+— |---|a,+— |,
a a
B:(1+@)---(1+a”‘1).

as a,

E(ay,a,,...,a,) = E(1,a,,...,a,).

We will prove that

If this is true, then

E(ay,ay,...,a,) > E(1,a,,...,a,) = E(1,1,as,...,a,) = --- = E(1,1,...,1,a,) = 0.

We have D
E(ay,a,,...,a,)—E(1,a,,...,a,) =(a; — 1) (C — a_) ,
1
where 0B
C=A——,
a
D =A—2Ba,.
Since a; —1 > 0, we need to show that
a,C—D >=0.

First, we prove that C > 0; that is,
(@+1)---(a>+1)=2(ay +as)--(a,1 +a,).
By squaring, this inequality becomes
(@+D[(a2+1)(a;+ D] [(a> ,+D(a>+D(a>+1) >

2 4(a2 + a3)2 et (an_l + an)z.

By the Cauchy-Schwarz inequality, we have
(@+1D(ai+1)=(ay+a5), ..., (@ +1)(a>+1)>(a,; +a,)
Therefore, we still have to show that

(ag + 1)(a§ +1) >4,
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which is clearly true for a, > 1 and a,, > 1. Finally, we have

1
alC—DZC—D=2B(an——)ZO.
as

The equality holds when n—1 of a,, a, ...,a, are equal to 1.

P 1.238. Let k and n be positive integers, and let a4, a,, ...,a, be real numbers such

that
a1Sa2<"'<a

- _ ne

Consider the inequality
(a+ay++ - +a,)" 2 n(a1ayq + Qylpp + -+ Q)

where a,,; = a; for any positive integer i. Prove this inequality for
(a) n=2k;
(b) n=4k.
(Vasile C., 2004)

Solution. (a) We need to prove that
(ay+ay+ -+ +ay)?* > 4k(a,a,q + a9y + - + arayy).
If x is a real number such that
A < X < Ay,
then
(x —ay)(ars —x) + (x = a) (@ = X) + -+ + (x —ar)(ag — x) = 0.
Expanding and multiplying by 4k, we get
dkx(a; + ay + -+ + ag) = 4k*x? + 4k(a1 gy + ApQpin + - + Qayy).
On the other hand, by the AM-GM inequality, we have
(a; +ay + -+ ay)* + 4k*x? > 4kx(a; + a, + - - + ay).

Adding these inequalities yields the desired inequality. The equality holds for

a —q _ —q _a1+a2+"‘+a2k
j+1 — Yj+2 — 77— Uik —
J J J Zk ’

where j € {1,2,--- ,k—1}.



Cyclic Inequalities 331

(b) We need to show that
(a;+ay+ -+ agy)* = 4k(a,ap,q + a9y + - + agay).
Using the substitution
bi=a;+ay, 1=1,2,..,2k,
this inequality becomes
(bl + bz +o-t bzk)2 = 4k(b1bk+1 + bzbk+2 +o- bkbzk);
which is just the inequality in (a). The equality holds for
Ajt1 = Ajp =" =0qjp = 4a
Ajrok+1 = Ajpok+2 = ° " = Ajpge = b ,

a, +a,+---+ay =2k(a+b)

where a < b are real numbers, and j € {1,2,--- ,k—1}.

IA
kl
INA

Remark. Actually, the inequality holds for any integer k satisfying

NI
e

P 1.239. If a,a,,...,qa, are real numbers, then

2
a,(a; +a,) + ay(ay + az) + -+ a,(a, +a;) = =(a; + a, +- -+ a,)*.
n

Solution. Making the substitution
1

a=—(a;+ay,+---+a,)
n

and

x,=aq;—a, i=1,2,..,n,

we have
X, +x,+-+x,=0

and

2
E a,(a; +a,)—=(a; +a,+---+a,)* = E (x; + a)(x; + x5 +2a) — 2na>
n

1
The equality holds for a; =a, =---=a, -if nisodd, and for a; = a; =--- =a,_;
and a, =a,=---=aq, - if n is even.

OJ
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P 1.240. If a, a,, ..., a, € [1, 2], then

where a, ., = a;.
(Vasile C., 2005)

Solution. Rewrite the inequality as follows

n

Z a; it > O,
—(a; + a;;1)(a; +2a;44)

|: a, — l+1) l _ i] > O,
1 (a; + al+])(a +2a;,1) dit1

Z (a; —a;1)[(k— 3)aiai+1 —a*—2d?,]

a;a;41(a; +a;4q)(a; +2a;47)

k>0,

i=

=0,

i=1
Setting k = 6, the inequality becomes

- (a;— ai+1)2(2ai+1 —a;)

— a;a;,1(a; +a;1)(a; +2a;,,)

Since 1 < a; <2, we have 2a;,; —a; >0 foralli=1,2,...,n. Thus, the inequality

is proved. The equality holds for a; =a, =--- =a,,.
O]

P 1.241. Let a,,a,,...,a, (n = 3) be real numbers such that a; + a, +---+a, =n.

(WIf a;=>1>a,>"--->a,, then
Cta+-+ad+2n>3(@i+ad+--+ad);
(b)If a,<1<a,<---<Za,, then
CHa+-+ad+2n<3@i+ad+--+ad).
(Vasile C., 2007)

Solution. (a) Write the inequality as

> (a®—3a?+3a,—1) >0,

> (a—1)* >0,

(,—1°21-a)’++(1—a,),
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[(1—a)++(1—a)P>1—-a)++(1—a,)’.

Clearly, the last inequality is true. The equality holds for a; = a, = --- =q, =1,
and also fora; =2,a,=---=a,;=1,a,=0.

(b) Similarly, write the inequality as

> (a®—3a?+3a,—1) <0,

Z(l—al)SZO,
(1—a;)’=(a,—1)P°+---+(a,—1)°,
[(ay—D++(a,—DP>(a,—1)P°+---+(a,—1)>.

The last inequality is obviously true. The equality holds fora; =ay, =---=a, =1,
and also fora, =0,a,=---=a,_;=1,a,=2.

P 1.242. Let a,,q,,...,a, (n = 3) be nonnegative real numbers such that a, + a, +
co4a,=n.

(@WIf a;=21>ay,>--->a,, then
al+al+---+al+5n>6(al+dai+---+ad);
(b If a;<1<a,<---<a,, then
al+aj+---+al+6n<7(ai+ad+---+ad).
(Vasile C., 2007)

Solution. (a) Write the inequality as

Z(aj’ —6a’ +8a; —3) >0,

> (a;—1)%(a; +3) 20,
(a;—1)*(a; +3) > (1—a,)*(ay, +3)+---+(1—a,)*(a, + 3).

Since
(-1 =[1-a)++(1—-a)P=Q—-a)’+---+(1—a,)’,
it suffices to show that

[(1—-a)’++(1—a,)l(a; +3)=>(1—a,)’(ay+3)+ -+ (1—a,)*(a,+3),
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which is equivalent to the obvious inequality
(1—a,)*(aq; —ay) +---+(1— an)s(al —a,)=0.

The equality holds fora; =a, =+ =aq, = 1.

(b) Write the inequality as
> (af—7a? +10a; —4) <0,
Z:(a1 — 1)2(af +2a,—4) <0,

(a,—1)*(a2 +2a,—4) + -+ (a,— 1)*(a’ +2a,—4) < (1—a,)*(4—2a, —a?).

Since

(1—a))?=[(a,= 1)+ +(a,—DP = (ay—1)* +--- + (a, — 1)%
it suffices to show that
(a,—1)*(az4+2a,—4)+- - +(a,—1)*(a’+2a,—4) < [(ay;—1)*+: - -+(a,—1)*1(4—2a,—a?),
which is equivalent to

(a,—1)*(a® + a2 +2a; +2a,—8) +--- + (a, — 1)*(a} + > + 2a, + 2a,— 8) < 0.
This inequality is true if
af+a§+2a1 +2a,—8<0.

Since

a,+a,=n—(ay+--+a,1)=2+1—ay))+---+(1—a,_;) <2,
we have

a’+a’+2a; +2a,—8=(a; +a,+1)*—9—-2a,a, <(a; +a,+1)*—9<0.

The equality holds fora; =a, =---=a, =1, and also fora; =0,a, =---=a,_; =
1,a,=2.
Remark. The inequality in (a) remains valid for all real a,, a,, ..., a, such that

a,+a,+---+a,=n, a=z21=za,2---2a,.
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P 1.243. If a;,a,,...,a, are positive real numbers such that
1 1 1
a=21za2--2a,, —+—+--+—=n,
a; an

then
CH+a+--+ad+2n=3(a; +a+ -+ ay).

(Vasile C., 2008)
Solution. Write the inequality as follows:
(a; —1)(a, —2) +(a; —1)(ag —2) + - +(a, —1)(a, —2) 2 O,

(a1 =1)(a; =2) 2 (1—a,)(ay —2) + - + (1 —a,)(a, — 2),

(1—%)(a%—2a1)2 (al—l)(a§—2a2)+~'+(aln—l)(aﬁ—zan)’

1 2

(B0 (s (e

1 1
(——1)(a%—2a1—a§+2a2)+---+(——1)(a%—2a1—aﬁ+2an)20,
a2 n

1 1

(——1)(a1—a2)(a1+a2—2)+---+(——1)(a1—an)(a1+an—2)20.
a a

Clearly, it suffices to prove that a; + a, —2 > 0. Indeed,
a+a,—2=n—2—(ay+---+a,,)=01—a,)+--+(1—a,_;)=0.

The equality holds for a; =a, =---=a, = 1.

P 1.244. If a;,a,,...,a, are real numbers such that

a,<1<a,<---<qa,, aqtay+---+a,=n,

then
a+1 a,+1 a,+1
(a) ; g ’21 <n;
a;+1 a;+1 an+1
1 1 1 n
(b) 3 +— +ot— < -
a;+3 a;+3 a;+3 4

(Vasile C., 2009)
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Solution. (a) Write the inequality as

a; +1 a,+1 a,+1
1—-— +{1—— +--+ | 1= =0,
a;+1 ay+1 az+1

a;(a; —1) az(az_l)_'_“'_i_an(an_l) >0

az+1 as+1 az+1 ’
a(a,—1) I a,(a,—1) > a;(1—ay)
az+1 a2+1 — a+1 "’
aZ(aZ_l)_i_“' an(an_l) > al[(a2_1)+'“+(an_1)]
az+1 a2+1 a+1 ’

a, a; a a,
a,—1 - +---+(a,—1 - =0,
(a; )(a§+1 af+1) (a, )(afl+1 af+1)
(a;—1)(a; —a;)(1—a;a,) 4t (a,—1)(a,—a;)(1—aa,) >0
az+1 az+1

For a; > 0, it suffices to show that 1 —a;a, > 0. Indeed,
2y/aqa, <a+a,=2+(1—a)+--+(1—a,4)<2.
For a; <0, the inequality is also true because
l1-aya,>0, ---, 1—a;a,>0.

The equality holds fora; =a, =---=a, =1.

(b) As in the case (a), we write the inequality as

(ay—1)(ay—a;)(83—aja, —a; — a2)+- ) _+(an —1)(a,—a;)3—aja,—a; —ay,)

> 0.
a+3 a+3

For a, > 0, it suffices to show that 3—a,a,—a; —a, = 0. From (1—a;)(a,—1) >0,
we get 3—a,a, = 4—a, —a,, hence

1
E(S—alan—al—an)z2—a1—an=(a2—1)+---+(an_1—1)20.

For a; < 0, the inequality is also true because

3—aya,—a;—a,>2—a,—a,=(a;—1)+:--+(a,—1) =0,

3—aa,—a;—a,>2—a;—a,=(a,—1)+--+(a,.;,—1)=0.

The equality holds fora; =a, =---=a, =1.
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P 1.245. If a;,a,,...,a, are nonnegative real numbers such that
alﬁlﬁazﬁ"'ﬁan, a1+a2+"'+an:n,

then
2 2 2
a1—1 a2—1 an—l

+ ot >0,
(a; +3)*  (ay+3)? (a, +3)?

(Vasile C., 2009)
Solution. Write the inequality as follows:

2 2 )
a; 1 a 1 1 a;j

- s + cee + 2 ,
(az +3)? (an +3)? (al +3)?

-1 o, Gl (D4t (g, = DI +ay)
(ay +3)? (a,+3) ~ (a; +3)? ’
a,+1 a; +1 a,+1 a;+1
(“2‘”[(az+3)2_(a1+3)2]+”'“““‘”[(an+3)2_(a1+3)2]2 ’
(@, —1)(ay—a;)(8—a; —ay—a;a,) (a,—1)(a,—a,)8—a; —a,—a,a,) >0
(a; +3)*(a, +3)> (a; +3)*(a, +3) T

It suffices to show that 3 —a; —a,, —a;a, = 0. Since
3—a;—a,—a;a, > 3—a1—an—%(a1 +a,)* = %(Z—al—an)(6+a1 +a,) >0,
we only need to show that 2—a; —a, > 0. Indeed, we have
2—a;—a,=(a,—1)+---+(a,_;—1)=0.

The equality holds for a; =a, =---=a, = 1.

P 1.246. If a,,a,,...,qa, are nonnegative real numbers such that

a1212a2>”'>a

= = a,, a+a,+---+a,=n,

then
1 1 1

514 3@+4 Taarac
1 2 n

NI =

(Vasile C., 2009)
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Solution. Write the inequality as follows:

1 1 1 1 1 1
5.4 7T T T e et
3a3+4 7 3¢3+4 7)77 3ad+4
3 3
1—a; . 1-a’ S a1—1’
3a3+4 3a3+4 "~ 3ad+4

1—al 1—a >[(1—a2)+---+(1—an)](1+a1+af)

oot >
3a;+4 3ad +4 3al+4

1+a,+a?> 14+a, +d? 1+a,+a®> 1+4+a, +d?
(1—a,) 22~ 1l)i.4(1—q, o b
3a3+4 3aj; +4

3a3 + 4 3a3 +4
It suffices to show that
14a,+a’> 1+a,+ad?
3a’ +4 - 3a3+4

fori =2,...,n. Write these inequalities as
(a; —a;)E; = 0,

where

E;=3d’a’ +3a,a;(a; + ) + 3(a® + aya; + a?) —4(a; + @) — 4

= (a; + a;)(3a; +3a; — 4+ 3a,a;) + 3a}a’ — 3a,a; — 4.

Since
a,+a;=>a;+a,=2+1—ay)+--+(1—a,_,)=2,

we have

E; > 2(6—4+3a,a;) +3a’a’ —3a;a; — 4 = 3a;q; + 3ala’ > 0.

The equality holds fora; =a, =---=a, =1,and also fora; =2,a, =---=a,_; =

1,a,=0.

P 1.247. If a;,a,,...,a, are nonnegative real numbers such that

a,<1<a,<---<qa,, a+a,+---+a,=n,

3a, 3a, 3a,
+ 4+t <n.
4—a, 4—a, 4—a,

then

]

(Vasile C., 2009)
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Solution. Write the inequality as follows:

3a; 3a, 3a,
—1 |+ —1 |4+ —1|<o.
4_a1 4_a2 4_an

a;—1 a,—1 a,—1
+ oot <0,
4—a;++/3a;(4—a;) 4—a,+ +/3a,(4—a,) 4—a,+ +/3a,(4—a,)
a,—1 a,—1 <(a2—1)+---+(an—1)

4—a,+ 3a2(4—a2)+m+4—an+m_4—a1+ 3q,(4—ay)
(a,—1)E,+---+(a,—1)E, =0,
where
E 1 1

a 4—a; + \/3a1(4—a1)_4—aj+ 1/3aj(4—aj)’

It suffices to show that all E; > 0. The inequality E; > 0 is equivalent to

j=2,...,n.

V34,(4—a)—+/30,(4—a)) > a;—a,,
3(a;—a;)(4—a; —a;) -
V3a,(4—a)++/3a,(4—a;) !

_al.

This is true if

\/3a1(4—a1) + \/Baj(4— a;) <3(4—a;—aj).

We have
ata—2<a+a,—-2=(1-a)+--+(1—-a,,)<0.
Denote
x=a+a; x=<2.
Since

V3a(4—a)+ \/3aj(4_aj) S \/2[3a1(4—a1) +3a;(4—a;)] < v24x —3x2,

it suffices to show that

VvV 24x —3x2 < 3(4—x),

which is equivalent to the obvious inequality
(2—x)(6—x)=0.

The equality holds fora; =a, =---=a, =1.
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P 1.248. If a;,a,,...,a, are nonnegative real numbers such that
a,<1<a,<---<a, a+a+---+a’=n,

then
1 1 1

+ 4+t

3—a; 3—a, 3—a

(Vasile C., 2009)

Solution. Write the inequality as follows:

(55— 1)+ (5 1)+ + (55 -1 =0
3_a1 3—611 3_a1

a—1 a,—1 a,—1
+ 4+t <0,
3—a; 3—a, 3—aq,
a,—1 an—lsl—al’
3—a, 3—a, 3—q
a:—1 a—1 1—a?
4o+ < ,
(1+a)(3—ay) (1+a,)B—a,) (1+a)B—ay)
az—1 a’*—1 (@—1)+-+(a®—-1)
4+t g < < ,
(1+ay)(3—ay) (1+a,)B—a,) (1+a))B—ay)

(@2—1DEy+---+(a>—1)E, <0,

where
1 1

5= 1+a)B—a) (1+a)B-a)

It suffices to show that E; < 0, which is equivalent to

j=2,...,n.

This is true because
g, +a;,—2<a;+a,—2=(1—ay)+:--+(1—a,,)<0.

The equality holds for a; =a, =---=a, = 1.

P 1.249. If ay,a,,...,a, are real numbers such that
a,<1<a,<---<qa,, a+a,+---+a,=n,

then
1+a)(A+a)---(1+a’)=2"

(Vasile C., 2009)
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Solution. Use the substitutions a; =1—3S and
a,=by,+1, ..., a,=b,+1,
where S and b,,..., b, are nonnegative real numbers such that
S=by+---+b,.
We have 1 1
—(1+a®)=1-S5+=5?
2( 1) 2
1 2 1 2 .
—(1+a’)=1+b;+=b7, i=2,...,n,
2 ' 2!
and, by Lemma below,

1
2n—1

1 1

Therefore, it suffices to show that

1 2 1 2
1-S+=8*|{1+5+=8?|>1,
2 2

which is equivalent to S* > 0. The equality holds fora; =a, =---=a, = 1.
Lemma. If ¢, c,,...,c, are nonnegative real numbers such that ¢; +c,+---4¢, =S,
then

1 1 1 1
(1+cl+§cf)(1+02+§c§)---(1+ck+Ec,f)21+S+582.

Proof. We have

12 12 12 12
l_[(l+ci+§ci)21+2(ci+§ci)+ Z (ci+§ci cj+§cj

1<i<k 1<i<k 1<i<j<k
1,
=1+ Z (ci+£ci)+ Z CiC;
1<i<k 1<i<j<k
1 2
=1+S5S+ =5
2
U
P 1.250. If a;,a,,...,qa, are positive real numbers such that

a,=21>2ay,2---2aqa,, aay--a,=1,

then
1 1 1

+ +-
a;+1 a,+1 a,+1

NS

(Vasile C., 2009)
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Solution. We use the induction method. For n = 2, the desired inequality is an
identity. Let us denote

1 1 1 n
En(alz a23 AR an) =

= + 4ot ——.
a+1 a,+1 a,+1 2

We will show that

E.(a;,a,,as,...,a,) = E,(a;a,,1,as,...,a,_1,a,) =0
forn > 3.

The right inequality can be written as

E, i(a;a,,as,...,a,4,a,) = 0.

Since
1
aa, =——2>1
a3 e an—lan
and

(alaz)a3 crlp 1A = 1,

the right inequality follows by the induction hypothesis.
The left inequality is equivalent to

1

1 1 1
+ >
a; +1

a+1 aa+1 27

2(ay, +1) ~ (a; + 1)(aja, +1)’

which is true if

(a; + 1)(aya, + 1) = 2a,(a, + 1).
This inequality can be written in the obvious form

(al - 1)(a1a2 - ].) 2 0.
The equality holds fora; > 1=a,=---=a,_; > a,

P 1.251. If a;,a,,...,qa, are positive real numbers such that

a1212a22'“20

n» a1a2"'an:1:

then
1 N 1 . 1 S n
(a; +2)2  (a,+2)? (a,+2)2 9

(Vasile C., 2009)



Cyclic Inequalities 343

Solution. We use the induction method. For n = 2, the desired inequality is equiv-
alent to
(e, —1)*>0.

Let us denote

1 1 1 n

(a; +2)2  (a,+2)2 (a,+2)*2 9

E, (a;,a,,...,a,)

To end the proof, it suffices to show that
E.(ay,a,,as,...,a, 1,a,) = E,(a;,1,as,...,a,_1,a,a,) =0

forn> 3.
The right inequality can be written as

E, ,(ay,as,...,a, 4,a5a,) = 0.
Since
azan S an S an—l

and
a,as...a, ,(aya,) =1,
the inequality follows by the induction hypothesis.
The left inequality is equivalent to

1 1 1 1
S+ o> .
(a, +2) (a,+2) 9 (aya,+2)

Denoting
s=a,+a, p=aa, S$<2, p<I,

the inequality becomes

s2+4s+8—2p >p2+4p+13
(2s+4+p)> — 9(p+2)2

5

(1+p—s)(As+B)>0,

where
A=16—20p—5p% B=80—32p—29p>—p3>0.

Since
1+p—s=(01—-a,)(1—a,) =0,

we only need to show that As + B > 0. For the nontrivial case A < 0, we get
As+B>2A+B=112—72p—39p*—p® = (1—p)(112+40p + p*) > 0.

This completes the proof. The equality holds for a;, =a, =---=a, = 1.
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Remark. Similarly, we can prove the following generalization:

e leta,,a,,...,a, be positive real numbers such that

a=1=2a,=2--->a a,a,---a, =1.

If k> 1, then

RS S S
(a, + )k (ap+ k) (a, + Kk = A+ k)

For n = 2, the desired inequality is true if g(x) > 0 for x > 1, where

__ 1 x2
T (x+kk (kx+ 1Dk (1+k)K

g(x)

g/(x) B Xk—l(x + k)k+1 _ (kx + 1)k+1
k(O + k)< (kx + 1)k+!
It suffices to show that h(x) > 0 for x > 1, where

h(x)=(k—1)Inx + (k+1)In(x + k) —(k+ 1) In(kx + 1),

—1 k+1_KGe+D) k(=10 —17
x x+k kx+1 (x+k)(kx+1)"

Since h’(x) > 0, h(x) is increasing for x > 1, hence

R(x)=

h(x) > h(1) =0.

Let

_ 1 + 1 P 1 __n
" (@ Rk (ap+k)k (@, + k¥ (14K

E.(ay,a,,...,a,)

It suffices to show that
E.(ay,ay,as,...,a,_1,a,) = E,(ay,1,as,...,a,_1,a,a,) = 0.

The right inequality follows by the induction hypothesis, while the left inequality
is equivalent to

filay) + fi(a,) = £1(1) + fr(asa,),

where
1

(x + k)k

filx) =

Using the substitution
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the inequality becomes

fl@)+f(b)= f(O)+ f(a+b),

where ,
fl)= T
From K2ex( .
" _ eX(e* —
fr)= (ex + k)k+2

it follows that f is concave on (—oo,0]. Since
O0>a=>b>a+b,

the inequality f (a) + f(b) = f(0) + f (a + b) follows from Karamata’s inequality.
O]

P 1.252. If a;,a,,...,a, are positive real numbers such that

a=21=2a,=2---=>a a,a,---a,=1,

n»
then

1 1 1
a?+a§+---+ar’:—n2nz(—+—+---+——n).
a a an

(Vasile C., 2009)

Solution. We use the induction method. For n = 2, the desired inequality is equiv-
alent to
(e, —1)*>0.

Let us denote

1 1 1
En(al,az,...,an)=a’11+a§+---+ar’:—n—n2(—+—+---+——n).
a, a, a,

We will show that
E.(ay,a4,as,...,a,1,a,) = E,(ay,1,as,...,a,_1,a,a,) = 0.
The right inequality can be written as
E, ,(a;,as,...,a,_1,a,a,) = 0.

Since
a,a, <a, <da,_;
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and
a,az---a, (aa,) =1,

the inequality follows by the induction hypothesis.
The left inequality is equivalent to

1 1 1
a;‘+ag—1—a§a22n2(—+——1— ),
aZ an azan

1 1
n® (— — 1) (— — 1) > (1—ay))(1—a)),
a2 an

which is true if

2

>(1+ay+--+a HNA+a,+---+a ).
a,a,

Since a, < 1 and a, < 1, this inequality is clearly true. The equality holds for

ag=a,=---=a,=1.
]

P 1.253. If a;,a,,...,a, (n = 3) are real numbers such that
a, +a,+---+a,=n, a,=a,=21=2a3=---=a,,

then 14
4, 4 4 2, 2 2
a1+a2+---+an—n2?(a1+a2+---+an—n).

(Vasile C., 2009)
Solution (by Lingaszayi). Using the substitution
a=1+x;, i=1,2,...,n,
which implies

X12XZZOZXB>"‘>X

- - n»

X1+X2+"'+Xn:0,

we need to show that E(xy, x,,...,x,) = 0, where

n n n
E(x1,X0,Xs,...,X,) = Bfo' + 122xi3 + 4in2.
i=1 i=1 i=1

We will prove that

E(x1,Xx9,...,x,) = E
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The left inequality is true because
Xy + x\* Xy +x5\3 Xxq + x5\?
x> a(BEY ) aiasa(BN) gy s p(ntny
2 2 2

To prove the right inequality, we replace xs, ..., x, with —x3,...,—x,. So, we need
to show that
X1+X2=x3+"'+xn, xl,xZ,x?’,...,anO,

involves
E4+30xf+--+xH—1203 4+ +x)+4(x2+---+x2) >0,
where

+ 4 + 3 + 2
E:6(¥) +24(¥) +8(¥) — 6A" + 244° + 8A2,

with
A:X3+' +Xn
2
Since 4 4 3 3 2 2
X+ +X xX;+-+Xx X3+ +Xx
At> 13 o> o> ’
16 8 4
we have
3
EZg(x§+---+x;‘)+3(x§+---+x3)+2(x§+---+x§).

Therefore, it suffices to show that
3
(g+3)(x§+~--+x3)+(3—12)(x§+~~+x§)+(2+4)(x§+---+x§)z 0,

which is equivalent to the obvious inequality

x2(Bx3—4) +---+x2(3x2—4)*>0.

This completes the proof. The equality holds for a; = a, = --- =a,, = 1, and also
for
5 o . -1
al—az—g, a3 =---=a,; =1, an—?.
O
P 1.254. Let a,,a,, ..., a, be positive real numbers such that

a1212a22"'2an, alaz“'an:]..

Prove that
l—a;, 1-—a, 1—aqa,

> 4+ > 2>0.
3+a; 3+a; 3+an

(Vasile C., 2013)



348 Vasile Cirtoaje

Solution. We use the induction method. For n = 2, the desired inequality is equiv-
alent to

(a;—1)*=>0.
Let us denote
l—a; 1—aqa, 1—a,
E (a;,a,,...,a,)= R .
(@1, ) 3+a® 3+a 3+a2
We will show that
E.(ay,...,a, 5,0, 1,a,) = E,(ay,...,a,_5,1,a,_1a,) = 0.

The right inequality can be written as
E, i(ay,ay,...,a, 5,0, 1a,) = 0.
Since
al 2 ]. ZQZZ R Zan_2 Zan_lan,

and
ady - an—Z(an—lan) =1,

the inequality follows by the induction hypothesis.
The left inequality reduces to
l-a,;, 1—a,_ 1—a,,a,
3+ a? 3+a? " 3+4a? a¥

n—1

which is equivalent to the obvious inequality

(1 _an—l)(]- _an)(3 + an—lan)(3 —a, 14, —Cl2 a _an—laﬁ) > 0.

n—1"n
Thus, the proof is completed. The equality holds for a; =a, =---=a, = 1.
O
P 1.255. Let ay,a,,...,a, (n > 3) be nonnegative real numbers such that
=2 z2q=2l>2aq,=>-=2a, 1<k<n—1,
and
a +a,+---+a,=p.
Prove that

(@) if p=k, then

2 2 2 2 .
ajta;+--+a, <(p—k+1)+k—1;
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() if k<p<n, then

2
P s P"—2kp+kn
a1+a2+---+an>T,

(c) if p=n, then

2_2(n—k)p+n(n—k
af+a§+---+a32p (n I)cp n(n ).

(Vasile C., 2015)

First Solution. (a) For k = 1, the inequality is equivalent to a® + a3 +---+a’ < p?,
which is clearly true. For k > 2, write the inequality as

[(p—k+1)Y—a}l+(Q—a)+--+(Q—a))—a;,,——a>>0,
(p—k+1—a))(n—k+1+a;) > (a,—1D)(ay+ 1)+ +(ay—D(ar+ 1) +a;,  +---+a’.
Since

p—k+l—a, =(a,— 1)+ +(q,—1D)+a1+--+a,=0
and

(p—k+1+a;))—(a,+1)=(p—k+1—a;)+(a;—a,)+(a;—1) =0,
we have
(p—k+1—a)p—k+1+a;))=(p—k+1—a;)(a,+1).
In addition, we have

(a,—D)(ay+1)+---+(ap—1)(a,+1) < (a,—1)(a,+1)+---+(ap —1)(a, + 1)
=(ay+---+a—k+1)(a,+1).

Thus, it suffices to show that

(p—k+1—a)(a,+1)=(ay+ - +a—k+1D(ay+ D +a;,, +---+a’,

which is equivalent to

(@ +-+a)a+1)>a;, +---+a’.

Indeed, we have
(@ +-+a)a+ D> aq ++a,>a;, +--+a’.

The equality holds for

Cllzp—k-l-l, a2:...:ak:1’ ak+1:...:an:0'
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(b) Let
A=a;+-+aq, B=a,+ - +a, A>k, A+B=p<n.
We have
A <k(ai+---+a}), B*<(n—k)a;,,+--+ad’),
hence
A? B?
-E+n_kSa?+@+-~+ﬁ.

Thus, it suffices to show that

n—k

A%+ B? > p?—2kp + kn,

which is equivalent to

n;kA2+BZZ(A+B)2—2k(A+B)+kn,
—2k
L A+ 2kA—kn = 2kB(A—K),
—2k
(A—k)(n A+n)22kB(A—k),
(A—k)(n_ZkA+n—2kB)20,
(A—k)[%(A—k)+2(n—A—B)]20.
The equality holds for
—k
a =-=aq =1, ak+1='”=an=p .
n—k
(c) Let
A=a;+--+aq, B=a 4+ +a, B<n—k, A+B=p=>n.
We have
A <k(a®+---+a}), BZS(n—k)(ai+1+---+ai),
hence

A*  B? )
-+ <a
k n—k~ 1!

Thus, it suffices to show that

2 2
+ai+--+a

k
A%+ mBz >p?—2(n—k)p+(n—Kk)n,
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which is equivalent to
k
A+ —sz > (A+B)*—2(n—k)(A+B) +(n—Kk)n,
n —_—

2k _k“B2 +2(n—k)B—(n—k)n >0,

2A(n—k—B) +
n_

2A(n—k—B)—(n—k—B)(n+Zk:knB)ZO,
2k—n

B|>o0
i5)zo

(n—k—B)(ZA—n— —

(n—k—B)[Z(A+B—n)+n(n_—kk_B)] > 0.
n_
The equality holds for
p—n+k
01:"':ak:—k s Qg =""=0a, =1L

Second Solution. The desired inequalities can be proved by applying Karamata’s
inequality to the convex function f(u) = u?. In the case (a), the decreasingly
ordered sequence (p —k +1,1,...,1,0,...,0) majorizes the decreasingly ordered
sequence (a;,a,,...,a,); that is

(p—k+1,1,...,1,0,...,0) > (ay,0ay, . -, A, Q15 - - - » Ayy)-

Also, in the cases (b) and (c), we have

—k —k
(ay,a9, . ., Qs Qpyqy -+, Ay) > (1,1,...,1,p k,...,p )
n

— n—k
and
p—n+k p—n+k p—n+k
(al,az,...,ak,ak+1,...,an)>( P PEETRE - ,1,...,1,
respectively
O
P 1.256. Let a,,a,,...,a, (n > 3) be nonnegative real numbers such that
G2z =2lz2aq=>--2a, 1<k<n—1,
and

al_i_az_|._..._|_an:nJ a%+a§+...+arzl:q’
where q is a fixed number. Prove that the product r = a,a, - - - a,, is maximum when
GQ==q=1, a4 ="=a,

(Vasile C., 2015)
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Solution. We show first that there exists a unique n-tuple (a;, a,, ..., a,) such that
GZa= =G =12 q, = =,
By the Cauchy-Schwarz inequality

nai+a+---+a’)=>(a+ay+---+a,)’,

we get ¢ > n. Since ¢ = n involves a; = a, = --- = a,, = 1, consider further that
q > n. For

a:=x, aQ=-=q,=1, @ =-=a,:=Y,
we get

n—k+1 (n—k)(n—k+1)
Since x > 1 and y < 1, we only need to show that y > 0. This is equivalent to

X:an—k)(q—n), y=1—\J g—n

g<(n—k+1>*+k—1,

which is the inequality (a) in P 1.255.
Consider that r is maximum at (b4, b,,..., b,), where

by>-->b,>1>b,, > ->b

ne

We will show now, by the contradiction method, that

by=-+-=b =1, buy=-=b,
To show that by, =---=Db, for 1 <k < n—2, assume that
bk+1 7& bn'
For
a; = bZ’ cees g = bk: Qg2 = bk+2: cees Qg = bn—1>

2

— 2
we have a; + a4, + a, = constant and aj + a;, ,

+a’ = constant, where
a,=1=a,,=a,.

According to P 1.168, the product a,a;,,a, is maximum for a;,, = a,, which con-
tradicts the assumption that b, # b,. From this contradiction, it follows that

byyy == by.
To show that b, =--- =b;, =1 for 2 < k < n—1, assume that
by, # 1.
For

as=bs, ..., a,_1,=>b,_4,
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we have a, + a, + a, = constant and a? + a; + a> = constant, where
a,=a,=1=>a,.

According to P 1.171, the product a;a,a, is maximum for a, = 1 or a, = 1. The first
case contradicts the assumption that b, # 1, while the second case involves b,, = 1,
hence by =b,=---=b, =1 (because b; > b, > ---> b, and b;+b,+---+b, =n),
which also contradicts the assumption that b, # 1; as a consequence, we have
b, =1, which involves b, =--- = b, = 1.

O

P 1.257. If a;,a,,...,a, are nonnegtive real numbers such that

a,<1<a,<---<qa,, aq+tay,+---+a,=n,

then .
(qay---a)i(ai+ai+---+a’) <n.

(Vasile C., 2015)

Solution. For n = 2, we need to show that a; + a, = 2 implies
a;a,(a® +al) < 2.
Indeed, we have
16— 8a1a2(af + ag) =(a;+a,)*— 8a1a2(af + ag) =(a;—a,)*>0.

For n > 3, according to the preceding P 1.256, it suffices to consider the case
a, =---=a,_; = 1. Thus, we only need to show that a; + a,, = 2 involves

20 9 2
(a,a,)"(aj +a;+n—2)<n.

This is true if f(x) <Ilnn for x €(0,2), where
flx)= E[lnx +1n(2—x)] +In(2x* — 4x +n+2).
n

From the derivative

(1 1 )+ 4(x—1) 4(n+2)(1—x)3

, 2
X)=—| —— s ,
F1) 2—x 2x2—4x+n+2 nx(2—x)(2x2—4x+n+2)

n

it follows that f(x) is increasing on (0, 1] and decreasing on [1, 2); therefore,

f(x)<f(A)=Inn.

The equality holds fora, =a, =---=a, =1.
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P 1.258. Let a;,a,,...,a, (n > 3) be nonnegative real numbers such that
alz-'-Zak212ak+12"'2an, ]-Sksn_]-:

and

a+ay+--+a,=p, adH+a+---+a’=gq,

where p and q are fixed numbers.

(a) For p < n, the product r = a;a, - - a, is maximum when a, = --- =q;, =1
and Qg4 =+ = Ay

(b) For p > nand q = n—1+(p—n+1)? the product r = a,a, - - - a,, is maximum
whena,=--=q,=land aj,; =---=a,;

(c) For p > nand q < n—1+(p—n+1)?, the product r = a;a, - - - a,, is maximum
whena,=---=q.and qj,; =---=a, = 1.

(Vasile Cirtoaje and Linqaszayi, 2015)

Solution. (a) For p =k, we have
ag==aq.=1, aq =-=a,=0.

Consider further that p > k. We show first that there exists a unique n-tuple
(a;,a,,...,a,) such that

According to P 1.255, we have

2 _2pk+kn
LSqS(p—k+1)2+k—1.
n—k
Fora, :=x,a,=---=q,=1land q;,; =---=a, :=Y, from
— 2 2 2 __
a,+a,+---+a,=p, aj+a;+---+a, =q,
we get

x+(n—k)y=p—k+1, x*+(n—k)y>=q—k+1.
We need to show that this system has a unique solution (x, y) such that x > 1 >
y = 0. From the system equations, we get f(x) = 0, where

fxX)=(n—k+Dx*—2p—k+Dx+(p—k+1)P*—-(n—k)(q—k+1).

We have ,
f(1)=(n—k)(‘$"k+’m—q)so

and
flp—k+1)=(n—-k)[(p—k+1) +k—1—q]>0.
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Therefore, the equation f (x) = 0 has a single root x € [1,p—k+1]. From 1 < x <
p—k+1,we get
1<p—k+1—(n—k)y<p—k+1,

hence
p—k
1> >y > 0.
n—k
Consider now that r is maximum at (b,, b,,..., b, ), where

by=2---=2b,=21=2b1=---=b,.
Applying the contradiction method as in P 1.256, we get
by=---=b,=1, b, =---=b,.
(b) We show first that there exists a unique n-tuple (a;, a,, ..., a,) such that
G =a,==q=1=a,,=-"=a,
By hypothesis and P 1.255-(a), we have
n—1+(p—n+1)<q<(p—k+1)+k—1.
As in the case (a), we need to show that the system
x+(n—k)y=p—k+1, x*+(n—-k)y>’=q—k+1,

has a unique solution (x, y) such that x > 1 > y > 0. From the system equations,
we get g(y) =0, where

g(y)=(n—k)(n—k+1)y*-2n—k)(p—k+1)y+(p—k+1)*+k—1—q.

We have
g(0)=(p—k+1P+k—1—qg=>0

and
g)=(p—-n+12+n—1—q<0.

Therefore, the equation g(y) = 0 has a single root y € [0,1]. From y < 1, we get

:p—k+1—x <

n—k -
hence
x=z2p—n+1=1.
Consider now that r is maximum at (b,, b,, ..., b, ), where

by>-->b,=>1>by>--->b,
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Applying the contradiction method as in P 1.256, we get

by =+ = b,
We still need to show that
b,=---=b,=1
for k > 2. Assume for the sake of contradiction, that
b, # 1.
For
as = b37 s Ap = bn—lﬁ

we have a; +a,+a, = constant and a>+a’+a? = constant, where a; > a, > 1>
a,. According to P 1.171, the product a,a,a;,; is maximum for a, =1 or a, = 1.
The first case contradicts the assumption that b, # 1. The second case leads to
b, =1, hence b,,,; = --- = b, = 1. From the hypothesis g > n—1+(p—n+1)? and

q=b’+---+b+n—k, p=b+---+b.+n—k,

we get
b2+--+bi—k+1>(by+--+b.—k+1)

which is equivalent to
(b =1+ +(b—12=[(b;—1)+---+ (b — 1]~

This is true only if

by—1=---=b,—1=0,
that is,
by=---=1b.
This result contradicts also the assumption that b, # 1; as a consequence, we have
b, =1, which involves b, = --- = b, = 1.

(c) By hypothesis and P 1.255-(c), we have

p?—2(n—k)p +n(n—k)
k

For k = 1, these inequalities become

<g<n—1+(p—n+1)>

n—1+(p—-n+12<qg<n—1+(p—n+1)>
which is not possible. Consider further that
k> 2.
We show first that there exists a unique n-tuple (a;,a,, ..., a,) such that
=1.

QG 2Ay =" = A 2 Ay = = Ay



Cyclic Inequalities 357

Fora, :=x,a,=---=q,=yand a;., =+~ =a, =1, from
a;ta,+--+a,= ad+ai+--+at=
1 2 n b, 1 2 n q,

we get
x+(k—-1)y=p—n+k, x*+(k—1)y*=q—n+k.

We need to show that this system has a unique solution (x, y) such that x > y > 1.
From the system equations, we get h(y) = 0, where

h(y)=(k—Dky*—2(k—1)(p—n+k)y+(p—n+k)*+n—k—q.

We have
h(D)=(p—-n+1*+n—1—q¢>0
and
h(p—n+k) _ p?—2(n—k)p +n(n—k) _q<o0.
k k
Therefore, the equation hy) = 0 has a single root
p—n+k]
ell,——|.
ye(1.2
From
p—n+k—x < p—n+k
- k-1 Tk
we get
p—n+k
xX=—2>y.
k
Consider now that r is maximum at (b,, b,,..., b, ), where
by=2--->2b,=21>2by,1=--=b,.
We need to show that
by=-+=by buy=r=b,=1
To show that b, = --- = b, for k > 3, assume for the sake of contradiction that
by # by.
For
a3:b3>“'>ak—1:bk—1’ ak+1:bk+1""5an:bn’

we have a, + a, + a; = constant and a? + a; + a; = constant, where
a; =a,=a,=1.

According to P 1.169 the product a, a,a; is maximum for a, = a;, which contradicts
the assumption that b, # b,.
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To show that b;,; = --- = b, for k < n— 2, assume for the sake of contradiction
that
b1 7 by
For
ay = by, -+, a; = by, Q2 = bryo, v 5@y = byg,

2

— 2
we have a; + ay,, +a, = constant and aj + q;_,

+a’ = constant, where
a;=1=>a, =a,.

According to P 1.168, the product a;a;,,a, is maximum for a;.; = a,, which con-
tradicts the assumption that b, , # b,. Therefore, we have

bzz...:bk::x’ bk+1:---:bn::y.

To end the proof, we still need to show that y = 1. Assume, for the sake of contra-
diction that

y#1

For
Cl3 = b3’ Tt ’an—l = bn—l)

we have a, + a, + a, = constant and a? + a3 + a> = constant, where
a;=2a,=21=>a,.

According to P 1.171, the product a;a,a, is maximum for a, = 1 or a, = 1, hence
for y = 1 or x = 1. The first case contradicts the assumption that y # 1. The
second case leads to

by=--=b,=1, by, =--=b i=y<l.
From the hypothesisq <n—1+(p—n+1)? and
q=b+k—1+(n—k)y*>, p=b+k—1+(n—k)y,

we get
bi+(n—k)(y* =1 <[by+(n—k)(y —1F,

which is equivalent to
A-Iln—k-1)(1-y)—2(b;—1)]=0.
Under the assumption that y < 1, this inequality implies
(n—k—1)(1—y)=2(b;—1).
On the other hand, the condition p > n is equivalent to

b—1=(—k)(1—y).
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Thus, we have
(n—k—1)A—-y)=2(b;—1) =2 2(n—k)(1—y),
which involves
—(n—k+1)(1—y)=0.

This result contradicts also the assumption y # 1.
Remark 1. For p = n, from P 1.258 we get P 1.256.

Remark 2. From P 1.258, we get the following simplified statement.

e Let ay,a,,...,a, (n=>3) be nonnegative real numbers such that

a,>->aq>1>a,,>->a 1<k<n-—1,

n’»

and
a+ay+--+a,=p, d+a+---+a’=gq,

where p and q are fixed numbers. Then, the product r = a,a, - - - a, is maximum when

GQ==q=1, aq,==aq
or
Ay ===y, Qg = =a, =1L
O]
P 1.259. If a,,a,,...,a, (n = 3) are nonnegative real numbers such that
a<a,<1<a;<---<q,, aqtay+---+a,=n—1,
then

a@+ai+---+a’+10a,a,---a, <n+1.

(Vasile C., 2015)

Solution. According to P 1.258-(a), it suffices to prove the inequality for
a,=da,, a3=---=a,,=1.
Thus, we need to show that
2a+b=2, 0<a<1l/2 b>=1,

implies
2a*+(n—3)+b*+10a*b <n+1,
which is equivalent to
2a%+ b%+10ab < 4,
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2a*+(2—2a)* +10a%*(2 —2a) < 4,
2a(1—2a)(4—5a)>0.
The equality holds for

and for

P 1.260. If a,b,c,d, e are nonnegative real numbers such that
a<b<1l1<c<d<e, a+b+c+d+e=8,

then
a’+ b2+ c2+d?+e*+3abcde < 38.

(Vasile C., 2015)

Solution. According to Remark 2 from P 1.258, it suffices to prove the inequality
for

and for
a=b=1, c=d.

Case 1: a=b, ¢=d = 1. We need to show that
2a+e=6, 0<a<l, e>4,
implies
2a* + 2+ e* + 3a’e < 38,

which is equivalent to
2a® + e? + 3a’e < 36,

a*+2(3—a)*+3a*(3—a) < 18,
3a(a—2)*>0.
The equality holds for

Case 2: a=b =1, c=d. We need to show that

2c+e=6, 1<c<2<e<4
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implies

which is equivalent to

The equality holds for

2+2c?+e?+3c% <38,

2¢2 +e? 4+ 3c%e < 36,

c2+2(3—c)*+3c%(3—c) <18,
3c(c—2)*>0.
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Chapter 2

Noncyclic Inequalities

2.1 Applications

2.1. If a, b are positive real numbers, then

1 3 16
+ > .
42+ b2 b2+4ab ~ 5(a+ b)?

2.2, If a, b are positive real numbers, then

3av3a+3bv6a+3b>5(a+b)Va+b.

2.3. If a, b, ¢ are nonnegative real numbers such that a + b + ¢ = 3, then

(ab+c)(ac+b) <4.

2.4. If a, b, c are nonnegative real numbers, then
3, 13, .3 1 3
a’+b’+c’—3abc> Z(b+c—2a) .
2.5. Let a, b, c be nonnegative real numbers such that a > b > c. Prove that
(a) a®+b®+c3—3abc > 2(2b—a—c)%;

(b) a®+b%+c3—3abc > (a—2b +¢)>.

363
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2.6. Let a, b, c be nonnegative real numbers such that a > b > c. Prove that

(a) a®+ b+ c®—3abc > 3(a* — b?)(b —c);

(b) a®+ b3+ c®—3abc > ;(a—b)(bz—cz).

2.7. If a, b, ¢ are nonnegative real numbers such that
c=min{a, b,c}, a*+b*+c?=3,
then
(a) 5b+2c <9;

(b) 5(b+c)<9+3a.

2.8. Let a, b, c be nonnegative real numbers such that a = max{a, b, c}. Prove that

a®+ b® 4+ c® —3a%b%c? > 2(b* + c* + 4b%c?)(b —c)?.

2.9. Let a, b, c be nonnegative real numbers such that a = max{a, b, c}. Prove that

9abc
a2+b2+c22—
a+b+c

5
+=(b—c)*.
~(b—)
2.10. If a, b, ¢ are nonnegative real numbers, no two of which are zero, then

1 1 16 6
+ + > .
(a+b)2 (a+c)> (b+c)>  ab+bc+ca

2.11. If a, b, ¢ are nonnegative real numbers, no two of which are zero, then

1 + 1 + 2 > 5
(a+b)? (a+c)®> (b+c)>  2(ab+bc+ca)

2.12. If a, b, ¢ are nonnegative real numbers, no two of which are zero, then

1 1 25 8
+ + > .
(a+b)2 (a+c)* (b+c)? ab+bc+ca
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2.13. If a, b, ¢ are positive real numbers, then

(a+b)(a+c)® >4a*bc(2a+ b +c).

2.14. If a, b, ¢ are positive real numbers such that abc =1, then

b 1
(@) E+—+—2a+b+1;
b ¢ a
b 1
(b) 242425 3@+ b2+ D).
b ¢ a

2.15. If a, b, ¢ are positive real numbers such that abc > 1, then

a b
atbect > 1.

2.16. If a, b, ¢ are positive real numbers such that ab + bc + ca = 3, then

ab?c® < 4.

5
2.17. If a, b, ¢ are positive real numbers such that ab + bc +ca = 3’ then

ab?c?® <

Wl

2.18. Let a, b, c be positive real numbers such that

a<b<c, ab+ bc+ca=3.

Prove that
9
b*c < =;
(a) ab?c < s
(b) ab*c <2;

(© a’b’c < 2.
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2.19. Let a, b, ¢ be positive real numbers such that

1 1 1
a<b<c, a+bt+tc=—-—+-—-+-.
a b ¢
Prove that X
> — .
a+c—1

2.20. Let a, b, ¢ be positive real numbers such that

1 1 1
a<b<c, a+bt+tc=—-—+—-+-.
a b ¢

Prove that
ab?c® > 1.

2.21. Let a, b, c be positive real numbers such that
a<b<c, a+b+c=abc+2.

Prove that
(1—b)(1—ab3c)>0.

2.22. Let a, b, ¢ be real numbers, no two of which are zero. Prove that

(a=b)  (@=c} _ (b—c)

@ a2+b2  az+c2  2(b2+c2)

(a + b)? N (a+c)? S (b—c)?

b .
() a?+b%  a?+c? T 2(b%2+c?)

2.23. Let a, b, ¢ be real numbers, no two of which are zero. If bc > 0, then

(a—Db) N (a—c) _ (b—c)

(@) a2+b%2  a2+cz2  (b+c)?’

(a+b)* (a+c)? - (b—c)?

b .
() a?+b?2  a?+c? = (b+c)?
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2.24. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

la—bP® la—c]® _ [b—c?

a+b3 ad3+c3 (b+c)

2.25. Let a, b, ¢ be positive real numbers, b # c. Prove that

ab L ac <(b+c)2
(a+b)2 (a+c)®> ™ 4(b—c)?

2.26. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

3bc + a? - 3ab—c2+3ac—b2
b2+c2 ~ a2+b2  a?+c?’

2.27. Let a, b, c be nonnegative real numbers such that a + b > 0. Prove that

ab(a—b)?

abc>(b+c—a)(c+a—b)la+b—c)+ 5

2.28. Let a, b, c be nonnegative real numbers such that a > b > c. Prove that

_ 2

(@  abe=(b+c—a)c+a—b)a+b—c)+ 2XADS,
a+b

—h)

(b) abCZ(b+c—a)(c+a—b)(a+b—c)+27b€fTb).

2.29. Let a, b, c be nonnegative real numbers such that a + b > 0. Prove that

Z a’(a—b)(a—c) > a®b? (Z;—Z)Z )

2.30. Let a, b, c be nonnegative real numbers such that a + b 4+ ¢ = 3. Prove that

ab? + bc? +2ca® < 8.

2.31. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

ab?+ bc? + %abc <4,
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2.32. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 5. Prove that

ab? + bc? + 2abc < 20.

2.33. If a, b, ¢ are nonnegative real numbers, then

a+b>+c—a’*b—b*c—c*a> g(a— b)(b—c)*

2.34. Let a, b, c be nonnegative real numbers such that a > b > c. Prove that

N2
(a) Zaz(a—b)(a—c)24a2b2(g+2) :
(b) Ya*(a—b)la—c) > %a_b)“.

2.35. If a, b, c are real numbers such that

a=b>1>c, a’+b*+c*=3,

then
(a) 1—abc <2(b—c)?;
(b) 1—abc>2(a—b)%
() 1—abc > %(a—c)z;
3 2
(d 1—abc§zr(a—c) .

2.36. If a, b, c are real numbers such that
a>1>b>c, a*+b*+c*=3,

then 5
1—abc < §(a —c)%

2.37.Ifa>1>b>c>0and a®+ b%>+c?=3, then

1
1—abc < —(a—c).
/747
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2.38. Ifa>1>b>c>0and a®+ b%+c?=3, then

1—abc < (1+ v2)(a—b).

2.39. Ifa>1>b>c>0and a?+ b?+c? =3, then

1—abc < (3+2v2)(a—b)%

2.40. If a, b, ¢ are positive real numbers, then

a b e, _(a=cf
b ¢ a_ ab+bc+ca’

2.41. If a, b, ¢ are positive real numbers, then

a b ¢ 4(a—-c)?

234
@ b ¢ a (a+b+c)?’

a b ¢ 5(a—-c)?
b >34
(b) b ¢ a” (a+b+c)?

2.42. Ifa>b>c >0, then

a b e, 3b-c
b ¢ a_ ab+bc+ca’

2.43. Let a, b, c be positive real numbers such that abc = 1. Prove that

(@) ifa=b>12>c, then
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2.44. Let a, b, ¢ be positive real numbers such that
a=>1>b>c, abc =1.

prove that

Ry
4,0, ¢4, b=
b ¢

a ab+ bc+ca’

2.45. Let a, b, c be positive real numbers such that
a=1>b=>c, a+b+c=3.

prove that

b ¢ 4(b—c)?

—+->3+—.

c a b2 42

2.46. Let a, b, c be positive real numbers such that
a=b>1>c, a+b+c=3.

Prove that

2.47. If a, b, ¢ are positive real numbers, then

a b c o 2a=cy
b ¢ a (a+c)?’

2.48. If a, b, ¢ are positive real numbers, then

a’> b* 2 4(a—c)?
—+—+—>a+b+tc+——.
b c a a+b+c

2.49. Ifa>b >c > 0, then

a’> b* (2 6(b—c)?
—+—+—=2a+b+tc+—7—.
b c a a+b+c
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2.50. Ifa>b >c >0, then

2 b2 2
2 +2 45 > 5(—h)
b c a

2.51. Let a, b, c be positive real numbers such that
a>b>12>c, a+b+c=3.
Prove that
a? b* c? 11(a—c)?
—+—+—23+—
b ¢ a 4(a+c)
2.52. If a, b, ¢ are positive real numbers, then

a b c 3 27(b—c)?
+ - >
b+c c¢c+a a+b 2 16(a+b+c)?

2.53. Let a, b, ¢ be positive real numbers such that a = min{a, b, c}. Prove that

a b c 3 9(b—-c)?
+ + >S4
b+c c+a a+b 2 4(a+b+c)?

2.54. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

(b—c)?
2(b+c)?’

a b C
+
b+c c¢c+a a+b

3
>+
2

2.55. Let a, b, ¢ be positive real numbers such that a = min{a, b, c}. Prove that

a_ . b L ¢ >§_|_(b—c)2
b+c c+a a+b 2 4bc

2.56. Let a, b, c be positive real numbers such that
a<l<b<cg, a+b+c=3,

then

a b c 3 3(b—c)?
+ + >4
b+c c¢c+a a+b 2 4bc
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2.57. Let a, b, c be nonnegative real numbers such that
a=1>b=>c, a+b+c=3,

then

(b—c)?

(b+c¢)?

a N b 4 c
b+c c¢c+a a+b

3
>+
2

2.58. Let a, b, ¢ be positive real numbers such that a = min{a, b, c}. Prove that

ab+bc+ca 2(b—c)? )
a?+b2+c2  3(b2+c2) "
ab+ bc+ca (b—c)?
b + <1;
() a?+b2+c2 b2+ bc+c?
ab+bc+ca (a—b)?
a?+b2+c2  2(a2+b2) "

(@)

()

2.59. Let a, b, c be positive real numbers such that
a<l1<b<c, a+b+c=3,

then ,
ab+bc+ca (b—c) <1

az+ b2+ c2 bc

2.60. Leta, b, c be nonnegative real numbers such that a = max{a, b,c} and b+c >
0. Prove that

@ ab+ bc+ca (b—c)?
az+b2+c¢2  2(ab+bc+ca) ™

Ry

) ab+ bc+ca 2(b—c)

a?+b2+c2  (a+b+c)>

2.61. Let a, b, c be positive real numbers. Prove that

(a) ifa> b >c, then

ab + bc+ca (a—c)?

=>1;
a?+b2+c2  a?—ac+c?
(b) ifa>1>b>cand abc =1, then
Ry
ab+ bc+ca (b—c) <1

a?+b2+c2  b2—bc+c?
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2.62. Let a, b, c be positive real numbers such that a = min{a, b, c}. Prove that
a’+ b% +c? - 4(b—c)*

() ab+bc+ca — 3(b+c)?’
212, 2 12
) a‘+b*+c > (a—Db) .
ab+ bc+ca (a+ b)2

2.63. If a, b, ¢ are positive real numbers, then

a?+ b%+c? - 9(a—c)?
ab+bc+ca = 4la+b+c)?

2.64. Let a, b,c be nonnegative real numbers, no two of which are zero. If a =
min{a, b, c}, then
1 1 1 6
+ + = .
va2—ab+b2 Vb2—bc+c2 +c2—ca+a®2 b+tc

2.65. Ifa>1> b > ¢ > 0 such that
ab+ bc+ca=abc+2,

then
ac < 4—24/2.

2.66. If a, b, c are nonnegative real numbers such that

ab+ bc+ca=3, a<1<b<c,
then
(a) a+b+c<4
(b) 2a+b+c < 4.

2.67. Let a, b, c be nonnegative real numbers such that a < b < c. Prove that

(@) if a+ b+ c =3, then
a*(b*+ch < 2;
(b) if a+ b+ c =2, then

cta*+bH) < 1.
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2.68. If a, b, ¢ are nonnegative real numbers such that ab + bc + ca = 3, then

(a) a2+b2+c2—a—b—c2§(a—c)2;

(b) C+b+cP—a—b—c> gmin{(a — B, (b—c)?, (c—a)?}.

2.69. If a, b, c are nonnegative real numbers such that ab + bc + ca = 3, then

a+ b3+ c3

5
>1+4=(a—c)
a+b+c 9(a )

2.70. If a, b, c are nonnegative real numbers such that

a>b>c, ab+bc+ca=3,

then
(a) %2 1+g(a—b)2;
(b) %21+§(b—c)2.
(© %2 1+gmin{(a—b)2,(b—c)2}.

2.71. If a, b, ¢ are nonnegative real numbers such that ab + bc + ca = 3, then

11
a*+b*+ct—a*—b*—c*> Z(a—c)z.

2.72. If a, b, c are nonnegative real numbers such that
a>b>c, ab+bc+ca=3,
then
414, 4212 2o 11 2
(a) a*+b*+c*—a"—b*—c Zg(a—b);

10
(b) a4+b4+c4—a2—b2—622?(b—c)z.
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2.73. Let a, b, c be nonnegative real numbers such that
a<b<c, a+b+c=3.

Find the greatest real number k such that

v/(56b2 +25)(56¢2 + 25) + k(b —c)* < 14(b + c)* + 25.

2.74. If a> b > ¢ > 0 such that abc = 1, then

3(a+b+c)§8+g.
C

2.75. Ifa>b>c >0, then

(a+b—c)(a*b—b?*c+c?a) > (ab—bc +ca)?.

2.76. Ifa>b >c >0, then

_ 2 5 2 _ 2
(a=c) <a+b+c—3 achM.
2(a+c) a+ 5c

2.77. Ifa>b>c>d >0, then

—4)2 )2
(a=d) Sa+b+c+d—4\/4 abcdSM.
a+3d a+5d

2.78. Ifa>b>c¢ >0, then

s 3(a—Db)?
b —3vabc> ———=—;
(a) a+b+c abc > TS
3 64(a—b)2
b b —3vabc> ————.
(b) AFbFemOvabe = o T 24b)
2.79. Ifa>b>c¢ >0, then
3 B(b_c)z
+b+c—3vabc> ———=;
@ ¢ C abe = 4b+5c’
2
(b) a+b+c—3vabc> 25(b—¢)

7(3b+11c)’
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2.80. Ifa>b>c >0, then

RY
a+b-i-c—3\/3 achM

4(a+b+c)
2.81. Ifa>b>c >0, then
(a) a® + b® +c®—3a%b%c? > 12a%c?(b —c)?;
(b) a® + b® + c® —3a?b?c? > 10a’c(b —¢)?.

2.82. Ifa> b >c >0, then

ab + bc < 14+ 43

a?+ b2 +c? 4

2.83. Ifa>b>c>d >0, then

ab+ bc+cd <2+«/7
a2+b2+c2+d2” 6

2.84. If
a=>1=2b>c>d=>0, a+b+c+d=4,

then
ab+ bc+cd <3.

2.85. Let k and a, b, ¢ be positive real numbers, and let

k1 1 k 1 1
E:(ka+b+c)(—+—+—), F=(ka2+b2+c2)(—+—+_),
a b ¢ az b2 2

(a) If k> 1, then

F—(k—2)2 —(k—2)?
1I (k—2p , E—(=2
2k 2k

(b) If0< k <1, then

F—k2+2>E—k2
k+1 ~ k+1°
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2.86. If a, b, ¢ are positive real numbers, then

a b 25¢

+ + > 1.
2b+6¢c 7c+a 9a+8b

2.87. If a, b, ¢ are positive real numbers such that

1>1+1
a b ¢’

then

1 1 1 55
+ + = .
a+b b+c c+a  12(a+b+c¢)

2.88. If a, b, ¢ are positive real numbers such that

1.1
~b c’

Q|-

then
1 1 1 189

+ + > .
a?+b% b2+c?2 c2+a?” 40(a®+b%+c?)

2.89. Find the best real numbers k, m, n such that

(Va+vb+vc)Va+b+c>ka+mb+nc

foralla>=b>c>0.

2.90. Leta,b€(0,1],a <b.
@Ifa< 1, then
‘ 2a® > ab + b?;
Mb)Ifb> 1, then
‘ 2b* > a® + b°.

1
291. If0<a<bandb> > then

2b** > a® + b*.
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2.92. Ifa>b >0, then

(a) a <1+ a‘;ab;
- _ 3(a—Db)
(b) a®’>1 —4ﬁ )

2.93. If a, b, ¢ are positive real numbers such that
a>b>c, ab*’=1,

then
1 2 3
a+2b+3c=>—+—-+-—.
a b ¢

2.94. If a, b, ¢ are positive real numbers such that
a+b+c=3, a<b<c,
then )
“+=>a’+b*+ 2
a b
2.95. If a, b, ¢ are positive real numbers such that
a+b+c=3, a<b<c,

then 5 3 1
S+ =4+ =>2(a*+b*+ ).
a b ¢

2.96. If a, b, ¢ are positive real numbers such that

a+b+c=3, a<b<c,

then 31 25 25
T+ = >27(a? + b% + ).
a b c

2.97. If a, b, ¢ are the lengths of the sides of a triangle, then

a®(b+c)+ be(b?+c?) > a(b® +c2).
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2.98. If a, b, ¢ are the lengths of the sides of a triangle, then

(a+Db)? N (a+c)? - (b +c)?
2ab+c2 2ac+ b2~ 2bc+a?’

2.99. If a, b, ¢ are the lengths of the sides of a triangle, then

a+b a+c > b+c
ab+c2 ac+Db2 " bc+a?

2.100. If a, b, c are the lengths of the sides of a triangle, then

b(a+c¢) c(a+b)>a(b+c)
ac+b%2  ab+4+c2 ~ bc+a?’

2.101. If a, b, c,d are positive real numbers such that
a>b>c>d, ab*3d®=1,

then

1 2
a+2b+3c+6d2—+—+§+9.
a b ¢ d

2.102. If a, b, c,d are positive real numbers such that
a>b>c>d, abc*d*>1,

then 1 1 2 4
at+b+2c+4d=>—+_—+—+-.
a b ¢ d

2.103. If a, b, c,d are positive real numbers such that

abcd >1, a=b>c>d, ad=bc,

then
1 1 1 1
atb+c+d=—+—-+—-+-.
a b ¢ d
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2.104. If a, b,c,d,e, f are positive real numbers such that
abcdef >1, a=b>c>d=>e>f, af =be>cd,

then
1 1 1 1 1 1
atbt+ctd+tetf=—+—-+-+-+—-+—.
a b ¢ d e f

2.105. Let a, b, c,d be nonnegative real numbers such that

a’—ab+b%=c?>—cd+d>.

Prove that
(a+b)(c+d)=2(ab +cd).

2.106. Let a, b, c,d be nonnegative real numbers such that
a’*—ab+b%=c*—cd +d>

Prove that
1 1 8

+ < )
a?+ab+b2 c24+cd+d? "~ 3(a+b)(c+d)

2.107. Let a, b, c,d be nonnegative real numbers such that
a’—ab+b*>=c%—cd +d>

Prove that
1 1 8

+ < .
a?+ab+b%2 c2+cd+d? " 3(a+b)(c+d)

2.108. Let a, b, c,d be nonnegative real numbers such that
a’—ab+b*=c?—cd+d>

Prove that
1 1 2

+ < :
(ac+bd)* (ad+bc)* ™ (ab+cd)*

2.109. Let a, b, c,d be nonnegative real numbers such that a > b > ¢ > d and
a+b+c+d=13, a®+Db%>+c%+d*=43.

Prove that
ab>cd+3.
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2.110. Let a, b, c,d be nonnegative real numbers such thata > b > ¢ > d and
a+b+c+d=13, a+b*+c*+d*=43.

Prove that

ab—chZ

N

39
f <—
(a) or a_10

31
b) for d<--.
(&) for d <3

2.111. Let a, b, c,d be nonnegative real numbers such that a > b > ¢ > d and
a+b+c+d=13, a®+b*>+c?>+d*=43.

Prove that

gSac+bd§ﬁ.
4 8

2.112. If a, b, c,d are positive real numbers such that
a+b+c+d=4, a<b<1<c<d,

then
1 1

1 1
9(—+—+—+—)24+8(a2+b2+cz+d2).
a b ¢ d
2.113. If a, b, ¢, d are positive real numbers such that
a?+b%>+c?+d*=4, a<b<c<d,
then .
—+a+b+c+d=>5.
a

2.114. If a, b, c,d are real numbers, then

6(a®?+b%>+c?2+d*)+(a+b+c+d)?>12(ab+ bc +cd).
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2.115. If a, b, c,d are positive real numbers, then

1 4 1 N 1 N 1 S 4
a?+ab b2+bc c2+cd d2+da  ac+bd’

2.116. If a, b, c,d are positive real numbers, then

1 1 1 1 1
+ + + > ° __
a(1+b) b(l+a) c(1+d) d(Q+c) 1+8+abcd

2.117. If a, b, c,d are positive real numbers such that a > b > ¢ > d and
at+b+c+d=4,

then
ac+ bd < 2.

2.118. If a, b, c,d are positive real numbers such that a > b > ¢ > d and
a+b+c+d=4,
then
2(1+1)>a2+b2+c2+d2
b d)— '
2.119. Let a, b, c,d be positive real numbers such thata > b > ¢ > d and
ab+ bc+cd+da=3.

Prove that
a®bcd < 4.

2.120. Let a, b, c,d be positive real numbers such thata > b > ¢ > d and
ab+bc+cd+da=6.

Prove that
acd < 2.
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2.121. Let a, b, c,d be positive real numbers such thata > b > ¢ > d and

ab+ bc+cd+da=09.

Prove that
abd < 4.

2.122. Let a, b, c,d be positive real numbers such thata > b > ¢ > d and
a*+ b*+c*+d*=10.

Prove that
2b+4d < 3c+5.

2.123. Let a, b, c,d be positive real numbers such that a < b < ¢ < d and

abcd = 1.
Prove that b d
4+ 24245455 20a+b)(c+d).
b ¢ d a

2.124. Let a, b, c,d be positive real numbers such thata > b > ¢ > d and

3(@®*+b*+c*+d*)=(a+b+c+d)>

Prove that
a+d
<2:
@) b+c ™
®) a+c£7+2\/6;
b+d 5
a+c 3+ 45
< .
© c+d 2

2.125. Let a, b, c,d be nonnegative real numbers such thata > b > ¢ > d and

2@®+b*+c2+d)=(a+b+c+d)>

Prove that
a>b+3c+(2v3—1)d.
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2.126. Ifa>=b>c>d >0, then

(a) a+b+c+d—4vabed > = (f 2[+¢—)
(b) a+b+c+d—4vabcd (31/_ 2/c—vd)’;
() a+b+c+d—4W2—(3ﬁ_ﬁ_2ﬁ);
(d a+b+c+d—4vabed > = (J‘ 3/c+2vd)’;
(e) a+b+c+d—4mzé(2ﬁ—3\/€+ﬁ);
® a+b+c+d—4mzé(2ﬁ+\/€—3\/ﬁ)2,

2.127. Ifa>b>c>d >0, then

(@) a+b+c+d—4vabed > (Va— \/_)
(b) a+b+c+d—4vabcd >2(\/_ f)
() a+b+c+d—4v4abcd>§( 1/_)
() a+b+c+d—4\/4abcd>§( —va)".

2.128. Ifa>b>c>d >e >0, then

a+b+c+d+e—5v abcdeZZ(\/E—\/E)z.

2.129. If a, b, c,d, e are real numbers, then

ab+ bc+cd+de < V3

a2+ b2+c2+d2+e2” 2°

2.130. If a, b, c,d, e are positive real numbers, then

a’b? N b?c? c2a? 3abc
bd+ce cd+ae ad+be d+e
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2.131. If a, b,c,d,e, f are nonnegative real numbers such that
azb>c=>d>e>f,

then
(a+b+c+d+e+f)*>8(ac+ bd +ce+df).

2.132. Ifa>b>c>d>e>f >0, then
2
a+b+c+d+e+f—6\6/abcdef22(\/3—1/5) .
2.133. Let a, b,c and x, y, z be positive real numbers such that

x+y+z=a+b+c.

Prove that
ax®+by?*+cz*+ xyz > 4abc.

2.134. Let a, b,c and x, y, z be positive real numbers such that
x+y+z=a+b+c.

Prove that 3 3 . 3
x( x+a)+y( y+ )+z( z+c)21

2.
bc ca ab

2.135. Let a, b, ¢ be given positive numbers. Find the minimum value F(a, b, c) of

ax by cz

E(x,v,z)= + s
(x¥,2) y+z z+x x+y

where x, y,z are nonnegative real numbers, no two of which are zero.

2.136. Let a, b,c and x, y,z be real numbers.

(a) If ab+ bc+ca> 0, then
[(b+c)x+(c+a)y+(a+b)z]*>4(ab+ bc+ca)(xy +yz+2x);
(b) If a,b,c >0, then

[(b+c)x+(c+a)y+(a+b)z]*>4(a+Db+c)ayz+ bzx +cxy).
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2.137. Let a, b, c and x, y,z be positive real numbers such that

a b c
—+—+—=1.
Yz 2x Xy

Prove that

(a) x+y+z>+/4a+b+c+Vab+ Vbc+ yca)+3vabc;

(b) x+y+z>+va+b+vb+c++/c+a.

2.138. If a, b, c and x, y, z are nonnegative real numbers, then

2 2 2 9
@D +y) bt +2) Cra)z+x) - (broxtc+a)y +@tb)

2.139. Let a, b, c be the lengths of the sides of a triangle. If x, y, z are real numbers,
then

(ya?+zb*+ xc®)(za® + xb* + yc?) > (xy + yz + 2x)(a®*b? + b*c® + c?a?).

2.140. If a, > a, > --- > ag > 0, then

Cl1+a2+"‘+a8—8\8/a1a2"'a823(\/61_6—\/61_7)2.

2.141. Let ay,a,,...,a, and by, b,,..., b, be real numbers. Prove that

a1b1+---+anbn+\/(af+---+ag)(bf+---+bg)2%(a1+---+an)(b1+---+bn).

2.142. Let a,,a,,...,a, be positive real numbers such that a; > 2a,. Prove that

Gn—1)a®+a’+---+a’)=5(a; +a, +--- +a,)*

2.143. If a4, a,,...,qa, are positive real numbers such that a; > 4a,, then

11 1 1\?
(i +ay+-+a )| —F+—+-+— = n+§ .

a a a



Noncyclic Inequalities

387

2.144. If a; > a, > --- > a, > O such that a; + a, + --- + a, = n, then

1 1 1 4(n—1)>
_+_+...+__n2 M(al_az)z_
a; a, a, n3

2.145. If a;,a,,...,a, (n > 3) are real numbers such that

a,<a,<---<a, a-+a+---+a,=0,

then
2 2 2
a;+a,+---+a, +na;a,<0.
2.146. Let a,,a,,...,a, (n > 4) be nonnegative real numbers such that
a12a22"'2an
and
(@ +ay+--+a)=4a+a+--+ad).

Prove that

a; +a, 2n—8
1< s1+\ :
az+a,+---+a, n—2

2.147. Ifa, > a, >--- > a, =0, then

1
(a) al+a2+---+an—n1“/a1a2---an2g(Ja_1+Ja_2—2¢a_n)

1
(b) a,+a,+---+a,—nya;a,---a, = 2 (2\/a_1— Va1 — \/a_n)z.

2.148. Ifa, > a,>--->a, >0, n> 3, then

n—1
a,+a,+---+a,—nya,a,---a, = 5 (\/an_2+ ,/an_1—2,/an)2.
n
2.149. Leta,; =2 a,>--->a,>0. If
n <k<n-—1,
2

then

2k(n—k) 2
a,+a,+---+a,—nya,a,---a, = T(w/ak—,/akﬂ) .

2
B
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2.150. Leta; > a,>--->a,>0.If
1<k<j<n, k+j=n+1,
then

2k(n—j+1
a1+az+"'+an—”m>M(\/a_k—\/a_j)2_

T on+k—j+1

2.151. Ifa; >2ay,>--->a, >0, n>4, then

1 1
(@ a+ay+---+a,—nyaa,--a Z5(1——)(\/an_2—31/an_1+21/an)
n

2
)

2

2
(b) a1+a2+"‘+an_nm2(1_E)(2\/an—2_31/an—1+1/a_n)
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2.2 Solutions

P 2.1. If a, b are positive real numbers, then

1 3 16
+ = .
4a2+ b2  b2+4ab ~ 5(a+b)?

Solution. Using the Cauchy-Schwarz inequality gives

1 3 o (1+3)° B 4
4a2+ b2  b2+4ab ~ (4a2+b2)+3(b2+4ab) a2+ b2+3ab’

Thus, we only need to show that

1 4
>
a?+b2+3ab ~ 5(a+b)?’

which reduces to (a — b)? > 0. The equality holds for a = b.

P 2.2. If a, b are positive real numbers, then

3av3a+3bv6a+3b>5(a+b)Va+b.

Solution. Due to homogeneity, we may assume that a + b = 3. Thus, we need to
show that

ava+(B—a)V3+a>5

for 0 < a < 3. Substituting
Ja=x, 0<x<4+3,

the inequality becomes

(3—x2)V/3+x2>5-—x>
For +/5 < x < +/3, the inequality is trivial. For 0 < x < +/5, squaring both sides of
the inequality gives
B=x)9—xH=(5-x),

3x*—10x>+9x*—2<0,
(x —1)*(3x*—4x—2) < 0.
2—+10 2+ 10
3 3

Since 3x%2 —4x —2 < 0 for

IA

x < , we only need to prove that

I5 < 2+3\/10.
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Indeed, we have

3 27
The equality holds for a = b/2.

2+v10)\° 224/10—67
_5=22Y"""2" 59

P 2.3. If a, b, c are nonnegative real numbers such that a + b + c = 3, then

(ab+c)(ac+b) < 4.

Solution. By the AM-GM inequality, we have

(ab+c)+ (ac+ b)]2 _(a+1)%(b+c)
2 B 4 '

(ab+c)(ac+Db) < [

Therefore, it suffices to show that
(a+1)(b+c)<4.
Indeed,

(a+1)+(b+c)]2_4
2 - .
The equality holds fora=b=c=1,fora=1,b=0,c=2,and fora=1,b =2,
c=0.

(a+1Xb+c)S[

]

P 2.4. If a, b, c are nonnegative real numbers, then

1
a®+ b3+ c®—3abc> Z(b +c—2a)’.

Solution. Write the inequality as
2(a+b+c)(a—b)*+(b—c)+(c—a)*]=(b+c—2a).
Consider the non-trivial case b + ¢ —2a > 0. Since (b—c)?* > 0 and
a+b+c>=b+c—a,
it suffices to show that
2(a—b)?+2(c—a)*>(b+c—2a)

Indeed, we have

2(a—b)Y*+2(c—a))—(b+c—2a)*=(b—c)*>0.

The equality holds for a = b = ¢, and also for a =0 and b =c.
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P 2.5. Let a, b, c be nonnegative real numbers such that a = b > c. Prove that

(@) a®>+b%+c3—3abc>2(2b—a—c)%;

(b) a®+ b3 +c®—3abc > (a—2b +c)°.
Solution. (a) Write the inequality as

(a+b+c)a?+b*+c2—ab—bc—ca)>2(2b—a—c)°.
For the non-trivial case 2b —a —c¢ > 0, since
a+b+c>202b—a—c),
it suffices to show that
a*+b*+c*—ab—bc—ca>(2b—a—c)>
This is equivalent to the obvious inequality
3(a—b)(b—c)=0.

The equality holds for a = b = ¢, and also for a = b and ¢ = 0.

(b) Write the inequality as

(a+b+c)a®>+b*>+c2—ab—bc—ca)>(a—2b+c).
For the non-trivial case a —2b + ¢ > 0, since
a+b+c>a—2b+c,
it suffices to show that
a’*+b*+c*—ab—bc—ca>(a—2b+c)?
which is equivalent to
3(a—b)(b—c)=0.
The equality holds for a = b = ¢, and also for b =c¢ = 0.
O

P 2.6. Let a, b, c be nonnegative real numbers such that a > b > c. Prove that

(v a® + b® + c®—3abc > 3(a® — b?)(b —c);

(b) a®+ b3+ c®—3abc > g(a—b)(bz—cz).
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Solution. (a) Write the inequality as
(a+b+c)a?+b*>+c>—ab—bc—ca)>3(a+b)a—b)(b—-c)).

Since
a+b+c=>a+b,

it suffices to show that
a’?+b*>+c>—ab—bc—ca>3(a—b)(b—c).
Indeed,
a’+b*+c?—ab—bc—ca—3(a—=b)(b—c)=(a—2b+c)*>0.
The equality holds for a = b = ¢, and also for a = 2b and ¢ = 0.
(b) Write the inequality as

(a+b+c)a?+b*+c2—ab—bc—ca)> ;(a—b)(b—c)(b+c).

Since 3
a+b+c> §(b+c),

it suffices to show that
a’?+b%>+c>—ab—bc—ca>3(a—b)(b—c).
This is equivalent to the obvious inequality
(a—2b+c)*=>0.

The equality holds fora =b =c.

P 2.7. If a, b, c are nonnegative real numbers such that
c=min{a, b,c}, a*+b*+c*=3,
then
(a) 5b+2c <9;

(b) 5(b+c¢)<9+3a.
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Solution. (a) It suffices to show that
5b+2c+(a—c)<9;

that is,
9>a+5b+c.

This follows from the Cauchy-Schwarz inequality
(14+25+1)(a*+b*+c*)>(a+5b+c).

1
The equality holds for a =c = 3 and b = g

(b) It suffices to show that
5(b+c)+4(a—c)<9+3a;

that is,
9>a+5b+c.

As we have shown at (a), this follows from the Cauchy-Schwarz inequality
(14+25+1)(a®+b%+c?)>(a+5b+c).

The equality holds for a =c = % and b = ;
O

P 2.8. Let a, b, c be nonnegative real numbers such that a = max{a, b,c}. Prove that
a®+ b® 4+ c® —3a%b%c? > 2(b* + c* + 4b%c?)(b —c)?.
Solution. Because the inequality is symmetric in b and ¢, we may assume that

b > c; that is,
a=b=>c.

We will show that
a® +b® +c®—3a%b%c? > 2b% + c® —3b*c? > 2(b* + c* + 4b%c?)(b — ).
The left inequality is equivalent to the obvious inequality
(a2 —=b?)(a* + a®b® + b*—3b%c?) > 0.
The right inequality is equivalent to
(b* —c?)*(2b* + c®) = 2(b* + c* + 4b*c*)(b —c)?,
(b—c)’[(b+c)*(2b* +c*) — 2(b* + c* + 4b*c*)] = 0,
c(b—c)*(4b*—bc +c?) > 0.

The equality holds fora=b =c, fora=b and c =0, and fora=c and b =0.
OJ
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P 2.9. Let a, b, c be nonnegative real numbers such that a = max{a, b,c}. Prove that

9abc
a?+b*>+c2>

5
——— +=(b—20)~
T a+b+c 3( 2

Solution. Because the inequality is symmetric in b and ¢, we may assume that
b > ¢, hence
a=b>c.

Write the inequality as follows:

(a2 +b%2+c*)(a+b+c)—9abc > g(a +b+c)(b—c)
a®+b® +c3—3abc+z:a(b—c)2 > g(a+ b+c)(b—c)%;

(a+b+c)Z:(b—c)2+ZZ:a(b—c)2 > 13—O(a+b+c)(b—c)2.

It suffices to show that
(a+b+)[(a—c)+(b—c)]+2a(b—c)*+2b(a—c)*> 13—0(a +b+c)(b—c)>
This inequality is true if
(a+b+)[(b—c)+(b—c)*]+2a(b—c)*+2b(b—c)*> %(a +b+c)(b—c)>
Thus, we only need to show that
10
2(@a+b+c)+2a+2b> ?(a+b+c),

which reduces to a + b —2¢ > 0. The equality holds for a = b = c.

P 2.10. If a, b, c are nonnegative real numbers, no two of which are zero, then

1 1 16 6
+ + = .
(a+b)2 (a+c)> (b+c)>  ab+bc+ca

(Vasile C., 2014)
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Solution (by Nguyen Van Quy). Since the equality holds fora = 0 and b = ¢, we
write the desired inequality in the form

16 ( 1 1 )2 6 2
+ + > +
(b +c)? a+b a+c ab+bc+ca (a+b)la+c)
and apply then the AM-GM inequality

16 +(1+1)2>8(1+1)
(b+c¢)? \a+b a+c) " b4+c\a+b a+c)

Therefore, it suffices to show that

8 ( 1 1 ) 6 2
- > + :
b+c\a+b a+c ab+bc+ca (a+b)la+c)
Since (a + b)(a +c¢) = ab + bc + ca, it is enough to show that

8 ( 1 1 ) 8
+ > ,
b+c\a+b a+c ab+ bc+ca
which is equivalent to
(2a+b+c)lab+bc+ca)=(a+b)(b+c)c+a).
We have

(2a+b+c)lab+bc+ca)=(a+b+c)ab+ bc+ca)
> (a+b)(b+c)c+a).

This completes the proof. The equality holds fora =0 and b =c.

P 2.11. If a, b, c are nonnegative real numbers, no two of which are zero, then

1 + 1 + 2 > 5
(a+b)? (a+c)?> (b+c)>  2(ab+bc+ca)

Solution. This inequality follows from Iran 1996 inequality (see P 1.72 in Volume
2, for k = 2), namely
1 1 1 9
+ + = ,
(a+b)? (a+c)2 (b+c)?  4(ab+ bc+ca)
and the inequality in P 2.10, namely

1 + 1 + 16 > 6
(a+b)2 (a+c)® (b+c)> ab+bc+ca

Indeed, summing the first inequality multiplied by 14 and the second inequality,
we get the desired inequality. The equality holds for a =0 and b = c.

O
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P 2.12. If a, b, c are nonnegative real numbers, no two of which are zero, then

1 + 1 + 25 > 8
(a+b)2 (a+c)® (b+c)> ab+bc+ca

(Vasile C., 2014)

Solution. Write the inequality as

( 1 1 )2 25 8 2
+ + > + .
a+b a+c (b+c¢)?  ab+bc+ca (a+b)la+c)

By the AM-GM inequality, we have

(1+1)2+ 25 >10(1+1)
a+b a+c (b+c¢)®>  b+c\a+b a+c)

Therefore, it suffices to show that

10 ( 1 1 ) 8 2
- > + .
b+c\a+b a+c ab+bc+ca (a+b)la+c)

Since (a + b)(a +c¢) = ab + bc + ca, it is enough to show that

10 ( 1 1 ) 10
+ > ,
b+c\a+b a+c ab+bc+ca
which is equivalent to
(2a+b+c)(ab+ bc+ca)=(a+b)(b+c)c+a).
Indeed,

(2a+b+c)lab+bc+ca)=(a+b+c)(ab+ bc+ca)
> (a+b)(b+c)(c+a).

c

=3.
b

b
This completes the proof. The equality holds for a =0 and — +
c

P 2.13. If a, b, c are positive real numbers, then
(a+b)*(a+c)®>4a*bc(2a+ b +c)>

(XZLBQ, 2014)



Noncyclic Inequalities 397

Solution (by Nguyen Van Quy). Write the inequality as

(a+b)*(a+c)? - (2a + b +c)?
4a2bc “(a+b)a+c)

Since

(a+b)*(a+c)*=[(a—Db)*+4ab][(a—c)?+ 4ac]
> 4ac(a—b)*+ 4ab(a —c)* + 16a°bc,

it suffices to show that

(a—b)* (a—c)? (2a + b +c)?
ab * ac +42(a+b)(a+c)’

which is equivalent to

(a—b)ZJr(a—C)Z2 (b—c)
ab ac (a+b)(a+c)

Indeed, by the Cauchy-Schwarz inequality, we have

(a—b)2_|_(a—c)22(a—b—a+c)22 (b—c)? .
ab ac ab+ac (a+b)la+c)

The equality holds fora = b =c.

P 2.14. If a, b, c are positive real numbers such that abc =1, then

(a) g+9+12a+b+1;
b ¢ a
a b 1
(b) —+—+->=+/3(a®+b%2+1).
b ¢ a

(Vasile C., 2007)

Solution. (a) First Solution. Write the inequality as

(22+9)+(2+1)+(1+a)23a+2b+2.
b ¢ c a a

By the AM-GM inequality, we have

2
(23+2)+(9+1)+(1+a)23§ CEPS FL N S S Ty
b ¢ c a a bc ca

The equality holds fora=b =c =1.
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1
Second Solution. Since ¢ = TR the inequality becomes as follows:
a

a 1
—+ab*+=>a+b+1,
b a

1 , 1 b 1
—+bP+==1+—+-,
b a2 a a
1

az

(1_b+1)2+(b—1)2(3b+4) y

1 1
(b+1)=+b*+=—12>0,
a b

0.
a 2 4b

(b) Write the inequality as

a(1+b2)+%2 v3(a2+b2+1).

b

By squaring, this inequality becomes
1 1 2
2( p4 2
b +2b_3+_ +_>b +3——.
. ( bz) a? b

Since 0 Y2(2b )
1 1 —1)*(2b+1
4 —
b +2b—3+—b2>2b—3+—b2— D2 >0,

by the AM-GM inequality, we have

1 1 1
2 14
a (b +2b_3+§)+¥22\lb4+2b_3+ﬁ'

Thus, it suffices to prove that

1 2
2\| b4 +2b—3+ —>b*+3—=.
% b2 b

Squaring again, we get the inequality
b>—2b°+4b>*—7b+4>0,

which is equivalent to the obvious inequality
b(b*—1)*+4(b—1)*>0.

The equality holds fora=b =c = 1.
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P 2.15. If a, b, c are positive real numbers such that abc > 1, then
abbece > 1.
(Vasile C., 2011)

Solution. Write the inequality as

%lna+élnb+clnc20.
c

Since f (x) = x Inx is a convex function on (0, 00), apply Jensen’s inequality to get

b b
palna+qblnb+rclnc2(p+q+r)(p—a+q +rc)ln(pa+q +rc)

p+q+r p+q+r
+qb+
=QM+qb+nﬂm(ELJL—l£)
pt+q+r
where p,q,r > 0. Choosing
EETNES R
p_bS q_CJ - 4>
we get
2524
b b b ¢
E-lna+——],nb-|—clnc2(g+-—+c)ln b ¢
b c b ¢ 1 1
F+o+1

Thus, it suffices to show that

a

b 1
+-4c>=+=+1.
b ¢ c

. 1
Since a > b_’ we need to show that
c

L b 211,
b2c ¢ c
This is equivalent to
c
—+b+c*>—+1+c,
b? b

1 1
2 (1+= b—1+—>0
c ( +b)c+ +b2_ ,

0.

2 132
(c_b+1) L (0-12(4b+3)
2b 4b?

The equality holds fora=b =c=1.
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P 2.16. If a, b, c are positive real numbers such that ab + bc + ca = 3, then
ab?c® < 4.
(Vasile C., 2012)

Solution. From ab + bc + ca = 3, we get

3—ab 3
= <

a+b a+b
Therefore,
(a+b)}(4—ab?c®) > 4(a+ b)®> —27ab?
= 4a> + 12a*b — 15ab* + 4b>
=(a+4b)(2a—b)*>0.

5
P 2.17. If a, b, c are positive real numbers such that ab + bc 4 ca = 7 then

ab?c? <

W

(Vasile C., 2012)
Solution. By the AM-GM inequality, we have

ab+ca>2a+ bc.

5
Thus, from ab + bc + ca = 3’ we get

2avbc+bcsg.

Therefore, it suffices to show that
(5—3bc)b%c? 1
6vbc 3
Setting v/bc = t, this inequality becomes
3t°—5°+2>0.

Indeed, be the AM-GM inequality, we have

3 +2=t5+t2+t°+1+1>5vt5-t5-t5-1-1=5¢>,

1
The equality holds for a = 3 and b=c=1.
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P 2.18. Let a, b, c be positive real numbers such that

a<b<c, ab+ bc+ca=3.

Prove that
9
b2 < Z.
(@) abc < 2
(b) ab%c < 2;
(© ab3c? < 2.

(Vasile C., 2012)

Solution. From (b—a)(b—c) <0, we get
b*+ac < b(a+c),

b*+ac <3—ac,

b%+ 2ac < 3.
(a) We have
9—8abc 2 9—4b*(3—b*) = (2b* -3’ 2 0.
1 /3 3
The equality holds for a = _\/t andb=c=4/2.
2V 2 2
(b) We have

4—2ab*c>4—b*(3—-0%)=(b2—2)*(b%+1)>0.

The equality holds for a = ? and b =c = /2.
(c) Write the desired inequality as follows:
2(ab + bc +ca)® > 27ab’c?,
2 (a +c+ %)B > 27ac?.
Since ca/b > a, it suffices to show that
2(2a +¢)® > 27ac?,
which is equivalent to the obvious inequality

(a+2c)(4a—c)*>0.

2
The equality holds for a = % and b =c = 2.
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P 2.19. Let a, b, c be positive real numbers such that

1 1 1
a<b<c, a+b+c=—+—-+-.
a b ¢
Prove that ;
T a+c—1
(Vasile C., 2007)
Solution. Let us show that
a<l, «c¢=1.
1 1 1
Froma+b+c=—-—+—-+— and
a b ¢
1 1 1 —1)? b—1)2 —1)?
a+b+c+—+—+——6=(a )+( )+(C )20,
a b ¢ a b C
we get
1 1 1
a+b+c=—-+—-+-=>3.
a c
Then,
1 1/1 1 1 a+b+c
—-—>=-+=-+-]=1, cz2——2=>1
a 3\a b ¢ 3

Further, consider the following two cases.

Case 1: abc > 1. Write the desired inequality as
+c—1 1 >0
a+c—1——2>0.
b

We have
abc—1

b

a+c—1—%=(1—a)(c—1)+ > 0.

Case 2: abc < 1. Since
1 1 1
a+c—1——=—-+—-—1-b,
b a ¢

the desired inequality is equivalent to

11
~4+-—1-b>0.
a C

a C a C ac

We have

This completes the proof. The equality holds fora=b =c =1.
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P 2.20. Let a, b, c be positive real numbers such that

1 1 1
a<b<c¢, a+b+c=—+-—+-.
a b ¢

Prove that
ab?c® > 1.

First Solution. Write the inequality in the homogeneous form

abie® > [abc(a +b +c)]3
L ab+bc+ca
which is equivalent to
(ab+ bc +ca)® > a?b(a+b+c)’.

Since
(ab + bc +ca)®* > 3abc(a+ b +c),

it suffices to show that
3c(ab+ bc+ca)>ala+b+c).

Indeed,

(Vasile C., 1998)

3c(ab+bc+ca)—ala+b+c)>>(a+b+c)ab+bc+ca)—ala+b+c)?

=(a+b+c)bc—a?)>0.

The equality holds fora=b=c=1.

Second Solution. Let us show that

1 1—a®> 1-b> 1-¢
+ +

a b ¢ a b c

which is false. On the other hand, from a <1 and

1 1
a—-— =(b+c)(——1),
a bc
we get bc > 1. Similarly, we can prove that

c=>1, ab<1.

<0,
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Since bc > 1, it suffices to show that
abc? > 1.

Taking account of ab < 1, we have

c—l=(a+b)(i—1)22\/ﬁ(£—1):2(%—@)2i—\/ﬁ,

c ab
(c—‘/%)(l-i- 1/f_b)ZO.

The last inequality involves

hence

P 2.21. Let a, b, ¢ be positive real numbers such that
a<b<c, a+b+c=abc+2.

Prove that
(1—b)(1—ab3c)>0.

(Vasile C., 1999)

Solution. Let us show that
a<l, c=>1.

To do this, we write the hypothesis a + b + ¢ = abc + 2 in the equivalent form
(1-a)1—c)+(1—-b)(1—ac)=0, )

Ifa > 1, then1 < a < b < ¢, which contradicts (*). Similarly, if ¢ < 1, then
a < b < ¢ < 1, which also contradicts (*). Therefore, we have a < 1 and ¢ > 1.
According to (*), we get

(1-b)(1—ac)=(0Q—a)(c—1)=0. )
There are two cases to consider.
Case 1: b > 1. According to (**), we have ac > 1. Therefore,
ab’c=ac-b>>1,
hence (1 —b)(1—ab3c) > 0.
Case 2: b < 1. According to (**), we have ac < 1. Therefore,
ab’c=ac-b><1,

and hence
(1—b)(1—ab3c)>0.

This completes the proof. The equality holds fora=b=1<cora<1=b=c.
OJ
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P 2.22. Let a, b, c be real numbers, no two of which are zero. Prove that
(a=bY (a—cP _ (b—c)*
a2+b2  az+cz  2(b2+c2)

(a +b)? N (a+c)? - (b—c)?
a2+b2  az+cz  2(b2+c2)

(a)

(b)

Solution. (a) Consider two cases.
Case 1: 2a* < b? + c2. By the Cauchy-Schwarz inequality, we have

(@=by (@@=  [b-a)+@=-9F = (b—c)
az+b2  a2+c2 ~ (a2+b2)+(a2+c?) 2a+Db2+c2

Thus, it suffices to show that

1 1
>
2a2+b2+c2 ~ 2(b2+c2)’

which reduces to b% + c? > 2a?.

Case 2: 2a® > b? + c%. By the Cauchy-Schwarz inequality, we have
(a—Db)? N (a—c)? - [c(b—a)+bla—c)]* a’(b—c)?
a2+b2  a?+c2 T c2(a®+b2)+b2(a2+c?)  a?(b?+c2)+2b2c2’

Therefore, it suffices to prove that
a? o 1
a?(b2+c2)+2b2c2 ~ 2(b2+c2)’

which reduces to a®(b? + ¢*) > 2b%c?. This is true since
2a%(b% + ¢?)—4b%c? > (b + c®)? —4b%c? = (b% — )2
The equality holds fora = b =c.

(b) The inequality follows from the inequality in (a) by replacing a with —a.
The equality holds for —a = b =c.
OJ

P 2.23. Let a, b, c be real numbers, no two of which are zero. If bc > 0, then

(a=bf (a=c)* _ (b=c)*
a2+b2  a?+c2 = (b+c)?

(a+b)?* (a+c) - (b—c)?
az+b2  a?+cz (b+c)

(@)

(b)

(Vasile C., 2011)
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Solution. (a) Consider two cases: a? < bc and a® > bc.
Case 1: a® < bc. By the Cauchy-Schwarz inequality, we have

(a—b) (a—=c))  [(b—a)+(@a=q)) _ (b—c)
a2+b2  a2+c2 ~ (a®+b2)+(a2+c?) 2a2+Db2+c?

Thus, it suffices to show that

1 1
>
2a2+b2+c2 ~ (b+c)?

which is equivalent to a® < bc.

Case 2: a® > bc. By the Cauchy-Schwarz inequality, we have
(a—b)? N (a—c)? - [c(b—a)+bla—c)]* a?(b—c)?
a2+b2  a?+c2 T c2(a2+b2)+b2(a2+c2)  a?(b?+c2)+2b2c2’

Therefore, it suffices to prove that

a? o1
a?(b2+c2)+2b2%c2 — (b+c¢)?’

which reduces to bc(a? — bc) > 0. The equality holds for a = b = ¢, for b =0 and
a=c,and forc=0and a = b.

(b) The inequality follows from the inequality in (a) by replacing a with —a.

The equality holds for —a = b = ¢, for b = 0 and a + ¢ = 0, and for ¢ = 0 and
a+b=0.

O

P 2.24. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

la—b® la—c]® _ [b—c?

a+b3 a3+c3 (b+c)

(Vasile C., 2013)

Solution. Without loss of generality, assume that b > c. Thus, we have three cases
to consider: a>b>c,b>c>aand b>a>c.
Case 1: a > b > c. It suffices to show that

la—c|® > |b—cl|)®
(a+c) ~ (b+c)3’

which is equivalent to

o
I
o

a—c
a+c

v

=n
+
o
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Indeed,

a—c _b—c_ 2c(a—Db)

a+c b4+c (a+c)b+c) ™
Case 2: b > ¢ > a. It suffices to show that

(b—a)’ _ (b—c)
a3+b3 " (b+c)

Indeed,
—q)3 )3 _~)3 _ )3
(b—a) 2(b c) Z(b ) 2b ) .
as+b3 — at+b® " b3+c® T (b+c)?
Case 3: b > a > c. We need to prove that

(b—a)’ + (a—c) _ (b—c)
a+b3 B+ (b+c)

Using the substitution

b—a a—c
x = s = , 0Lx<l1, 0Ly<1,
a+b Y a+c Y
we have 1+ 1
b= xa, c:—ya,
1—x 1+y
(b—a)®= 8’ a®, (a—c)®= 8y° a’
(1—x)p "’ (1+y)p ~
2(1+3x? 2(1+3y2
a3+b3=—( x)’ a3+c3:—( y)’
(1—x)3 1+y)
b—c x+y
b+c 1+xy’
Thus, the desired inequality becomes
4x3 4y3 - (x+y)?

+ = )
1+3x2 1+4+3y2 (1+xy)?
x2+y2—xy+3x2y2> (x+ y)?
(14+3x2)(1+3y2) ~— 4(1+xy)¥
s—p+3p? o _S+2p
14+3s+9p2 ~ 4(1+p)’

where

s=x*+y* p=xy, 0<p<l1, 2p<s<1+p-

Therefore, we need to show that f(s) > 0, where

f(s)=4(1+p)(s—p+3p*)—(s+2p)(3s+1+9p2).
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Since f is a concave function, it suffices to show that f(2p) > 0 and f(1+p?) > 0.
Indeed, we have

f(2p)=4p*Bp+1)(p+3)=0,
f(a+p»H=16p°(p+1)*>0.

Thus, the proof is completed. The equality holds fora=b =c,forb=0anda=c,
and for c =0 and a = b.
O]

P 2.25. Let a, b, ¢ be positive real numbers, b # c. Prove that

ab L ac <(b+c)2
(a+b)2 (a+c)2 ™ 4b—c)?

(Vasile C., 2010)
Solution. Write the inequality in the form

(a—b)? (a—c)* (b+c)?
@+b2 T@ror (h—cp-

Replacing a be —a, the inequality becomes

(a+b)? (a+c)®> (b+c)?

> 2. *
(@—bP (a—cp T (b-cp - ®
Making the substitution
X_a+b _b+c z_c+a
a—b’ y_b—c’ Cc—d’

we can write the inequality as
x*+y*+22> 2.

From

2b 2c
a—b’ y+1:b—c’ Z+1:c—a
and
2b 2c 2a
a—>b’ y_lzb—c’ Z_lzc—a’

we get
(x+ Dy +DE+1)=x-1Dy-1(=-1),
xy+yz+zx+1=0.

Therefore, we have

X2+ yr+22—2=x*+y*+22+2(xy + yz+2x) = (x + y +2)* > 0.
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The inequality (*) is an equality for x + y + z = 0; that is,
(a+b+c)lab+ bc+ca)—9abc=0.
Therefore, the original inequality is an equality for

(b+c—a)(bc—ab—ac)+9abc =0.

P 2.26. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

3bc + a? - 3ab—c2_|_3ac—b2
b2+c2 — a2+b2  a?+c2’

(Vasile C., 2014)
Solution (by Nguyen Van Quy). Write the inequality as

a’ N b? N c? +3bc>3ab+3ac
b2+c¢2  a?+c2 a?+b2 b24+c¢2  a2+b2 a?+c?

By the Cauchy-Schwarz inequality, we have

b? N c? (b +c?)? . (b2 +c?)?
a?+c2  a?+b%  b2(a?+c?)+c2(a®+b%) a?(b%+c2)+2b3c?
oo a?(b?+ c?) + 2b3c? . a?  2b?
- (b2 + ¢2)2 b2+c2  (b2+c2)?’
hence
a? b? c? 2b2c?

+ + >2———0.
b2+c2 a?+c2 a?+ b2 (b2 +c2)?
Therefore, it suffices to show that

2b?c? 3bc 3ab 3ac

2— + > + .
(b2+c2)?2 b2+c?2 a?+b2 a?+c?

This inequality is equivalent to

[1_ 2b3c? ]+(§_ 3ab )+(§— 3ac )>(§_ 3bc )
2 (b24c2)? 2 a?+b? 2 a?+c2) \2 b2+c2)’
2232 _1)2 _ 2 — 2
(b"—c)”  (a=b) (a—c) 2(b oy
3(b2+c2)?  a?+b>  a?+c? T b2+c?
Using the inequality in P 2.23-(a), namely
_ 2 _ )2 _ )2
(a=bf  (a=c)* | (b—cf
a?+b%2  a?+c? " (b+c)?
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it is enough to prove that

(b +¢)? 1 1
3(b2+c22  (b+c)2 ~ b2+c?’

which is equivalent to
1 2(b%—bc +c?)
(b+c)?>—  3(b>+c?)?

We have
3(b%+c*)?*—=2(b+c)*(b*—bc+c?) =3(b*+c*)*—2(b+c)(b* + )
= b*+c*+6b%c* —2bc(b* + ¢?)
> (b% 4 ¢%)? —2bc(b? +¢?)
=(b*+c*)(b—c)*=0.

The equality holds fora = b =c.

P 2.27. Let a, b, c be nonnegative real numbers such that a + b > 0. Prove that
ab(a—b)?
a+b
(Vasile C., 2011)

abc=>(b+c—a)(c+a—>b)la+b—c)+

Solution. Since
2(a®b? + b%c? + c?a®)—a* — b* —c*

a+b+c

(b+c—a)(c+a—b)a+b—c)=

>

we can rewrite the inequality as

ab(a+b+c)(a—Db)?
a+b )

a*+b*+c*+abc(a+b+c)>2(a®b?+ b3c? + c?a?) +
By Schur’s inequality of fourth degree, we have
a*+b*+c*+abca+b+c)> Z:ab(a2 + b?).

Therefore, it suffices to prove that

ab(a+b+c)(a—Db)?
a+b

b

Z ab(a®+ b?) > 2(a®b* + b%c? + c?a?) +
which is equivalent to

Zab(a—b)z > ab(a+b+c)(a—b)?

a+b

b
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or
abc(a—b)?

a+b
This inequality follows immediately from the Cauchy-Schwarz inequality

be(b—c)?+calc—a)* >

(a+ b)[be(b—c)*+calc—a)*]>[vabc(b—c)+ Vabc(c—a)l*.
The equality holds for a = b = ¢, and for a = 0 and b = ¢ (or any cyclic permuta-

tion).
O

P 2.28. Let a, b, c be nonnegative real numbers such that a > b > c. Prove that

_ 2

@  abe>(b+c—a)c+a—b)a+b—c)+ 22APS,
a+b

—_p)

(b) CleZ(b+c—a)(c+a—b)(a+b—c)+27b€fTb).

(Vasile C., 2011)

Solution. (a) Write the inequality as

2ab(a— b)?

Za(a—b)(a—c)z >

Since
c(c—a)(c—b)=0,

it suffices to show that

2ab(a— b)?

a(a—b)a=c)+b(b—c)c—a) = ———

Since

a(a—b)a—c)=ala—b)[(a—b)+(b—c)]=ala—b)*+ala—b)(b—c)

> 2ab(a—b)?

o +a(a—b)(b—c),

it suffices to show that
ala—b)(b—c)+b(b—c)(b—a)=0.
This inequality is equivalent to
(a—b)*(b—c)=0.

The equality holds for a = b =, and for a = b and ¢ = 0.
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(b) Write the inequality as

27b(a—b)*
4a2

Za(a— b)(a—c) >

Since
c(c—a)(c—b)=0,

it suffices to show that

27b(a— b)*

a(a—b)la—c)+b(b—c)(c—a) >
4a?

>

which is equivalent to

27b(a— b)*

al(a—b)?+ala—b)b—c)+b(b—c)(c—a)>
4a?

Since

27b(a— b)* _ (a—b)?*(a—3b)?

—b)2—
ala=b) 4a? 4a?

it suffices to show that
ala—b)(b—c)+b(b—c)(b—a)=0.
This inequality is equivalent to
(a—b)*(b—c)>0.

The equality holds fora = b =c, and for a/3 =b =c.

P 2.29. Let a, b, c be nonnegative real numbers such that a+ b > 0. Prove that
—b)\?
2(a—b)(a—c) > sz(a—) .
Za (a=—b)la—c)=a >

(Vasile C., 2011)

Solution. Without loss of generality, assume that a > b. There three cases to
consider.

Case 1. c > a>b. Since

a*(a—b)a—c)+c*(c—a)(c—b)=da*(a—b)a—c)+c*(c—a)(a—b)
=(a—Db)(c—a)*(c+a)>0,
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it suffices to show that

2
b%(a—b)(c—b) > a’b? (Z;—z) .

Since c — b > a — b, this is true if

a 2
12( )
a+b

which is true.

Case 2. a > b > c. Since
c2(c—a)(c=b)=>0

and
a*(a—b)(a—c)+b* (b—c)(b—a)=(a—b)*[a*+ab+ b*—c(a+b)]
> (a—b)*[a*+ab+b*—b(a+b)]=a?*(a—b)?,
it suffices to show that b\
1= (a + b) ’

which is true.

Case 3. a>c>b. Since
b*(b—c)(b—a) = b*(c — b)?
and
a*(a—b)a—c)+c*(c—a)c—b)=(a—c)*[a®*+ac+c*—b(a+c)]

>(a—c)[a’+ac+c?>—cla+c)]=d*(a—c)?
it suffices to show that
— b2
b* (c—b)?*+a*(a—c)*> zbz(—a )
(c=b)+a*(a—c)*=a o

By the Cauchy-Schwarz inequality, we have

(% + %) [b*(c=b)* +a*(a—c)*] = [(c—b)+(a—c)]* = (a—b)*.

Therefore, it suffices to prove that
21204 _ 1)2 —_H)\2
a*b*(a—b) 2a2b2(a b) ,
a?+ b2 a+b

which is clearly true.
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This completes the proof. The equality holds fora = b =c,and fora=0and b =c
(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization.

e [et a,b,c be nonnegative real numbers such that a4+ b > 0. If k is a positive
natural number, then

k
> da—b)a—c)> (a‘;—bb) (a—b)>.

P 2.30. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that

ab?+ bc? +2ca® < 8.

Solution. Since the equality holds for a =2, b = 0, ¢ = 1, we apply the AM-GM
inequality to get

2 1 3 1 1
2 _c.2.2< (C+E+E) =—(c+a))<—(a+b+c)’=1
4 2 2 27 2 2 27 27
Therefore, it suffices to show that
ab®+ bc? +ca® < 4,

which is the inequality in P 1.1.

P 2.31. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 3. Prove that
2 2 3
ab®+ bc” + Eabc <4.

(Vasile Cirtoaje and Vo Quoc Ba Can, 2007)
Solution. Consider two cases.
Case 1: ¢ > 2b. We have

ab2+bcz+§abc= b(a+c)2—ab(a—b+%) < b(a +c)?

a+c a+cy\?3
b+

+
:4b(a+c)(a+c)s4 2 2 —4.
2 2 3
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Case 2: 2b > c. Write the desired inequality as f (a) > 0, where

a+b+c

3 3
) —ab®—bc?—=abc,
3 2

f@=4(

with the derivative

, a+b+c)* ., 3
f(a)—4(—3 ) 5= 2he.

The equation f’(a) = 0 has the positive root

. _3 b(2b+3c)_b_c_ (2b—c)(5b +8c)
b2 J 2 6+/2b(2b +¢) +8(b +¢)’
Since f’(a) < 0 for 0 < a < a, and f’(a) > 0 for a > a,, f(a) is decreasing on

[0,a,] and increasing on [a;, ©0); consequently, f(a) = f(a;). To complete the
proof, it suffices to show that f(a;) > 0. Indeed, since

(a1+b+c
4 - @

2
) :b2+§bc,
3 2

we have

+b+c)’
fla=a( C) —al(b2+§bc)—bc2

3
+b+
= u(bz+§bc)—al(bz+§bc)—bc2
3 2 2
2
:u(bzﬁbc)_bg
3 2

2
:(b+c— M)(b2+§bc)—bc2
\J 2 2

= % [4b% +10bc +2¢2 — (2b +3¢)y/2b(2b + 30) |
_ bc(2b—c)?(b + 2¢c) -0
2[4b2 + 10bc + 2¢2 + (2b +3¢)v/2b(2b + 3¢)]

Thus, the proof is completed. The equality holds fora =0, b = 1, ¢ = 2, and for
a=1,b=2,¢c=0.

]

P 2.32. Let a, b, c be nonnegative real numbers such that a + b + ¢ = 5. Prove that
ab®+ bc* + 2abc < 20.

(Vo Quoc Ba Can, 2011)
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Solution. Write the inequality as
b(ab + c% + 2ac) < 20.

We see that the equality holds for a = 1 and b = ¢ = 2. From (a —b/2)?> > 0, it

follows that ,

b
ab<a*+—.
4
Therefore, for b < 4, we have
2 ,, 02, o, b?
b(ab+c“+2ac)—20<b|a +Z+C +2ac |—20=>b|(a+¢c) +Z —20
., b? S 2
=b|(5-b)*+—|—20=—=(b—4)(b—2)*<0.
4 4
Consider now that b > 4. Since
a=5—b—c<5-—b,
We have

ab?+ bc? +2abc—20=ab*+ b(5—a—Db)?>+2ab(5—a—b)—20
= b+ ab?*—10b*—a?b +25b—20
< b*+ab®>—10b>+25b—20
< b*+(5—b)b*—10b*+25b—20
=—-5(b—4)(b—1)<0.

P 2.33. If a, b, c are nonnegative real numbers, then

a+b3+c2—a’b—b%*c—c*a> g(a— b)(b—c)>

Solution. Since
3(a®+ b2+ —a’b—b%c—c?%a) = Z:(Za3 —3a?b+ b3 = Z(Za + b)(a—b)?,
we can write the inequality as
(2a+b)a—b)*+(2b+c)(b—c)*+(2c+a)(c—a)* > g(a —b)(b—c).
If a < b, then

(2a+b)a—b)l +@2b+c)(b—c)P+(2c+a)c—a)’=>0> g(a —b)(b—c).
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If a > b, then there are two cases to consider: b >c and b < c.
Case 1: a > b > c. It suffices to show that

(2c+a)la—c)* > g(a —b)(b—c)%.

By the AM-GM inequality, we have
(a—b)(b—c)? =4(a—b)(b_c) (b_c)

2 2
<4[(a—b)+(b—c)/2+(b—c)/2]3
- 3

=217(a—c)3.

Therefore, it suffices to show that
32
(2c+a)la—c)* > a(a —c)®,

which is obvious.
Case 2: a > b, ¢ = b. Making the substitution

a=b+p, <c¢=b+q, p,q=0,

the inequality becomes

8
(Bb+2p)p*+(Bb+q)g*+(Bb+p+2q)(p—q)* = gpqz,

8
3[p*+¢*+(p—q)*1b+2p° + ¢+ (p +2¢9)(p —q)* = —pq°.

3
It suffices to show that

8
2+ +(p+29)(p—q)* = gpqz,

which is equivalent to
3
2p° +2¢> > gpqz.

By the AM-GM inequality, we have
3
2p* +2q° =2p° +¢° +q° = 3¢/2p3¢° > 34qu,

because 34

The equality holds for a = b =c.
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P 2.34. Let a, b, c be nonnegative real numbers such that a > b > c. Prove that

2 21,2 a—b 2.
(@) > a*(a—b)(a—c) = 4a®b (a+b) :
(b > a*(a—b)(la—c) > %a—b)‘*.

(Vasile C., 2011)

Solution. (a) Since c*(c —a)(c — b) > 0, it suffices to show that

2
a®(a—b)(a—c)+ b*(b—c)(b—a) > 4a*b> (Z;Z) .

Since
a*(a—b)(a—c)=a*(a—Db)[(a—b)+(b—c)]

2
) +a?(a—b)(b—0),

a—>b

=a?(a—b)*+a*(a—b)(b—c) > 4a®b? (
a+b
it suffices to show that
a*(a—b)(b—c)+ b*(b—c)(b—a) > 0.
This inequality is equivalent to
(a—b)*(a+b)b—c)>0.
The equality holds for a = b =, and for a = b and ¢ = 0.
(b) Since c*(c —a)(c — b) > 0, it suffices to show that

a*(a—b)a—c)+ b*(b—c)(c—a) = %a_b)“,

which is equivalent to

27b(a—b)*

a’(a—b)?+ala—b)b—c)+b3i(b—c)(c—a)> 0

Since

_27b(a—b)* _ (a—b)*(a—3b)*(4a—3b) _

2 —b 2
a’(a ) 4a 4a

it suffices to show that
a’(a—b)(b—c)+ b*(b—c)(b—a)>0.
This inequality is equivalent to

(a—b)*(a+b)b—c)>0.

The equality holds fora = b =, and fora/3 =b =c.
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P 2.35. If a, b, c are real numbers such that

a>b>1>c, a*+b*+c*=3,

then
(@) 1—abc<2(b—c)%;
(b) 1—abc>2(a—b)%;
() 1—abc > %(a—c)z;
3 2
(d) 1—achZ(a—c) )

(Vasile Cirtoaje, 2020)

Solution. (a) Write the inequality as follows:

1—abc < 2(3—a*—2bc),

5—2a*> (4—a)bc.
From (b2 —1)(c?—1) <0, we get
b2l <bh’+c2—1=2—a?, be<v2—a2, a<V2.

Thus, it is enough to show that

5—2a>> (4—a)V2—a?,
which, by squaring, becomes

5a*—8a®—6a®+16a—7> 0,

(a—1)*(5a+7)>0.

The equality occurs fora=b =c=1.

(b) From
3=a?+b?>+c2>1+1+c%

it follows that ¢ € [—1, 1]. Write the required inequality as follows:
1—abc > 2(3—c*—2ab),

(4—c)ab >5—2c%
From (a?—1)(b?*—1) >0, we get

ab>vVa2+b2—1=+v2—c2.
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Thus, it is enough to show that
(4—c)V2—c2>5-2c2
which, by squaring, becomes
5c*—8c3—6c2+16c—7<0,
(c—=1)>(5¢c+7)<0.
(c) Write the inequality as follows:
2—2abc >3 —b%—2ac,

b?*—1>2ac(b—1),

which is true if
b+12>2ac.

It is enough to show that
b+1>a%+c?

which is equivalent to
b+1>3—b?

(b—1)(b+2)=0.
The equality occurs fora=b=c =1.
(d) Write the inequality as follows:
4—4abc < 3(3—b*)—6ac,

2(3—2b)ac < 5—3b>.

From
(a2 —=b*)(b%2—=c?) >0,

it follows that

ac < y/b2(a2+c2) — b* = bv/3—2b2, 13bs\l§.

Thus, it suffices to show that
2b(3—2b)v/3—2b2 < 5—3b2
By squaring, the inequality becomes
32b%—96b° + 33b* + 144b> — 138b% 4+ 25 > 0,

(b—1)*(32b*—32b%—63b%+ 50b + 25) > 0.
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It is true because
32b* —32b% —63b% +50b + 25 > 32b* — 32b> — 64b? + 48b + 24

=8(3—2b%)(1+2b—2b%) > 0.

The equality occurs fora=b=c=1.

P 2.36. If a, b, c are real numbers such that
a=1>b=>c, a’+b*+c*=3,
then 5
1—abc < =(a—c)*
3
First Solution. There are two cases to consider: b <0 and b > 0.
Case 1: b < 0. Since 0> b > c, hence c? > b?, we have
3abc+2(a—c)*—3>2(a—c)*-3
>a?+2c2—-3>a?+b%+c2-3=0.
Case 2: b > 0. Write the inequality as follows:
3abc +2(3 — b*—2ac) >3,

3—2b2>(4—3b)ac.

From (b2 —c?)(b?—a?) < 0, we get
a®c? < b*(a® +c?)—b* = b*(3—b*)—b*, ac<bv3—2b2.
Thus, it is enough to show that
3—2h% > b(4—3b)V/3—2b2,
which, by squaring, becomes
6b°—16b° + 3b* + 24b°> —20b> +3 > 0,

(1-0)*(3+9b—2b%2—6b%) > 0.
(1—b)*[3+b+2b(1—Db)+6b(1—0b*)]>0.

The equality occurs fora=b =c=1.
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Second Solution ( by Mudok). We will prove the stronger inequality
2
1—abc < g[(a—c)z—(a—b)(b—c)],
which is equivalent to
2
1—abc < §(S—ab—bc—ca),

3—3abc <9—p?

where
p=a+b+c.
From
(a—1)(b—1)(c—1)=>0,
we get

2 _ _
achM.

Thus it suffices to show that

_3(*=2p—1) _
> <

3 9_P2:

which is equivalent to
(p—3)*=0.

P237.Ifa>1>b>c>0anda®+ b*+c*=3, then

1
1—abc < —(a—c).
ﬁ( )

(Vasile Cirtoaje, 2020)

Solution. Denoting x = ac, we need to show that f (x) > 0, where

() =bx+\ —3‘b2‘2X_1.

For fixed b, we have x € [0, M ], where
M =b+v3—2b2.
Indeed, (b? —a?)(b?—c?) < 0 yields

a’c? < b*(a®*+c?)—b*=3b*—2b*", x<bV3—-2b2=M.
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We have x =0 forc=0,and x =M fora=b =1 or b =c. Since

M) = — L 1
f(x)= 7 (3—b2—2x)3/2S0’

f is a concave function, therefore it suffices to show that f(0) > 0 and f(M) > 0.
We have

f(0)= 3_2b2—1zo.

Since

\/3—b2—2M:\/3—b2—2b\/3—2b2=\/3—2b2—b,

we have

2 2
f(M) > bM+§-\/3—b2—2M—1:5-\/3—b2—2M—(1—bM)

:%-(\/3—2b2—b)—(1—b2\/3—2b2)
:(b2+§)\/3—2b2—%—1.

So, we need to show that
(3b%+2)v/3—2b2>2b +3.
By squaring, the inequality becomes
6b°—b*—8b*>+4b—1<0,

(b—1)(6b°> +6b*+5b>+5b>—3b+1)<0.

It is true because
5b>—3b+1=b*+b+(2b—1)*>0.

The equality occurs fora=b=c =1, and also fora=+2,b=1,c=0.

P2.38.Ifa>1>b=>c>0anda?+ b?+c* =3, then

1—abc < (1+v2)(a—Db).

(Vasile Cirtoaje, 2020)
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Solution. Denoting x = ab, we need to show that f(x) > 0, where
f(x)=cx+kx/ﬂ—1, k=1++2.
For fixed ¢, we have x € [m, M ], where
m= cm, M = \/ZTC2
Indeed, (a? —c?)(b? —c?) > 0 yields
b2 > cX(a®+ b)) —c* =3c2—2¢*, x>cV3—2c2=m,

and (a®—1)(b*>—1) <0 yields

ab<vVa?+b2—1=+/2—c2=M.

We have x = m for b =c, and x = M for b = 1. Since

—k
<
(3—c2—2x)3/2 ~ 0

)=

f is a concave function, therefore it suffices to show that f(m) >0 and f (M) > 0.

We have
f(m)=c2\/m+k\/3—c2—2cm—l
=czm+k(m—c)—1
2c2@+2(@—c)—1
=(?+2)vV3—-22—2c—12 (2c+1)(V3-2c2—1) > 0.
Also,

f(M):cv2—c2+k\/3—c2—2v2—c2—1
=C\/2—02—1+k(\/2—c2—1)
(1= N k(1—c?)
V241 V2—2+1

So, we need to show that

k - 1—c2
V2—c2+1 cv2—c2+1

It is true because

k 1—¢c?
— >1>—
v2—c2+1 1+cv2—c?

The equality occurs fora=b=c =1, and also fora=+2,b=1,c=0.
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P239.Ifa>1>b>c>0anda?+ b*+c?=3, then

1—abc < (3+2v2)(a—b)%

Solution. Write the inequality as follows:

abc+k(3—c%>—2ab)>1,

(Vasile Cirtoaje, 2020)

3k—1—kc?>(2k—c)ab, k=3+2+v2.

From (a?—1)(b?—1) <0, we get

ab<va2+b2—1=+2—c2
Thus, it is enough to show that
3k—1—ke® > (2k—c)vV/2—c2.
Write this inequality as follows:
k(3-c2—2v2—c2)>1-cv2-¢,

k(1—c?)? - (1—c?)?
3—c2+2v/2—c2  1+cv2—c2

k(1+cv2—c2)23—c2+2\/2—c2,
k—3+c2>(2—kc)vV2—c2.

For the nontrivial case 2 — kc > 0, we have

which is true if

k—34+c2>k—3=2v2>(2—ke)vV2—c2.

The equality occurs fora=b=c =1, and also fora=+2,b=1,c =0.

P 2.40. If a, b, c are positive real numbers, then

L C el
b ¢ a_ ab+bc+ca’

(Vasile Cirtoaje and Vo Quoc Ba Can, 2008)
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First Solution. By expanding, the inequality can be written as

b 2 2 bZ
b2+ 2— + < + 22 > 2qb + 2bc.
a b c
We can get this inequality by summing the AM-GM inequalities
2

ab-l—bL > 2bc,
a

2
b2+1+£>3ab
b c

The equality holds for a = b =c.

Second Solution. From

(a+b+c)( +— ——3) Z Z——z
—Z(——2a+b) Z(@;b)
_Z(——2a+b) Z(a—+%c—2a)
:Z(a—bb)z_i_iza(bb—cc)z’

we get

a

(a+b+c)(%+§+£_3)2 (a_l)b)2+(b_cc)2+(c_aa)2_

By the Cauchy-Schwarz inequality, we have

(a—bP  (b=cP _(a—cF
b c - b+c

Therefore,

>

a b ¢ (a—c)?* (c—a)?
+b+o)|=+—-+-—3]|> +
(a C)(b c a )_ b+c a

which is equivalent to
a, b, c g (a=c)
b ¢ a “a(b+c)

From this result, the desired inequality follows immediately.
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P 2.41. If a, b, c are positive real numbers, then

a b ¢ 4(a—-c)?

4 ->34—— 7 .
(@ b+c+a_ +(a+b+c)2’

a b ¢ 5(a—c)?
b 4 —>34+
®) b ¢ a (a+b+c)?

(Vo Quoc Ba Can and Vasile Cirtoaje, 2009)

Solution. As we have shown at the second solution of the preceding problem P

2.40:
a b ¢ (a—b)*> 1<—a(b—c)?
bro)(E+2+83)= 15rabzor
(a+ +c)(b+c+a ) >, ; +2Z —

a, b, c g (a=c)
b ¢ a “a(b+c)

(a) According to the upper inequality, it suffices to show that

1 S 4
a(b+c) ~ (a+b+c)?

Indeed,
1 4 B (a—b—c)?
a(b+c¢) (a+b+c¢)2 alb+c)a+b+c)2 ™
The equality holds fora = b =c.

(b) According to the upper identity, write the inequality as

a b ¢ 5(a—c)?
+bh+o)| -+ —+——3]>—
(a C)(b c a )_a+b+c’

Z:(a—b)2 +%Z a(b—c)? - 5(a—-c)?

b bc¢ T a+b+c’
(a—b)? (b—c)* cla—Db)?* a(b—c)? ( 5 1 b ) 5
+ + + > —~——|(a—c)*
b c 2ab 2bc  “ \a+b+c a 2ac (a=c)

By the Cauchy-Schwarz inequality, we have
2 2 2
(a—b)” (b—c)” _ [(a=b)+(b—c)] ’
b c b+c

c(a—b)? N a(b—c)? - [(a—Db)+(b—c)P*  acla—c)
2ab 2bc 2‘;_1’ + Zaﬁ "~ 2b(a2+c2)’

Thus, we only need to show that

1 ac 5 1 b

+ = s
b+c 2b(a?2+c2)  a+b+c a 2ac
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which is equivalent to

(1 4 1 ) 4 ac 4 b S 5
a b+c) 2b(a2+c2?) 2ac a+b+c
This inequality is true because, by the Cauchy-Schwarz inequality and the AM-GM

inequality, we have
1 1 4

—+ >
a b+c a+(b+c)

and
ac b 1 1 1

+ > > > .
2b(az+c2) 2ac a2+c2 a+c a+b+c
The equality holds fora = b =c.

P242. Ifa>b>c>0, then

a b e, 3b-c)
b ¢ a ab+bc+ca

First Solution. Since

a, c Ez(a—b)(a—c)zoj
b a b ab

it suffices to show that

b ¢ 3(b—c)?
—+—-——2>—
c b “ab+bc+ca

Indeed, we have

b ¢ 5 3(b—c)*  (b—c)*(ab+ac—2bc)

c b ab+bctca bec(ab + bc+ca)

The equality holds for a = b =c.

Second Solution. Since
ab + bc+ca > 3bc,

it suffices to show that

a b ¢ (b—c)?
—+=-+—>=3+ ,
b ¢ a bc
which is equivalent to
a, e q,¢
b a b’
(a—b)la—c) > 0.

ab
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P 2.43. Let a, b, c be positive real numbers such that abc = 1. Prove that

(@) if a=b>12>c, then

(Vasile C., 2010)

Solution. (a) Write the inequality as

Flos 4221,
b a

where )
C
flOy=2+5,
c a
From
b®>1=abc,
we find
b?>ac
We will show that
b? a
fO=fl—|=2=-+2—-1
a b
The left inequality is equivalent to
b ca b
c a b a¥

(a®>—bc)(b%>—ac) > 0.
The right inequality reduces to
b 2
(— - 1) > 0.
a

The equality holds fora=b =c =1.
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(b) Write the inequality as

f(a)29+25—1,
c b

where
flay="1+=.
b a
From
b® <1=abc,
we find
b* <ac

We will show that

ac—b% _ c(ac—b?
> >0,
bc ab?

(ab—c?)(ac—b*»)>0.

The right inequality reduces to

C 2
——1) > 0.
(G

The equality holds fora=b =c =1.

P 2.44. Let a, b, ¢ be positive real numbers such that
a=1>b=>c, abc =1.

prove that

Ry
4,0, ¢4, b0
b ¢

a ab+bc+ca’
(Vasile C., 2010)
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Solution. From b® < 1= abc, we find b? < ac. We will show that
a b c_2b ¢, 9b—c)
b ¢ a ¢ b2~ ab+bc+ca
The left inequality is equivalent to
a,c b &
b a ¢ b?
a_b_ (5 _ i) -0
b ¢ a b2)” 7
ac— b? N c(b?—ac) -0
bc ab2 7
32 _ 2
(ac—b*)(ab—c )20.
ab?c
The right inequality is equivalent to
2b - 9(b—c)?
c b2 “ab+bc+ca
(b—c)*(2b+¢) - 9(b—c)?
b2c ~ab+bc+ca
We need to show that
(2b+¢) > 9
b2c  — a(b+c)+bc’
This is true if
(2b+¢) S 9
b2c  ~ b(b+c)+bc’
which is equivalent to
2(b—c)?
b2c(b+2c) —
The equality holds fora=b =c =1.
O

P 2.45. Let a, b, ¢ be positive real numbers such that
a=1>b=>c, a+b+c=3.

prove that

3+

a b ¢ 4(b—c)?
c a b2+4c¢2

(Vasile C., 2010)
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Solution. From
3b<3=a+b+c,

we find
2b<a+c, a>2b—c.

We will show that

_+_+£>2b—c+2+ c >3+4(b—c)2
b ¢ a b c 2b—c b2+4c2 °

The left inequality is equivalent to

2b—c C
>

c
+-2> + ,
a b 2b—c¢

a4
b
a+c—2b_c(a+c—2b)

b a2b—c) ~

(a+c—2b)la(b—c)+ bla—c)] S
ab(2b—¢) -

The right inequality is equivalent to

0.

(b—c)*(2b+¢) - 4(b—c)?
bc(2b—c) — b2+c2

We need to show that
(2b+c¢) S 4

bc(2b—c) — b2+c?’

which is equivalent to
2b%*—7b%*c + 6bc* +¢* > 0,

2b(b—2¢)*+(b—c)*c > 0.
The equality holds fora=b=c=1.

P 2.46. Let a, b, ¢ be positive real numbers such that
a=b>12>c, a+b+c=3.

Prove that

(Vasile C., 2008)
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Solution. From
3b>3=a+b+c,

we get
2b>a+c, c<2b—a.

We will show that

a b c¢_a b 2b—a +3(a—b)2

—+—+-=>—+ + >3
b ¢ a b 2b—a a

The left inequality is equivalent to

b ¢ b 2b—a
> +

c a 2b—a a

b

(2b—a—c)[b(a—c)+c(a—Db)]=0.

The right inequality is equivalent to

b 2b—a a ab

(a—Db)*(4b—a) - 3(a— b)?

_ _ 2
a b +2b a_323(a b)

ab(2b—a) —  ab
1)

2a=b)y
ab(2b—a)

The equality holds fora=b=c=1.

P 2.47. If a, b, c are positive real numbers, then

b 2(a—c¢)?
E+—+£23+—(a——(l.
b ¢ a (a+c)?
Solution. Since
a b a
—+— =24/,
b ¢ c
it suffices to show that )
2 —
P CRO Chnld)
a c (a+c)?

. .. a .. .
Using the substitution x = ‘/ —, this inequality becomes as follows:
c

1 2(x2—1)?
—+2x=23+—77,
x? (x2+4+1)2

ab
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(x—1)(@2x+1) - 2(x2—1)?
x2 To(x2+1)2

We need to show that
2x+1 2(x +1)2

x2 T (x241)2

which is equivalent to
2x°—3x*+2x+1>0.

For 0 < x <1, we have
2x° —3x*+2x+1>-3x*+2x+1>-3x+2x+1>0.
Also, for x > 1, we have
2x° =3x*+2x +1>2x°—3x*+2x —1=(x—1)*(2x*+x*—1)> 0.

The equality holds for a = b =c.

P 2.48. If a, b, c are positive real numbers, then

2 2 2 2
a b c 4(a—c
—+—+—2a+b+c+u.
b c a a+b+c

(Balkan MO, 2005, 2008)

Solution. Write the inequality as follows:

2 2 2 32
(a—+b—2a)+(}b—+c—2b)+(c—+a—2c)2M

b c a a+b+c’

— hH)? _ )2 _ )2 PR
(a—Db) 4 (b—c) N (a—c) > 4(a—c) .
b c a a+b+c
By the Cauchy-Schwarz inequality, we have

(a—b)®> (b—c)?* (a—c)_ [(a=Db)+(b—c)+(a—c)* 4(a——c)?
+ + > = :
b c a b+c+a a+b+c

b 1 5
The equality holds fora = b =, and also fora =b +c and — = b ‘/_.

c 2

P249.Ifa>b>c>0, then

a? b? 2 6(b—c)?
— 4+ —+—2a+btc+—.
b c a a+b+c

(Vasile C., 2014)
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Solution. Write the inequality as follows:

2 2 2 PRV
(a—+b—2a)+(b?+c—2b)+(%+a—2¢)2M

b a+b+c’

(a—b)? N (b—c)? N (a—c)? S 6(b—c)?

b c a a+b+c’
—_ h)2 —_~)2 _ 2
(a—>b) +(a c) +(a+b 5¢)(b—c¢) >
b a cla+b+c)

Since
(a—c)*=[(a=b)+(b—c)P=(a—=b)*+2(a—=b)(b—c)+(b—c)?,

we have

(a—b)? N (a—c)? > (a—c)? > 2(a—b)(b—c)+(b—c)2'
b a a a

Therefore, it suffices to show that

2(a—Db)(b—c)+(b—c)*> (a+b—5c)(b—c)?
+ >
a cla+b+c)

which can be written as

2(a—b)(b—c) N (a—c)*+ab+ bc—2ca

b—c)*>0.
a acla+b+c) (b=c) =

Since
(a—c)?+ab+bc—2ca=(a—c)*+a(b—c)—c(a—b)>—c(a—b),
it is enough to prove that

2(a—b)(b—c)_ a—b

Ry
a a(a+b+c)(b ¢y =0.
Indeed,
2(a—b)(b—c)_ a—b>b _ , (a=Db)(b—c) __b—c
a a(a+b+c)(b )= a (2 a+b+c)20'

The equality holds for a = b =c.
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P 2.50. Ifa>b>c>0, then

a? b*> 2

—+—+—>5(a—D).
b c a

(Vasile C., 2014)

Solution. Consider two cases: a < 2b and a > 2b.

Case 1: a < 2b. It suffices to show that

a2 2

b
_ R —
b+b_5(a b),

which is equivalent to the obvious inequality
(2b—a)(3b—a) = 0.

Case 2: a = 2b. Since

2 2 2
LR Y (R
a C

c a a

b b+c (b—c)*(2b+¢)
>(b— —_ = >0
= C)(c 2b ) 2bc -

it suffices to show that

a2 2

—+b+b—25(a—b),
b a

which is equivalent to
x(x—2)(3—x)<1,

where x = a/b > 2. For the non-trivial case 2 < x < 3, we have

(x—2)+(3—x)]2_£<1
2 = .

x(x—2)(3—x)2x[ 2

P 2.51. Let a, b, ¢ be positive real numbers such that
a=>b>12>c, a+b+c=3.

Prove that
a? b? 2 11(a—c)?

+ .
b ¢ a 4(a+c)
(Vasile C., 2010)
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Solution. We have
a+b+c=3<b, 2b>a+c.

Thus, we need to prove the homogeneous inequality

a? b% 2 11(a—c)?
—+—+—>a+b+c+————
b ¢ a 4(a+c)
for a+c
a>b
2
Denote 2 g2 )
f(aabac):a_+_+c__a_b_c.
b c a

We will show that

a+c )> 11(a—c)?
2’ 4(a+c)

)=s

flab,0)= f(a,

Write the left inequality as follows:

(a_z_ 2a> )+[b_2_(a+c)2]_(b_a+c
b a+c c 4c 2

a? 2b+a+c 1
2b—a—c)|— + —>|>o0.
( @ C)[ b(a+c) 4c 2]_
Since 2b —a —c > 0, we only need to show that
2b+a+c a® 1
> +—.
4c b(a+c) 2

+
It suffices to prove this inequality for b = %. Making this, the inequality be-

comes
a(a—-c)?

2c(a+c)* —
To prove the right inequality, we find

f(a a+tc c)— (a—c)?*(a®+ 7ac + 4c?)
2 ) 4ac(a +c)

>

hence

( a+c )_11(a—c)2_(a—c)2(a—2c)2
fle 5 ¢ 4la+c)  4dacla+c)

> 0.

b
The equality holds for a = b = ¢ = 1, and also for % = 3 = % (that is, for a = g

2
b=1,c=72>).
, C Q

>
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P 2.52. If a, b, c are positive real numbers, then

a b c o 3 27(b—c)?

+ + >4
b+c c¢c+a a+b 2 16(a+b+c)?

(Vasile C., 2014)

Solution. Write the inequality as follows:

a 9 27(b—c)?
+1)2 S
Z(b+c 2 16(a+b+c)?

1 27(b —¢)?
el Eire) = rsor

Replacing b +c¢, c +a, a+ b by a, b, c, respectively, we need to show that

1)29 27(b—c)?

(a+b+c)(1+1+— —
a b ¢ 2(a+b+c)?’

where a, b, c are the side-lengths of a non-degenerate triangle. Write this inequality
in the form

a+b+c

2
+(a+b+c)(%+1) 54bc S 27(b +c¢)

¢ (@a+b+c2 ™ 2(a+b+c)?

Applying the AM-GM inequality gives
1 1 54bc 6(b+c)
+b+o)|l 4= |+ ————==6\| ———.
(a C)(b c) (a+b+c)? a+b+c
Therefore, it suffices to show that
2 2
a+b+c+6, 6(b+c) S04 7(b +c¢) ’
a a+b+c 2(a+ b +c)?
which can be rewritten as
1 1I 6(b 27(b 2
—+6 M > 9_|_ M
1 b+c a+b+c 2(a+b+c)?
a+b+c

Using the substitution

b+c 2, 5,3
——=t%, 2>
a+b+c 3 4
this inequality becomes
+4t > 3+2¢%,

3—2t2
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2t —3t*— 43+ 3t2+6t—4>0,
(t—1)?(2t*+4t3 +3t2—2t—4) >0,
(t—1*[(4t2=3) (> +2t +2) + 2 +2t —2] > 0.

Clearly, the last inequality is true for t? > 3/4. The original inequality is an equality
fora=b=c.
O

P 2.53. Let a, b, ¢ be positive real numbers such that a = min{a, b, c}. Prove that

a b c 3 9(b—c)?
+ + > - .
b+c c+a a+b 2 4(a+b+c)?

(Vasile C., 2014)

Solution. Write the inequality as

a 9 9(b —c)?
+1)z—+—,
Z(b+c 2 4(a+b+c)

1 18(b —c)?
[Z(b+c)} (Zb——i-c) =9+ [(b+c)+(c+a)+(a+Db)]?

Replacing b +c¢, c +a, a+ b by a, b, c, respectively, we need to show that

1 1 1 18(b —c)?
b —+—+-)= —_—
(a+ +c)(a+ 5 + c)_9+(a+b+c)2’

where a, b, ¢ are the side-lengths of a non-degenerate triangle, a = max{a, b, c}.
Since

(a+b+c)223(b+c)229bc,
it suffices to show that
1 1 1
(a+b+c)(—+—+—)29
a b

c

2(b—c)?
#2029
Write the inequality as follows:

a—b)* (a—c)* (b—c)* _ 2(b—c)?
: ab) +( ac) +( bc) = (bc)’
cla—b)2+bla—c)?=>a(b—c),
(b+c)a?—(b+c)a+be(b+c)>0,
(b+c)la—b)la—c)=0.

Clearly, the last inequality is true. The original inequality is an equality fora = b =
c.

O
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P 2.54. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
a b c 3  (b—c)?
+ + >+
b+c c¢c+a a+b 2 2(b+c)?

(Vasile C., 2014)

First Solution. Write the inequality as follows:

2bc L2 b LS o,
(b+c¢)2 b+c c+a a+b
a(b+c)+2bc b N c —
(b+c¢)? c+a a+b
By the Cauchy-Schwarz inequality, we have
b c o (b +c)? _ (b+c)

+ = = .
c+a a+b blcta)+cla+b) a(b+c)+2bc
Therefore, it suffices to prove that
a(b+c)+2bc (b +¢)?
(b +c¢)2 a(b+c)+2bc

which is obvious. The original inequality is an equality fora = b = ¢, fora = b
and ¢ =0, and fora =c and b =0.

Second Solution. Write the inequality as follows:
a 9 (b—c)?
+ 1) >
Z(b+c 2 2(b+c)?

1 b—c)?
Serol(Xi)=or orer

Replacing b+ ¢, c+a, a+ b by a, b, c, respectively, we need to show that

2
(a+b+c)(1+1+1)29+(b C),
a b c

a2
where a, b, ¢ are the lengths of the sides of a triangle. Write this inequality as
—b)2 )2 _~)2 _ )2
(a—b) +(a c) +(b c) 2(b c) ’
ab ac bc a?
a[c(a—b)*+ b(a—c)*] = (bc —a?)(b—c)>.

Without loss of generality, assume that b > c. Since a > b —c, it suffices to show
that

c(a—b)*+bla—c)* > (bc—a?*)(b—c).
Indeed, we have

cla—b)*+bla—c)*—(bc—a*)(b—c)=2b(a—c)*>0.
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P 2.55. Let a, b, ¢ be positive real numbers such that a = min{a, b, c}. Prove that
a b c 3 (b—c)?
+ + > =+ :
b+c c¢c+a a+b 2 4bc

(Vasile C., 2014)
First Solution (by Nguyen Van Quy). Notice that for a = min{a, b, c}, we have
4bc = (2b)(2¢) = (a+ b)(a +¢) = 2a(b +¢),

hence
a 2a® (b—c)? < (b—c)?

> .
b+c (a+b)a+c)  4bc ~ (a+b)a+c)
So, it suffices to show that
2a> b c 3 (b—c)?
+ + >
(a+b)la+c) c+a a+b 2 (a+b)a+c)

which is equivalent to the obvious inequality

(a=—b)la—c)=0.

The proof is completed. The original inequality is an equality fora = b =c.

Second Solution. Let
a + b N c '
b+c c+a a+bd
Without loss of generality, assume that b < c, hence a < b < ¢. We will show that

3 (b—c)?
E(a,b,c) > E(b,b,c)> -+ .
(a,b,c) = E(b, ,C)_z 1he

E(a,b,c) =

We have

_a—b b(b—a) c(b—a)
B b,)=E(b,b,c) = o b0y T 2b(a+ b)

o (b—a)—c c

= a)[(a+c)(b+c) +2b(a+b)]
_(b—a)[2b(b*—a®)+c(c—b)a+2b+c)] -
B 2b(a+b)(a+c)(b+c) B

0

and

3 (b—c)? (Zb c 3) (b—c)?
E(b,b,c)— > — = )=
(b,5,6) =5 = Zhe btc 2b 2 4bc

_ (b=c) (b=c)

"~ 2b(b+c) 4bc

133
_ (e=b)
4bc(b+c)
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P 2.56. Let a, b, c be positive real numbers such that
a<1<b<c, a+b+c=3,

then
a b c 3 3(b—c)?
> -4+ —

- + >
b+c c¢c+a a+b 2 4bc

(Vasile C., 2014)

Solution. From
3b>3=a+b+c,

we get
a<2b-—c, 2b > c.
Let b
a c
E(a,b,c) = + + .
(a,b,¢) b+c c¢c+a a+b
We will show that
3 3(b—c)?
E(a,b,c)>E(2b—c,b,c) > -+ ——.
(a,b,c) = E( c, ,C)_2 The
We have
E(a,b,c)—E(2b—c,b,c)=(2b—a—c)F,
where

—1 1 c
F = + + .
b+c 2(c+a) (a+b)@Bb—c)
Since 2b —a —c > 0, we need to show that F > 0. This is true because

F—l(—1+1)—1+ c
2\ b+c c+a 2(b+c) (a+b)@Bb—c)

S - > L =
2(b+c) (a+b)3Bb—c) 2(a+b) (a+b)@Bb—c)
3(c—b)

= = 0.
2(a+b)(3b—c)

In what concerns the right inequality, we have

b3 g el 1]
E(2b—c,b,c) =5 === =3(b—c) [(b+c)(3b—c) 4bc]

_ —3(b—c)*(3b+¢) -
"~ 4bc(b+c)Bb—c) T

The proof is completed. The original inequality is an equality fora =b =c = 1.
O
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P 2.57. Let a, b, c be nonnegative real numbers such that
a=>1>b>c, a+b+c=3,
then
a b c 3 (b—c)?
+ + >+ :
b+c c¢c+a a+b 2 (b+c)?

(Vasile C., 2014)

Solution. From
3b<3=a+b+c,

we get
a>2b—c.

Let
a b c

E(a,b,c) = + + )
(a.b,¢) b+c c¢c+a a+b

We will show that

3 (b—c)?
E(a,b,c)>=E(2b—c,b,c)> =+ .
(a,b,) 2 E@b—e,b,0)2 J + s
We have
E(a,b,c)—E(2b—c,b,c)=(a—2b+C)F,
where

1 1 c
F= — — :
b+c 2(c+a) (a+b)@Bb—c)
Since a —2b + ¢ > 0, we need to show that F > 0. This is true because

le( 1 . 1 )+ 1 . c
2\b+c c+a) 2(b+c) (a+b)(Bb—c)
S 1 B c S 1 B c
“2(b+c) (a+b)3b—c) 2(a+b) (a+b)3Bb—c)
_ 3(b—c) >0,
2(a+b)(3b—c) —

The right inequality is also true because

3 (b—c)? (b—c)z[ 3 1 ]

E(2b—c,b,c)— 2 — - .

( ¢b,¢) 2 (b+c¢)? b+c [3b—c b+c
4c(b—c)?

T (b+eP@b—o) "

The proof is completed. The original inequality is an equality fora =b =c =1,
and also fora=2,b=1,c=0.
OJ
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P 2.58. Let a, b, ¢ be positive real numbers such that a = min{a, b, c}. Prove that
ab+bc+ca 2(b—c)? 1.
a2+b2+c2  3(b2+c2)
ab+ bc+ca (b—c)?
® a2+b2+c2+b2+bc+c2S1;
ab+bc+ca (a—Db)>?
az2+b2+c¢2  2(az+b2) "

(@)

(©)

(Vasile C., 2014)
Solution. (a) First Solution. Since
3(b%+¢?) = 2(a® + b2 +¢?),
it suffices to show that

ab+ bc+ca (b—c)?
a?+b2+c2  a?+b2+c?

This inequality is equivalent to
(a=—b)la—c)=0,
which is clearly true. The equality holds fora =b =c.

Second Solution. Write the inequality as follows:

4(b—c)? - (b—c)*+(a—b)*+(a—c)?
3(b2+¢2) aZ+ b2 +c2 ’
3(b*+c*)[(a—b)* +(a—c)*] = (b—c)*(4a*+ b* + ¢?),
3(b2+cA)[(b—c)*+2(a—b)a—c)] = (b—c)*(4a®+ b% +¢?),
6(b%+c?)(a—b)a—c)+2(b—c)*(b%+c?—2a®)>0.
The last inequality is true because (a — b)(a —c) > 0 and b* + ¢?—2a% > 0.

(b) Without loss of generality, assume that
a<b<c.

Write the inequality as

ab+bc+ca< 3bc )
az+b24+¢2 ~ b2+ bc+c2’

that is,
E(a,b,c) >0,
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where
E(a,b,c) =3bca®—(b+c)(b*+c*+ bc)a + be(2b? + 2¢2 — be).
We will show that
E(a,b,c) > E(b,b,c)>0.
We have
E(a,b,c)—E(b, b,c) =3bc(a®>—b?)—(b+c)(b?>+ %2+ bc)(a—b)
=(b—a)[(b+c)(b*+c?+ bc)—3bc(a+b)]

>(b—a)[(b+c)(b*+c?+ bc)—3bc(c+b)]
=(b—a)(b+c)(b—c)*>0.

Also,
E(b,b,c)=Db(c—Db)*>0.
The equality holds fora =b =c, and also fora=b=0o0ra =c=0.

(c) Write the inequality as follows:

ab+(a+b)c < (a +b)?
a?+b2+c¢2 7 2(a%+b2)
(a+b)*c?—2(a+ b)(a®>+ b*)c+ (a®+b?)?* >0,
[(a+b)c—(a®?+DbH)]*>0.
a®+ b?
a+b’

The equality holds for ¢ =

P 2.59. Let a, b, ¢ be positive real numbers such that
a<l<b<cg, a+b+c=3,

then

ab+ bc+ca (b—c)2<1
a2+ b2 + ¢2 be ~ 7
(Vasile C., 2014)

Solution. From
3b>3=a+b+c,

we get
a<2b-—c.
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Write the inequality as follows:

2(b—c)? < (b—c)?+(a—b)?+(a—c)?

bc a2+ b2+c2 ’
2 2 2
(b—a)2+(c—a)22(2a +2blz +2c —1)(c—b)2,
2a% + 2b% + 2¢2
(c—b)2+2(b—a)(c—a)2( @t bli e —1)(c—b)2,
2 2 2
(b—a)(c—a)z(ﬂﬁﬂ)(c—b)%
C

Since
b—a>b—(2b—c)=c—b=>0, c—a=>c—(2b—c)=2(c—b)=>0,

it suffices to show that
a?+ b%+c?
2> — —1,
bc
which is equivalent to
3bc > a?+ b% + ¢

This is true if
3bc > (2b—c)* + b + 2,

which reduces to
7bc > 5b% 4+ 2¢2,

(c—=b)(5b—2c) = 0.

Thus, we only need to show that 5b —2c > 0. Indeed, we have
5b—2c>2(2b—c)>2a>0.

The equality holds fora=b =c=1.

P 2.60. Let a, b, c be nonnegative real numbers such that a = max{a, b, c} and b+c >
0. Prove that

ab+ bc+ca (b—c)?
a?+b2+c2  2(ab+bc+ca) "
ab+bc+ca  2(b—c)?

+ <1
® a?+b2+c?2  (a+b+c)

(a)

(Vasile C., 2014)
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Solution. Without loss of generality, assume that a > b > c.
(a) Write the inequality as follows:

(b—c)? < (b—c)*+(a—b)*+(a—c)?
ab+ bc+ca a2+ b2 +c2

b

(ab + bc+ca)[(a—b)*+(a—c)*] = (b—c)*(a®+ b*+c*—ab— bc—ca).

Since
ab+bc+ca>ab>b*>>(b—c)?

it suffices to show that
(a—b)Y+(a—c)*>a*+b*+c*—ab—bc—ca.
Indeed,
(a=b)P+(a—c)—(a®?+b*>*+c —ab—bc—ca)=(a—b)(a—c)>0.
The equality holds fora=b =c, fora=b and ¢ =0, and for a =c and b = 0.
(b) Write the inequality as follows:

4(b—c)? < (b—c)?+(a—b)*+(a—c)?
(a+b+c)> ™ a?+ b2 +c?

>

(a+b+c)[(a=b)?+(a—c)?]=(b—c)*[3(a®+ b%>+c*)—2(ab + bc +ca)],
(a+b+c)’[(b—c)*+2(a—Db)(a—c)] = (b—c)*[3(a®+b*+c?)—2(ab + bc+ca)],
(a+b+c)(a—b)a—c)=(b—c)*[a®+ b*>+c2—2(ab + bc +ca)].

Since
a’?+b?>+c?>—2(ab+bc+ca)=(a—b)*—c(2a+2b—c) < (a—Db)?
it suffices to show that
(a+b+c)(a—c)>(b—c)*(a—b).
This inequality is true because
(a+b+c)*=>(b—c)

and
a—c>a—>b.

The equality holds fora =b =c, fora=b and ¢ =0, and for a =c and b = 0.
O]
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P 2.61. Let a, b, c be positive real numbers. Prove that
(a) ifa>b>c, then

ab+ bc+ca (a—c)?

=>1;
a?+b2+c2  a?—ac+c?

(b) ifa=>1=b=>=candabc =1, then

ab+ bc+ca (b—c)?

<1.
a?+b2+c2  b2—bc+c?

(Vasile C., 2014)

Solution. (a) Write the inequality as follows:

ab+bc+ca> ac
a?+b2+c¢2 — a2—ac+c?’

acbh?>—(a+c)(a®>—ac+c?)b+a*?<0,
acb*—(a®*+c*)b+a%* <0,
(ab—c?)(bc—a*) <O.

Because ab —c? > 0 and bc —a? < 0, the conclusion follows. The equality holds
fora=b=c.

(b) From
b3 <1=uabc,
it follows that
b%* < ac
Write the inequality as follows:
ab+ bc+ca bc
<

a?+Db2+c¢2 = b2—bc+c?’
bca?— (b +c)(b?>—bc+c?a+ b%2 >0,
bca®?—(b®+c®)a+ b*c* >0,
(ab—c?)(ac—b*»)>0.

The inequality is true because ab — ¢ > 0 and ac — b? > 0. The equality holds for
a=b=c=1.
O
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P 2.62. Let a, b, ¢ be positive real numbers such that a = min{a, b, c}. Prove that
a?+b+c® o 4b—c)

() ab+bc+ca — 3(b+¢)?’
2 2, .2 132
) a*+b*+c S +(a b)'
ab+ bc+ca (a+b)?

(Vasile C., 2014)
Solution. (a) First Solution. Since
3(b+c)?>>12bc > 4(ab + bc + ca),

it suffices to prove that
a’+ b +c? - (b—c)?
ab+bc+ca — ab+bc+ca’
which is equivalent to the obvious inequality
(a—b)la—c)=0.
The equality holds fora = b =c.

Second Solution. Since (b + c)? > 4bc, it suffices to prove that

a’?+ b+ c? b—c¢)?

ﬁ =1 : 3bc)
Write this inequality as follows:

(a—b)?+(a—c)*+(b—c)? - 2(b—c)?
ab + bc+ca ~ 3bc ’
3bc[(a—b)*+ (a—c)*] = (b—c)*(2ab + 2ac — bc),
3bc[(b—c)*+2(a—b)(a—c)] = (b—c)*(2ab + 2ac — bc),
6bc(a—b)(a—c)+2(b—c)*(2bc —ab—ac) > 0.

The last inequality is true because (a — b)(a—c) = 0 and

2bc—ab—ac=b(c—a)+c(b—a)=>0.
(b) Write the inequality as follows:
a?+ b%+c? - 2(a% + b?)
ab+(a+b)c~ (a+b)?’
(a+b)*c*—2(a+ b)(a®+ b*)c +(a* + b*)* >0,
[(a+b)c—(a®+Db*)]*>0.
a’+ b?
a+b’

The equality holds for ¢ =
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P 2.63. If a, b, c are positive real numbers, then
a?+b%+c? S 9(a—c)?
ab+bc+ca 4(a+b+c)?

(Vasile C., 2014)
Solution. Write the inequality as follows:

(b—c)?+(a—b)?+(a—c)? - 9(a—c)?
ab+ bc+ca “2(a+b+c)?’

2(a+b+c)*[(b—c)*+(a—b)*]1> (a—c)*[5(ab + bc +ca) —2(a* + b* + c?)],
2(a+b+c)*[(a—c)*—2(a—b)(b—c)] > (a—c)*[5(ab+bc+ca)—2(a*+b*+c?)],
(a—c)*[4(a®*+b*+c*)—(ab+bc+ca)] = 4(a+b+c)*(a—b)a—c).

Consider further the nontrivial case (a — b)(a —c) = 0. Since
(a—c)?*=[(a—b)+(b—c)]*=4(a—b)(b—c),
it suffices to show that
4(a®+b?>+c*)—(ab+bc+ca)>(a+b+c)
Indeed,
4(a®>+b*>+c?)—(ab+bc+ca)—(a+b+c)?>=3(a®+b*+c>—ab—bc—ca) > 0.

The equality holds fora = b =c.

P 2.64. Let a,b,c be nonnegative real numbers, no two of which are zero. If a =
min{a, b, c}, then
1 1 1 6
+ - > :
va2—ab+b2 Vb2—bc+c2 Vc2—ca+a? b+c

Solution. Since

1 1 1
+ +
vaz—ab+b2 vVb2—bc+c2 VJcZ—ca+a?

1 1
-

1
b VB —bcr

>

it suffices to show that

1 1 1 6
I S
b Vb2—bc+c2 ¢ Db+c
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Write this inequality as

b + € +\J b2+ c2+2bc
c b b2+c2—bc ~
which is equivalent to

x+2

x—1

>4—x,

b ¢
where x = — + 3 Xx > 2. Consider the non-trivial case 2 < x < 4. The inequality
c
is true if
x+2

> (4—x)?,
x—1

which is equivalent to
(x—2)(x*—7x+9) <0.

This inequality is true because
x2—7x+9<x*—7x+10=(x—2)(x—5)<0.

The equality holds for a = b =, and also a =0 and b =c.

P2.65. Ifa>12> b >c > 0such that
ab+ bc+ca=abc+2,

then

ac <4—2v2.

(Vasile C., 2012)

Solution. By hypothesis, we have

a= 2—bc

~ b4c—bc’

Since
(2—bc)(b+c) 2—bc < 2—bc

2(b+c—bc) 2—_2 T o /b

b+c

1
ac < 5a(b+c) =

it suffices to show that

2—bc
<4-242,
2—+/bc

which is equivalent to

(Vbc—2++v2)?>0.
The equality holds fora =2 and b=c=2— V2.
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P 2.66. If a, b, c are nonnegative real numbers such that

ab+ bc+ca=3, a<1<b<c,
then
(a) a+b+c<4;
(b) 2a+b+c<4.

Solution. From
(1-b)(1—c)=0,

we get
bc>b+c—1.

Therefore, we have

3=a(b+c)+bc=a(b+c)+b+c—1=(a+1)(b+c)—1,

b+c< ,
a+1

hence
a+1 a+1

2 -1
_g4-2al@=1)
a+1 a+1

The equality holds for a = 0, b = 1 and ¢ = 3. In addition, the inequality (b) is
also an equality fora=b =c=1.

a+b+c—4<a+

5

2a+b+c—4<2a+

]

P 2.67. Let a, b, c be nonnegative real numbers such that a < b < c. Prove that

(@) if a+b+c=3, then

a*(b*+ch <2;
(b) if a+b+c=2, then

c*(a*+bH < 1.

(Vasile C., 2012)
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Solution. (a) Let x,y be nonnegative real numbers. We claim that
xt =yt > 4y3(x—y).
Indeed, this inequality follows from

=yt =4y (x —y) = (x —y)(x* + x%y + xy*—3y°)
=(x ==y +y(x* =y + y*(x = y)].

Using this inequality, we can show that
b*+c*<a*+(b+c—a)t.
Indeed, we have

a*+(b+c—a)—b*—c*=(*-bH+(b+c—a) - c*
> 4b%*(a—b)+4c3(b+c—a—c)
=4(a—Db)(b*—-c?)>0.

Thus, it suffices to show that
a'la*+(b+c—a)*]1 <2,
which is equivalent to f(a) < 2, where

fla)=a®+a*3—2a), 0<a<l.

If f’(a) = 0 for 0 < a < 1, then f(a) is increasing, hence f(a) < f(1) = 2. From

the derivative
f'(a) = 4a®*[2a* — (4a —3)(3 —2a)*],

we need to show that
2a* > (4a—3)(3—2a)’.

This inequality is true for the trivial case 0 < a < 3/4. Consider further that 3/4 <

a < 1. We need to show that h(a) > 0, where
h(a)=In2+4Ina—In(4a—3)—3In(3—2a), 3/4<a<1.
From

4 6 6(7a—6)
+ = ,
4a—3 3—2a a(4a—3)(3—2a)

h'(a) = g—

it follows that h(a) is decreasing on (3/4,6/7] and increasing on [6/7,1]. Thus,

h(a)zh(g)=1n2+4ln§—ln§—31n2 ln§>0.
7 7 7 7 27

The equality holds fora=b =c =1.



454 Vasile Cirtoaje

(b) Since a* + b* < (a + b)*, it suffices to show that
c*a+b)* <1,

which is true if
cla+b)<1.

Indeed, we have
1—c(a+b)=1—c(2—c)=(c—1)*>0.

The equality holds fora=0and b=c=1.

P 2.68. If a, b, c are nonnegative real numbers such that ab + bc + ca = 3, then

(@) a2+b2+c2—a—b—c2§(a—c)2;

) C+b+cP—a—b—c> gmin{(a — B, (b—c)? (c—a)?).
(Vasile C., 2014)
Solution. Denote
E=a*+b*+c2—a—b—c, S=a’+b*+c>—ab—bc—ca.

From
(a+b+c)*>3(ab+ bc+ca),

it follows that
a+b+c>3.

We have

S
a+b+c++/30ab+bc+ca)

a+b+c—+/3(ab+bc+ca)=

a+b+c+3

+b+c)S
(a+b+cf—3m+b+c%:EL——J2ﬂ

a+b+c+3

S

—3(a+b+c)=—(a+b+c)’+ T
1+ ———

a+b+c

—3(a+b+c)2—(a+b+c)2+§,
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therefore ) S
E2a2+b2+c2—§(a+b+c)2+6,

which is equivalent to

58
E>—.
6
(a) It suffices to show that
58 5
6 = g(a —c)?,
which is equivalent to
S (a— 6)2’
3 4
(a—b)?+(b—c)*+(c—a)? - (a—c)?
3 - 2

2(a—b)?+2(b—c)*>(a—c)?
2(a—b)*+2(b—c)*=[(a—b)+(b—0)]?
(a—b)?*+(b—c)*>2(a—b)(b—c),
(a—2b+c)?*>0.
The equality holds fora=b =c=1.

(b) Due to symmetry, without loss of generality, assume that
a=>b=>c.
It suffices to show that

% > =—min{(a—b)? (b—c)*},

N | Ul

which is equivalent to
S > 3min{(a—b) (b—c)?},
(a—b)*+(b—c)*+(a—c)* = 6min{(a —b)?,(b—c)?},
(a=b)*+(b—c)*+[(a—b)+(b—c)]* = 6min{(a—b)*,(b—c)*},
(a—b)*+(b—c)*+(a—Db)(b—c)=3min{(a—b)* (b—c)*}.

The last inequality is clearly true. The equality holds fora=b=c=1.
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P 2.69. If a, b, c are nonnegative real numbers such that ab + bc + ca = 3, then

a+ b3+ c3

5
>1+4=(a—c)
a+b+c 9(a )

(Vasile C., 2014)

Solution. It suffices to consider the case

a=>b>c.
Write the inequality as
E> §(a—c)2
Z5 ,
where
_a+b 4+l B
" a+b+c

We have

_ a3+b3+c3_ab+bc+ca

" a+b+c 3

_3(a®+ b2+ ) —(a+b+c)ab+be+ca)

B 3(a+b+c)

_ A+B

- 3(a+b+c)
where

A:Z[a3+b3—ab(a+b)], B=Za3—3abc.
Since
A= (a+b)a—b)
1
B= E(a+ b+c)Z(a—b)2,

we get

5 > (3a+3b+c)(a—b)?
B 6(a+b+c) )
Thus, we need to show that

Z(Ba +3b+c)a—b)* = 13—0(a +b+c)(a—c)?
which is equivalent to
3(3a+3b+c)a—b)?+3(a+3b+3c)(b—c)?>>(a+7b+c)a—c)
Using the substitution

a=c+x, b=c+y, x=y=0,
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the inequality becomes
3(7c+3x +3y)(x —¥)*+3(7c + x +3y)y* > (9c + x + 7y)x?,
which is equivalent to
6c(2x2—7xy +7y?) +2(x + y)(2x —3y)* > 0.
This inequality is true since
2x2—7xy +7y2 = (2x2 + 7y?) = 7xy = (24/14—7)xy > 0.

The equality holds fora = b =c =1, and also for a = 3/+/2, b= +/2, c = 0.

P 2.70. If a, b, c are nonnegative real numbers such that

a>b>c, ab+bc+ca=3,

then
(@) %Zl+g(a—b)2;
®) %2 1+§(b—c)2.
© % >1+ gmin{(a B (b—c)?)

(Vasile C., 2014)

Solution. As we have shown in the proof of the preceding problem P 2.69,

a®+ b3+ ¢8 1_Z(Sa-l—Sb+c)(a—b)2
a+b+c B 6(a+b+c)

(a) Write the inequality as
D (3a+3b+c)a—b)*2 13—4(a +b+c)a—b)?,

3(@a+3b+3c)(b—c)*+3(83a+b+3c)a—c)*>(5a+5b+11c)(a—Db)>.

It suffices to show that

3(3a+b+3c)(a—c)*>(5a+5b+11c)(a—b)*
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This is true since
(a—c)*> (a—b)?

and
3(83a+b+3c)—(5a+5b+11c)=2(2a—b—c)=>0.

The equality holds fora=b =c = 1.
(b) Write the desired inequality as

Z(Ba +3b+c)a—b)>>4(a+b+c)b—c)

(3a+3b+c)a—b)?*+(Ba+b+3c)a—c)*>(Ba+b+c)b—c)
It suffices to show that
(Ba+b+3c)a—c)*>Ba+b+c)(b—c)
This is true since
(a—c)*>(a—b)?

and
(3a+b+3c)—Ba+b+c)=2c=>0.

The equality holds fora = b =c =1, and also fora = b = +/3, c = 0.

(¢) Denote
m = min{(a—b)?,(b—c)?},

then write the desired inequality as

> (Ba+3b+c)a—b)*_ 7
= —-m,
6(a+b+c) 3

> (3a+3b+c)a—b)?>14(a+b+c)m,
(3a+3b+c)(a—b)*+(a+3b+3c)(b—c)*+(3a+b+3c)[(a—b)+(b—c)]* = 14(a+b+c)m,
(3a+2b+2c)(a—b)*+(2a+2b+3c)(b—c)*+(3a+b+3c)(a—b)(b—c) > 7(a+b+c)m.
Case 1: a—2b+ ¢ > 0. The inequality is true if

(Ba+2b+2c)+(2a+2b+3c)+(Ba+b+3c)=>7(a+b+c),

which is equivalent to a —2b + ¢ > 0.

Case 2: a—2b+c¢ <0. Since a— b < b—c, we need to show that
(3a+2b+2c)(a—b)*+(2a+2b+3c)(b—c)?*+(3a+b+3c)(a—b)(b—c) > 7(a+b+c)(a—b)>?,
which is equivalent to

(2a+2b+3c)(b—c)*+(Ba+b+3c)a—b)b—c)>(4a+5b+5c)(a—Db)>.
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Since b—c > a— b > 0, it suffices to show that
(2a+2b+3c)(a—b)(b—c)+(3a+b+3c)(a—b)(b—c) > (4a+5b+5c)(a—b)>
This is true if
(2a+2b+3c)(b—c)+(3a+b+3c)(b—c)=(4a+5b+5c)(a—Db),
which is equivalent to
(5a+3b+6¢)(b—c)=>(4a+5b+5c)(a—b),

2(2b—a—c)(2b+2a+3c)>0.
The equality holds for 2b = a + ¢ and a® + 4ac + c¢* = 6.

P 2.71. If a, b, c are nonnegative real numbers such that ab + bc + ca = 3, then
at+b*+ct—a*—b*—c*> 14—1(a—c)2.
(Vasile C., 2014)
Solution. It suffices to consider the case a > b > c. Denote
S=a*+b*+c* q=ab+bc+ca.

Summing the identities

a4+b4+c4_%52: (az_b2)2+(b2;C2)2+(c2_a2)2

and

ESZ—ESq:S- (a—b)2+(b—c)2+(c—a)2,
3 3 6
we get

(a2_ b2)2 + (bZ_CZ)Z + (CZ_aZ)Z
3
LS. (a—b)2+(b;c)2+(c—a)2.

at+bt+ct—a?—b*—c?*=

Therefore, we can write the desired inequality in the homogeneous form

(a®?—b?)® + (b% —c?)?> + (c? — a?)? +S.(a —b)+(b—c)*+(c—a)?

11
> —q(a—c)>.
3 6 = 1pdla—c)
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Since

(a—b)Y+(b—c)*>=[(a=b)+(b—0c)]*= %(a—c)z,

N =

it suffices to prove that
(a® —b2)® + (b2 —c?)? + (c® — a?)? N S(a—c)? _ 11

> - S 2
3 4 pdla—c),

which is equivalent to
4(a+b)*(a—b)?+4(b+c)*(b—c)*+E(a—c)*>0,

where
E=4(a+c)*+35—11q.

Using the substitution
b=c+x, a=c+x+y, x,y=0,
the inequality becomes
4(2c +2x + y)*y*+4(2c + x)*x*+ E(x + y)* >0,

where
E=—8c*—16xc—x*+7y*+3xy.

Write this inequality as
Ac*>+ D > 2Bc,

where
A=8(x—y)* B=8y(x—y)2x+y), D=3x*+11y*+28x%*y?+33xy>+x>y.
Since Ac? + D > 2c+/AD, it suffices to show that AD > B2. Indeed,

AD —B? =8(x — y)*[3x* + 11y* +28x%y? + 33xy® + x*y — 8y?(2x + y)?]
=8(x—y)lIx*+y*+2(x*—y?)* + xy(x*+ y?)]>0.

This completes the proof. The equality holds fora =b =c =1.

P 2.72. If a, b, ¢ are nonnegative real numbers such that
a>b>c, ab+bc+ca=3,
then
4 14 4212 2o 11 2
(a) a*+b*+c*—a—b*—c Zg(a—b);
4 14, 4_ 212 2 10 2
(b) a*+b*+c*—a—b*—c Zg(b—c).

(Vasile C., 2014)



Noncyclic Inequalities 461
Solution. Denote
S=a*+b*+c* q=ab+bc+ca.
As we have shown in the proof of the preceding problem,
a*+b*+c*—a*—b*—c? :(az_ b%)" + (bzgcz)z a Gl
s (a—b)2+(b—c)2+(c—a)2.
6
(a) Write the desired inequality in the homogeneous form
— b+ (b—c)+(c—a)* _ 11
(= b2+ (b2 (P —a?) 4.5 - LDV 5 Fre-a), Sa(a—b).

Since
(a2 _ b2)2 + (bZ _C2)2 + (C2 _a2)2 > (a2 _ b2)2 4 (a2 —C2)2 > 2(a2 _ b2)2

and
(a—=b)Y+(b—c)+(c—a)*>=(a—b)*+(a—c)*>2(a—b)?

it suffices to prove that

11
2@+ b +a’+b*+c> ?(ab + bc + ca);

that is,
9(a®+ b?)+ab+3c?2>11c(a+b).
Since 19 17
9(a*+ b*)+ab— Z(a +b)* = Z(a —b)?* >0,
we have

1
9(a®+b?)+ab+3c2—11c(a+b) > ;(a +b)?>+3c2—11c(a+b)
_ (a+b—2c)(19a+19b —6¢) S

0.
4
The equality holds fora=b =c=1.
(b) Write the desired inequality in the homogeneous form
132 2 32
e G CGE ) CHP Y Cl) el Gl il Gl PO

2 3

Since
(a2 _ b2)2 + (bZ _CZ)Z + (CZ _a2)2 > (b2 _C2)2 + (aZ_CZ)Z
>(b+c)(b—c)+(a+c)b—c)?

)%
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and
(a—=b)+(b—c)i+(c—a)=(b—c)l*+(a—c)*=>2(b—c)?

it suffices to prove that

10
(b+c)2+(a+c)2+a2+b2+c22?(ab+bc+ca);

that is,
6(a’ + b%)—10ab + 9c2 > 4c(a + D).
Since
2 2 1 , 11 2
6(a“+b )—10ab—§(a+b) = 7(a—b) >0,
we have

6(a’?+ b*>)—10ab + 9c®2 —4c(a+ b) > %(a +b)2+9c>—4c(a+b)
> 2\]73 c(a+b)—4c(a+b)
= (3v2—4)c(a+b) > 0.
The equality holds fora=b =c =1.

Remark. Similarly, we can prove the following refinement of the inequality in (b):

1++/33
a*+b*+ct—a*—b*—c*> 2 (b—c)?,
3+ 433
with equality fora=b=c =1, and also fora =b = 2 c.

P 2.73. Let a, b, c be nonnegative real numbers such that
a<b<c, a+b+c=3.

Find the greatest real number k such that

v/ (56b2 +25)(56¢2 + 25) + k(b —)* < 14(b + c)* + 25.
(Vasile C., 2014)
Solution. For a = b =0 and ¢ = 3, the inequality becomes

115+ 9k < 126 +25, k< 4.
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To show that 4 is the greatest possible value of k, we need to prove the inequality

V/ (56b2 + 25)(56¢2 + 25) + 4(b — c)* < 14(b + c)* + 25,

which is equivalent to

/ (56b2 + 25)(56¢2 + 25) < 10(b? + %) + 36bc + 25.
By squaring, the inequality becomes as follows:
(10b% 4 10c? + 36bc)? — 56%b%c? > 50[28(b? + c2) — (10b2 + 10c% + 36bc)],

20(b —¢)*(5b% + 5¢ + 46bc) > 900(b —c)?,
20(b —c)*(5b% + 5¢% + 46bc —45) > 0.

Therefore, we need to show that
5(b+c)*+36bc —45 > 0.
From (a—b)(a—c) = 0, we get
bc>a(b+c)—a’>=a(3—a)—a®=3a—2ad>.
Thus,
5(b+c¢)*>+36bc —45> 5(3—a)*+36(3a —2a%) — 45 = a(78 — 67a) > 0.
The proof is completed. If k = 4, then the equality holds fora = b =c¢ =1 and
also fora=b=0and c=3.
O
P 2.74. If a > b > ¢ > 0 such that abc = 1, then

3(a+b+c)£8+g.
C

(Vasile C., 2009)

Solution. Write the inequality in the homogeneous form

3(a+b+c) a
——— <8+,
vabc c
which is equivalent to
3(x®+y3+2%) x3

<8+—, x=y=>z>0.
Xyz Z3
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We show that

8+~

B+yi+zd x3+278 1( xS)
< <= )
Xyz xz2 3

Write the left inequality as
(y —2)[x®*+2°—yz(y +2)] > 0.
This is true since
P+ —ya(y+2) >y +22 —ya(y +2)=(y +2)(y —2)* > 0.
Write the right inequality as
(x —2)(x® —2x%2 — 2x2% 4+ 62°) > 0.
This is also true since
x3—2x%z —2x2% 4+ 62° = (x —2)® + 2(x% — 5xz + 72%) > 0.

The equality holds fora=b=c=1.

P2.75. Ifa>b>c>0, then

(a+b—c)(a®b—b?*c+c%a) > (ab—bc + ca)?.

Solution. Making the substitution
a=((p+1)c, b=(q+1), p=q=0,

we get
a+b—c=(p+q+1)c,

a*b—b?*c +c*a = (p*q+p*+2pq—q*+3p—q + 1),
ab—bc+ca=(pq+2p+1)c2.
Thus, the inequality becomes
(p+a+1)(P°q+p*+2pq—q*+3p—q+1) = (pq+2p +1)%,
which is equivalent to the obvious inequality
P+ +q¢*(p—q)+2q9(p—q) = 0.

The equality holds for a = b =c.
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P2.76. Ifa>b>c >0, then

— )2 5 2
(a=c) Sa+b+c—3\/achM.
2(a+c) a+5c¢

(Vasile C., 2007)

Solution. (a) To prove the inequality

3 (a—c)?
a+b+c—3vVabc> ,
2(a+¢)

we will show that
(a—c)?

a+b+c—3\/3 abc>a+c—2+vac> .
2(a+¢)

()
The left inequality is equivalent to

b+ 24ac > 3v abc,

which is a consequence of the AM-GM inequality. The right inequality in (*) can
be written as follows:
a?+c*+6ac > 4(a + c)vac,

(va- \/3)4 > 0.

The equality holds for a = b =c.
(b) To prove the inequality

2 _ 2
a+b+c—3ms—(a c),
a—+5c

we will show that

/ 2(a—c)?
a+b+c—33abc§2a+c—33a2cg%. (%)
a+5c

Write the left inequality as
a—b—3vac(va—-vb)>0,
(va—vb)(¥/a?+vab+vb?—37ac) > 0.

Va2 +vab+vVb2>3vab>3ac.

The right inequality in (**) is an equality for ¢ = 0. For ¢ > 0, due to homogeneity,
we may assume that ¢ = 1. In addition, making the substitution a = x3, x > 1, the
right inequality in (**) becomes in succession

This is true since

(x> +5)(2x>—3x%+1) < 2(x*—1)%
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(x—1)*(x*+2x*—2x—1)>0,
(x—1)°(x%+3x+1)>0.

The equality holds for a = b = ¢, and also for a = b and ¢ = 0.

P277. Ifa>=b>c>d >0, then

— )2 _A)2
@=d) i btetd—avabed <@
a+3d a+5d

(Vasile C., 2009)

Solution. (a) To prove the inequality

4 (a—d)z
at+b+c+d—4vabcd > ,
a+3d
we will show that
_ 2
a+b+c+d—4av abcd2a+d—2\/ad§(a+gc)i, )
a

The left inequality is equivalent to

b+c+2Vad > 4v abcd,

which is a consequence of the AM-GM inequality. The right inequality in (*) can
be written as follows:

2
s

(a—d)* > (a+3d)(vVa—vd)
2vd(va- \/E)S > 0.

The equality holds for a = b =c =d, and also for b=c=d =0.
(b) To prove the inequality

—d)?
a+b+c+d—4vabed < M,
a+5d
we will show that
4 4 3(a—d)2
a+b+c+d—4vabcd <2a+c+d—4va*cd < ———. (")

a+5d

Write the left inequality as

a—b—4vacd(Va—vb)>0,
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(va—vb)(Va>+ Va2b + Vab2 + Vb3 —4vacd) > 0.
The last inequality follows from the AM-GM inequality:
Va3 + v a2b+ vab? + Vb3 —4vacd = Va? + Va2b + Vb3 -3V ab?
> Va3 + Vb3 + Vb3 -3V ab2 > 0.

Write the right inequality in (**) as
F(c) =0,

where
F(c)=3(a—d)*—(a+5d)(2a+c+d—4va%d).

Since F is a concave function and d < ¢ < a, it suffices to show that F(d) > 0 and
F(a) > 0. We have

F(d)=3(a—d)*—2(a+5d)(va—vd) =(va—vd) (va+7vd)=0

and

F(a)=3(a—d)*—(a+5d)(3a+d—4va%d).

Setting a = 1 (due to homogeneity) and substituting d = x* 0 < x < 1, the
inequality F(a) > 0 becomes

31 —x*)?—(1+5x)(3+x*—4x) > 0.
Since 3 + x* —4x = (1 —x)?(3 + 2x + x2), we need to show that
31+x+x24+x3)2—1Q+5x)(B+2x +x2)>0,
which is equivalent to
x(2+4x +6x*—3x>—2x*—x>)>0.

This inequality is true since

2+ 4x +6x* —3x> —2x*—x°> > 6x2 —3x> —2x* — x> > 0.
The equality holds fora=b=c=d, and also fora=b =c and d =0.

Remark. The following generalization holds.
e Ifa,>a,>--->a, >0, then

(n—1)(a; —a,)*

a;t+a,+---+a,—ny/a;a,---a, <

a, +k,a,
where 3
— , nodd
n+1
kn == 8 .
7—-, neven
n



468 Vasile Cirtoaje

P2.78.Ifa>b>c>0, then

s 3(a—Db)?
b —3vabc> ——=;
(a) a+b+c abc > T
3 64(Cl—b)2
b b —3vabc> ——.
() arbEemovabe = o 24b)

(Vasile C., 2009)

Solution. We use the inequality

a+b+c—3vabc>a+2b—3v ab?,
which is equivalent to
3v ab(%—%) >b—c,
(Vb—vc)(3vab—v/b2—v/bc—V/c2) > 0.
Since a = b = c, the inequality is obvious.
(a) It suffices to show that

3(a—b)?

a+2b—3vab2> .
5a+4b

Setting b = 1 (due to homogeneity) and a = x3, x > 1, this inequality becomes as
follows:
(5x3+4)(x*—3x +2) > 3(x>*— 1)

(x—1)*(2x* +4x>*—9x*—2x +5) >0,
(x —1)*(2x*+8x +5) > 0.
The equality holds fora =b =c.
(b) It suffices to show that

3 64(a—b)2
+ob—3vabr> AT OF
a = 2 (11a + 24b)

Setting b =1 and a = x*, x > 1, this inequality becomes in succession:
7(11x3 4+ 24)(x® —3x +2) > 64(x> —1)?,

(x —1)?(13x* 4+ 26x3 —192x2 4+ 40x + 272) > 0,
(x —1)*(x —2)*(13x3+ 78x + 68) > 0.

The equality holds for a = b = ¢, and for g =b=c.
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P2.79.Ifa>b>c>0, then

PRV
(a) a+b+c—3«/3abc2M;
4b + 5¢

s 25(b —c)?

b +b+c—3vabc> —~

®) a TV =G r110)

(Vasile C., 2009)

Solution. We use the inequality

a+b+c—3vabc>2b+c—3v b2c,

which is equivalent to

a—bZS%(%_%)’
(Va—¥/5) (Va2 + Vab+ Vb2 —33/b¢) 2 0.

Since a > b > ¢, the inequality is obvious.

(a) It suffices to show that

R
ob+c—3Ypres 2=
4b + 5¢

Setting c = 1 and b = x3, x > 1, this inequality becomes as follows:
(4x> +5)(2x> —3x* + 1) = 3(x> — 1)?,

(x —1)*(5x* —2x> —9x? +4x +2) > 0,
(x —1)*(5x*+8x +2) > 0.
The equality holds fora = b =c.
(b) It suffices to show that

3 25(b—C)2
b +c—3vb2e> =27
C “=7GBb+110)

Setting c = 1 and b = x3, x > 1, this inequality becomes in succession:
7(3x3 +11)(2x3 —3x2+1) > 25(x> —1)?,

(x —1)*(17x* —29x% — 75x2 + 104x + 52) > 0,
(x —1)*(x —2)*(17x> +39x +13) > 0.
The equality holds for a = b =, and for a = b = 8c¢.

Remark. The following generalization holds.
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e Ifa,>a,>--->a, >0, then

3i(n—j+1)(a;—a;)?
a,+a,+---+a,—ny/a;a,:--a l -

>
" 22n+1i—-2j+2)a; +2(n+2i—j + 1),

foralli<j.

P 2.80. Ifa>b=>c>0, then

32
a+b+c—3v achM.
4(a+b+c)

(Vasile C., 2009)

Solution. Due to homogeneity, assume that a + b + ¢ = 3. Let

a+c)?
x:( 5 ), y=ac, x=Yy.

X_(B—b)z e _(a—c)2
2 ) Y=\ )"

The desired inequality is equivalent to

We have

3—3vby>x—y.
There are two cases to consider.

Case 1: b < 1. By the AM-GM inequality, we have

y+2vb>37by.

Thus, it suffices to show that

3—2vb > x.

Indeed,

3—2¢E—x=3—2v5—(§§£)2=%(L—¢3f(3+v@)zo

Case 2: b>1. From

a+b+c=b+

2
a-zl—c_l_a+c23 b(a+c) ’
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we get

3> 34/ bx.

Therefore, it suffices to prove that
3vVbx—3vby >x—y,

which is equivalent to
(Vx—v) (3\3/3— Vxt— yxy — \B/yz) > 0.

Since

2
nyz(T) <1<b,

the inequality is clearly true. The equality holds fora=b =¢

P281. Ifa>=b>c>0, then
() a® + b® 4+ c®—3a%b%c? > 12a%c*(b —c)?;
(b) a®+ b® +c®—3a%b%c? > 10a®c(b —c)%.
(Vasile C., 2014)

Solution. (a) Let us denote
E(a,b,c)=a®+ b® +c®—3a?b?c? —12ac%(b —c)>.

We will show that
E(a,b,c) > E(b,b,c)>0.

We have
E(a,b,c)—E(b,b,c) = (a®—bH)[a*+ a®b? + b* —3b%c? — 12c%(b —¢)?]
> (a2 = b?)[3b%(b% —c?)—12c%(b —¢)?]
=3(a®>—=b?)(b—c)[b>+c(b—2c)*]>0.

Also,

E(b,b,c) =2b°+c®—3b%c?—12b%c?(b—c)?
= (b%—c?)?(2b? + c?) — 12b%c%(b —¢)?
= (b—c)*(2b* +4b3c —9b*c?* + 2bc> + ¢*)
=(b—c)*(2b® + 6b%c?—3bc2—c3) > 0.

The equality holds for a = b =c.
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(b) Let
E(a,b,c)=a®+ b®+c®—3a?b?c? —12ac?(b —c)>.

We will show that
E(a,b,c) > E(b,b,c)>0.

To prove the left inequality, it suffices to show that for fixed b and c, the function
f(a)=E(a,b,c)
is increasing on [ b, 00); that is, f’a) > 0. Indeed, we have the derivative

f’(a) = 6a[a® — b*c* —5ac(b—c)*] > 6a[a* — a*c* — 5ac(a — c)?]
= 6a*(a—c)[ala+c)—5c(a—c)]=6a*(a—c)[(a—2c)*+c*]>0.

With regard to the right inequality, we have

E(b,b,c) =2b%+c®—3b*2—10b%c(b—c)?
= (b*—c*)?*(2b* +c*)—10b%c(b—c)* = (b—c)*g(b, c),

where
g(b,c) =2b*—6b3c +3b%c* + 2bc® + ¢*.

Since
g(b,c)=2b(b—c)(b—2c)*+c-h(b,c), h(b,c)=4b>—13b%*c +10bc*+c>,
it suffices to show that h(b,c) > 0. For b > 2c, we have
h(b,c) = b(b—2c)(4b—5c)+c>> 0.
Also, for ¢ < b < 2¢, we have
2h(b,c) = (2c — b)(b—c)*+ b(3b—5¢)*> 0.

Thus, the proof is completed. The equality holds fora =b =c.

P282. Ifa>=b>c>0, then

ab+ bc <1+\/§
az+b24+c2” 4
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Solution. Denote

1
k= +4‘/§ ~ 0.683,

and write the inequality as E(a, b,c) > 0, where
E(a,b,c) =k(a®+ b*+c?*)—ab—bc.

We show that
E(a,b,c) > E(b,b,c)>0.

We have
E(a,b,c)—E(b,b,c)=(a—Db)[ka—(1—k)b]=(2k—1)(a—b)b=>0
and
E(b,b,c) = (2k —1)b*+ kc* — bc > 24/ k(2k —1)bc — bc = 0.

1++/3

The equality holds fora =b = 5

C.

P283.Ifa=b>c>d>0, then

ab+ bc+cd <2+1/7
a2+b2+c2+d2” 6

Solution. Write the inequality as E(a, b,c,d) = 0, where

~ 0.774.

E(a,b,c,d) =k(a*+ b*+c*+d*)—ab—bc—cd, k= 2+6‘/7

We show that
E(a,b,c,d) > E(b,b,c,d) > E(c,c,c,d) > 0.
We have

E(a,b,c,d)—E(b,b,c,d)=(a—b)[ka—(1—k)b] = (2k—1)(a—b)b >0,

E(b,b,c,d)—E(c,c,c,d)=(b—c)[(2k—1)b—(2—2k)c] = (4k—3)(b—c)c =0

and
E(c,c,c,d) = (83k—2)c* + kd* —cd > 24/ k(3k — 2)cd — cd = 0.

2447

The equality holds fora=b =c = d.
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P 2.84. If
a=>1>2b>c>d=0, a+b+c+d=4,

then
ab+bc+cd <3.

Solution. Write the inequality in the homogeneous form E(a, b,c,d) > 0, where
E(a,b,c,d)=3(a+b+c+d)*—16(ab+ bc +cd).

From
a+b+c+d=4=>4b,

we get
a>3b—c—d.

We will show that
E(a,b,c,d) > E(3b—c—d,b,c,d)>0.
We have

E(a,b,c,d)—E(3b—c—d,b,c,d)=3[(a+b+c+d)*>—(4b)*]—16b(a—3b+c+d)
=(a—3b+c+d)(Ba—b+3c+3d)=>0.

Also,
E(3b—c—d,b,c,d) = 48b*—16(3b*—bd +cd) = 16d(b—c) > 0.
The equality holds for
a€(2,3], b=1, c=3—a, d=0.

P 2.85. Let k and a, b, ¢ be positive real numbers, and let

E=(ka+b+c)(k+1+1), F:(ka2+b2+C2)(£+i+l)_
a b ¢ az
(a) Ifk>1, then

b2 2
— (e —92)2 —(k —92)2
\| F—(k—2) +22E (k 2);
2k 2k

(b) If0<k <1, then

F—k2+2>E—k2
k+1 ~ k+1°

(Vasile C., 2007)
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Solution. Due to homogeneity, we may assume that bc = 1. Under this assump-

tion, if we denote

1 1 1
x=a+—, y=b+—-=c+-—
a b c

1 k 1
E=(ka+b+=|[=+b+-
(a b)(a b)

k
:(ka+y)(a+y)
=k*+kxy+y?

(x=2,y=>2),then

and

1 k 1

_ 2, 12 2
F—(ka +b +§)(E+b +§)
=(ka2+y2—2)(£2 +y2—2)
a
=k*+k(x*—2)(y*—2)+(y*—2)%
(a) Write the inequality as

2kF —2k(k —2)* > (E —k* — 4)2.

We have
E—k*—4=kxy+y*—4>0,

(E—k*—4)? =k*x%y? + 2kxy(y* —4) + (y*> — 4)?,

and
F—(k—2)P =4k +k(x*—2)(y*—2)+ y*(y*—4),

2kF —2k(k — 2)* = 8k* + 2k*(x* — 2)(y* — 2) + 2ky?(y* — 4).

Therefore,
2kF —2k(k—2)* —(E—k*—4)* = (y* = 4[k*(x*—4) —2ky(x —y) — (y*—4)].
Since y?—4 > 0, we still need to show that
kK*(x*—4)—2ky(x—y) > y*—4.
We will show that
K (x?*—4)—2ky(x—y)> (x*—4)—2y(x —y) > y*—4.
The right inequality reduces to (x —y)* > 0, and the left inequality is equivalent to

(k—D[(k+1)(x*—4)—2y(x—y)]=>0.
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This is true because
(k+1)(x*—4)—2y(x—y)=2(x*—4)—2y(x—y)=2(x—y)*+2(xy —4) = 0.
The equality holds for b = c. If k = 1, then the equality holds fora =b or b =c or
c=a.

(b) Write the inequality as

(k+1)(F—k*) > (E—k?>—2k—2)%
We have
E—k*—2k—2=k(xy—2)+y*—2>0,
(E—k*—2k—2)* =k*(xy —2)* +2k(xy —2)(y*—2) + (y* — 2)%,

and

(k+1)(F —k*) =k (x*—=2)(y* —2) + k(y* = 2)(x* + y* =) + (y* — 2)*.
Thus,

(k+1)(F—k*)—(E—k*—2k—2)* =k(x —y)*(y*—2k—2)
>k(x—y)(y>*—4)>0.

If 0 < k < 1, then the equality holds fora=b ora =c.

P 2.86. If a, b, c are positive real numbers, then

a b 25¢
- + >
2b+6¢c 7c+a 9a+8b

1.

Solution. By the Cauchy-Schwarz inequality, we have

a . b N 25¢ - (a+b+5c)
2b+6¢c 7c+a 9a+8b  a(2b+6¢c)+b(7c+a)+c(9a+8b)

Therefore, it suffices to show that

(a+ b+ 5¢c)*>> 3ab+ 15bc + 15ca,
which is equivalent to

a*+ b*+25c¢*—ab—5bc—5ca > 0.
Indeed, we have

2(a® + b*+25c¢*—ab—5bc —5ca) = (a—b)* + a* + b* +50c* — 10bc — 10ca
=(a—b)*+(a—5¢c)*+(b—5c)*>0.
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P 2.87. If a, b, c are positive real numbers such that

then
1 1 1 55

+ + = .
a+b b+c c+a” 12(a+b+c)

(Vasile C., 2014)

Solution. Denote

and write the desired inequality as
Z a+b+c _ 55
JR—— 2 —,
b+c 12
a b c 19
+ + > .
b+c c¢+a a+b 12
Using the Cauchy-Schwarz inequality

b L (b+c)?
c+a a+b  blc+a)+cla+b)

it suffices to show that

19
F 5 b} = )
(a,b,c) D
where
a (b +c¢)?

F(a,b,c) = .
(a,b,¢) b+c a(b+c)+2bc

We will show that 19
F(a,b,c) > F(x,b,c) > 17

Since

F(a,b,c)—F(x,b,c)=(x—a)[— L (btcy ],

+
b+c (a(b+c)+2bc)(x(b+c)+2bc)
we need to prove that
(b+c)*>T[a(b+c)+2bc][(x(b+c)+2bc].

Since
a(b+c¢)+2bc < x(b+c)+2bc,

it is enough to show that

(b+c¢)*>x(b+c)+2bc,



478 Vasile Cirtoaje

which is equivalent to the obvious inequality
(b+c¢)*> 3bc.
Also, we have

Fx,b,c)— 2 = ¢ L(bHef 19 (b—c)*(4b® + 5be +4c%)
"7 120 (b+c)» 3bc 12 12bc(b +c)?

> 0.

The equality occurs for 2a = b =c.

P 2.88. If a, b, c are positive real numbers such that

then
1 1 1 189

+ + > :
a?+b%2  b2+c2 c2+a? " 40(a®+ b?+c?)
(Vasile C., 2014)

Solution. Denote

and write the desired inequality as

z:a2+b2+c2 . 189
b2+c2  — 40°
a® N b? N c? - 69
b2+c2 c2+a%2 a2+b2 40
Using the Cauchy-Schwarz inequality

b* N c? - (b% + c?)?
c24+a?  az+b2 " b2(c2+a2)+c2(a®+b2)’

it suffices to show that

69
F 5 b: > DPR)
(@.b,c)= 25
where
a? (b%+¢?)?

F(a,b,c) =

b24+c2  a?(b2?+c2)+2b2c2
We will show that 69
F(a,b,c)>F(x,b,c) > —.
(a,b,c) = F(x, ,C)_40
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Since

F(a,b,c)—F(x,b,c) = (x*>—a®) [— L (b”+ ) ],

b2 (@202 + )+ 2b7%) (2D + 2) + 2b22)
we need to prove that
(b% + c*)* > [a®(b* + c?) + 2b2c*][x3(b* + ¢?) + 2b3c?].
Since
a?(b?+c?) +2b%c? < x%(b% + ¢?) + 2b2%¢?,

it is enough to show that

(b% +c?)* = x*(b* + c*) + 2b%c?,
which is equivalent to

(b* +cH)(b +¢)* = b2c*(b* + ¢?).

This inequality follows from b* + c* > b2c? and (b + c)? > b + 2. Also, we have

2 b2 + ¢2)>
F(x,b,c)= X ( <) .
b2+c2  x2(b2+c2)+2b3%c2
Since
2b%c? < 4x*(b* +c?),
we have ) (b2 4 ¢2Y
X b*+c 1 ¢t
F(x,b,c) > + =—4 -,
( ) b2+c2 5x2(b%2+4+c2) t 5
where
b2 + ¢?
t= > 8.
X2
Therefore,

1 t t— t—
Faebo)-Ps1lyt 09 _(=8)Bt=5)
407t 5 40 40t

The equality occurs for 2a = b =c.

P 2.89. Find the best real numbers k, m, n such that

(vVa+vVb+vc)Va+b+c>ka+mb+nc

foralla>b=>c=>0.
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Solution. Fora=1landb=c=0,fora=b=1andc=0,andfora=b=c=1,
we get respectively

k<1, k+m<2v2, k+m+n<3v3,
which yield

ka+mb+nc=k(a—b)+(k+m)(b—c)+(k+m+nz)c
<a—b+2v2(b—c)+3V3¢
=a+(2vV2—-1)b+(3vV3—2v2)c.

Therefore, if the following inequality holds

(JE+ \/E+1/E)\/a+b+c2a+(2w/§—1)b+(31/§—21/§)c,

then
k=1, m=2v2—1, n=3v3-2v2

are the best real k, m, n. Since

(ﬁ+ Vb+ ﬁ)2=a+(2\/5+ b)+(2@+2\/§+c)2a+3b+50,
it suffices to show that
(a+3b+5c)a+b+c)>[a+(2vV2—1)b+(3V3—2v2)c]?
which is equivalent to the obvious inequality
(3—2v2)b(a—b) + (3+2v2—3+v3)c(a—b) +3(5—2v6)c(b—c) > 0.

Ifk=1, m=2v/2—1, n=3v3—242, then the equality holds for a = b = c, for
a=bandc=0,and for b=c=0.
]

P 2.90. Leta,b€(0,1], a <b.
1
(@) If a £ —, then
e
2a% > a® + b%;
1
(b) If b = —, then
e
2b% > a® + b

(Vasile C., 2012)
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Solution. (a) We need to show that f(a) > f(b), where
f(x)=a*+x% x¢€la,b].
This is true if f (x) is decreasing; that is, if f'(x) < 0 on [a, b]. Since the derivative
f'(x)=a(x*'+a'lna) <a(x*!'—a*),

it suffices to show that

Xa—l < ax—l
for 0 < a < x < 1. Consider the non-trivial case 0 < a < x < 1, and write the
inequality as g(x) > g(a), where

Inx
1—x

g(x)=

It suffices to show that g’(x) > 0 for 0 < x < 1. We have

e h(x) 1
g(x)_(l—x)Z’ h(x)—;—1+lnx.
Since 1
R(x)="—- <0,
X

h(x) is strictly decreasing, h(x) > h(1) = 0, g’(x) > 0. This completes the proof.
The equality holds for a = b.

(b) We need to show that f(b) > f(a), where
f(x)=x"+b*, x€[a,b].
This is true if f (x) is increasing; that is, if f’(x) > 0 on [a, b]. Since the derivative
F/(x)=0b(x"1 4+ b Inb) > b(x" = b*1),

it suffices to show that
xb—l 2 bx—l

for 0 < x < b < 1. As we shown at (a), this inequality is true. The equality holds
fora="n.
OJ

1
P2.91.If0§a§bandb2§, then

2b*" > a® + b*.

(Vasile C., 2012)
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Solution. We need to show that f(a) < f(b), where
flx)=x**+b%* xe€[0,b].
From the derivative
f/(x)=2b[2b*In® b+ (2b— 1)x*2] >0, x€(0,b],
it follows that f (x) is convex on [0, b]. Therefore, we have
f(a) < max{f(0), f(b)}.

From this, it follows that f(a) < f(b) if £(0) < f(b). To prove that f(0) < f(b),
we apply Bernoulli’s inequality as follows:

f(B)—f(0)=2b*—-1=2[1+(b—-1)]*"-1
>2[1+2b(b—1)]—-1=(2b—1)>>0.

1 1
The equality holds fora = b > > and also fora=0and b = 3

P292. Ifa>b=>0, then

(@) ab <1+ a;ab;
b _ 3(a—b)
(b) a®®>1 Wik

(Vasile C., 2010)

Solution. (a) Write the inequality as

a—>b
(a—b)lna+ln(1+ )20,
Ja

which follows by adding the inequalities

_ _ _ 2
ln(1+a b)—a b, lazbr .,

va va 2a
a—b (a—b)?
—b)lna+ — > 0.
(a—b)lna 7a oy
Denoting
a—b
X =

72
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we can write the first inequality as f (x) > 0 for x > 0, where

f(x)zln(1+x)—x+%2.

From the derivative )

N X
f(x)_1+x

it follows that f is increasing, hence f(x) > f(0) = 0.
The second inequality is true if

=0,

Ina+ L a—b>0
a — —
Ja  2a
It suffices to prove that g(a) > 0, where
1 1
a)=lhna+ ———-.
g(a) i 2
From
(@) 2/a—1
a) = ,
& 2ay/a

it follows that g is decreasing on (0, 1/4] and increasing on [1/4, c0); therefore,

1 3
gla)> g(z) = 5—1n4> 0.

The equality holds for a = b.

3(a—0>b
(b) Consider the non-trivial case 1 — (a ) > 0, write the inequality as
44/a
3a—3b
—b)lna>In(1-— ,
(a=b)lna n( W )

and prove it by adding the inequalities

3a—3b 3(a—b)
0>In|1— + i
“( 4¢a) 4v/a
3(a—b)
—b)lna+ >0
(a—b)Ina ava
Denoting
3(a—Db)
= , 0<x<1,
X ava X

we can write the first inequality as f (x) < 0, where

f(x)=In(1—x)+ x.
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From the derivative

fi)=—=<o,
1—x
it follows that f is decreasing, hence f(x) < f(0) =0.
The second inequality is true if g(a) > 0, where

3
a)=lna+—.
g(a) 7a
From the derivative

(@)= 203
g - 8aﬁ 5
it follows that

9 3e
>g|l—|=2Ih—>0.

g(a) g(64) n-g
The equality holds for a = b.

P 2.93. If a, b, c are positive real numbers such that

a>b>c, ab?**>1,
then

1 2 3
a+2b+3c>=>—+-—+-—.
a b ¢

(Vasile C., 2018)
Solution. It suffices to prove the homogeneous inequality

1 2 3
a+2b+3c> v ab2c3(—+—+—).
a b c

Replacing a, b, c with a®, b3, c3, the inequality becomes as follows:
b2:3 2gc
@ +2b% +3c3 > —— 4+ 2%

a2

3

a®+2b®—3ab? > Tb(Za3 —3a%b+ b?),
a

+ 3ab?,

3
(a—b)*(a+2b)> ——(a—b)*(2a + b).
azb
Thus, we need to show that

a’b(a +2b) > c3(2a + b)
for a > b > c. Since ¢® < ab?, we have

a’*b(a +2b)—c*(2a + b) > a*b(a + 2b) —ab*(2a + b) = ab(a®* — b*) > 0.
The equality occurs fora=b=1/c > 1.
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P 2.94. If a, b, c are positive real numbers such that
a+b+c=3, a<b<c,

then

1 2
S+ Z>a?+b%+ 2
a b

(Vasile C., 2020)

Solution. Let

1 2
f(a,b,c)=~+=—a*—b*—c2
a b

We will show that

f(a,b,c) = f(a,x,x) =0,
where
_b+c_3—a
2 2

X

Since 5 9
f(anJC)_f(a>x1X): E___(bZ_*_CZ_zXZ)
X

_2(c=Db) (c—b)*  (c—b)(b>—bc*+4)
" b(b+c) 2 2b(b +¢)
we need to show that

b3 —bc2+4>0.
Since b + ¢ < 3, we have
b*—bc*+4> b —b(3—b)2+4=6b>+4—9b > (4V/6—9)b > 0.

Also, since a < 1, we have

1 2 1 4
fla,x,x)==+=—a*—2x*==+
a x a 3—a

1
2 2

_a*=5a°+9a*—7a+2 (1—-a)(2—a)
B a(3—a) ~ a(3—a)
The equality occurs fora=b =c=1.

> 0.

P 2.95. If a, b, c are positive real numbers such that
a+b+c=3, a<b<c,

then 5 3 1
S+ =4+ =>2(a*+b*+ ).
a b ¢

(Vasile C., 2020)



486 Vasile Cirtoaje

Solution. From

we get
3—c
a<
2

For fixed b, write the inequality as f (a) > 0, where

2 3 1

fla)= —+E+——2(a2+b2+c2), c=3—a—b.
a c

We have

2 1 1 1
fl@=—=+=—4a—c)=— +4c—2g(a), gla)=2a+—.
a c a

Since 9
g/(a) = 2__ S 07
a3

g(a)Zg(ggc)

fl@)< Ciz+4c—2g(?)=6(c—1)—

g(a) is decreasing, hence

and
7¢® +6¢c—9
c2(3—c)?

16 -2
<6(c—1)— a(7c2 +6c—9)= 8—1(56c2 + 171 —195¢)

-2
< 2—7(4\/ 266 —65)c < 0.

Therefore, f(a) is decreasing. On the other hand, froma < band b <c¢=3—a—b,
we get
a<b, a<3—2b.

There are two cases to consider: b € (0,1] and b €[1,3/2).

Case 1: b €(0,1]. Since a < b, we have

fla)=f(b)= % +%—2(2b2 +c?), c¢=3-—2b,

hence c 1
> =+ —4b*—2(3—2b)*
fl@)z 3 + 5= —4b* ~2(3-2b)
3(5—3b) ,
=—-—3(4b°—8b+6
b(3—2b) (4 )

_ 3(8b*—28b° +36b%—21b +5)
B b(3—2b)
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- 3(8b*—27b%+35b%—21b +5)

b(3—2b)

_3(b—1)X(8b*—11b+5)

b(3—2b) =

Case 2: b€[1,3/2). Since a < 3— b, we have

fla)zf(B=b)=

hence

fl@=f(B3-b)=

_ 6(2—b)
"~ b(3—2b)

1
+§+——2(3—2b)2—2(b2+c2), c=bh,
C

3—2b b

4 2 2
5oty 2(3—2b)°—4b

—6(2b*—4b +3)

_ 12(2b*—7b%+9b>—5b +1)

b(3—2b)

12(b—1%(2b—1) _

bG—_2b) O

The equality occurs fora=b=c =1.

Remark. Since

2 3 1 1 2
—+—+—32(—+—),
a b

b ¢ a

the inequality is stronger than the one of P 2.94.

P 2.96. If a, b, c are positive real numbers such that

then
31

a

Solution. From

we get

a+b+c=3, a<b<c,

25 25

+7+—227(a2+b2+c2).
(o4

(Vasile C., 2020)
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For fixed ¢ € [1, 3),write the inequality as f(a) > 0, where a < =— € and
1 2 2
fla)= 3—+—5+—5—27(a2+b2+c2), b=3—a—c.
a b c
We will show that 3
f(a)zf( Zc)zo.
Since a + b < 2, we have
a+b 16
= > 2,
a2b2 ~ (a+b)3
therefore
31 25 27 27
f’a) =—§+§—27(2a—2b) < —;4'?—54(61—1))
a+b
:27(a_b)(a2b2 —2) <o,

3 —
f (a) is decreasing, hence f (a) is minimal for a = ch when

b=3—aqa—c= =a.
2
So, we have
3— 56 25
f( c) =—+=-27(2a*+c?
2 a c
112 25 27(3—c)?
_ 2,25 27B=c) g0
3—c c 2
_ 3(27¢*—135¢® +243¢? — 185c¢ + 50)
N 2¢(3—¢)
_ _ _ 2
_ 3(c—1)(3c—2)(3¢c—5) > 0.
2¢(3—¢)

2 S
The equality occurs fora=b =c =1, and also fora=b = 3 and c = 3"

Remark. Actually, the following stronger inequalities are true:

2 2 25

—9+—7+—227(a2+b2+c2),

a b c

28 28 25

—+?+—227(a2+b2+02). (*)
a c

For (*), we have

28 28 25
f(a)=—+?+——27(a2+b2+c2), b=3—a—c,
a c
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) 28 28 27 27
a+b
:27(a_b)(a2b2—2)50
and 3 56 25
f( _C):—+——27(2a2+c2)
2 a c
_ _ _ 2
:3(c 1)(3c—2)(3c—15) >0
2¢(3—¢)

On the other hand, we can prove the inequality (*) by showing that

f(a,b,c)= f(x,x,c)=0,

where
b 3-—
f(a:bﬁc):§+§+§_27(a2+b2+cz), X:a+ = C_
a b c 2 2
We have
1.1 2 2 2 2
f(a,b,c)—f(x,x,c)=28(—+———|—27(a”+ b*—2x*)
a b «x
1 56 27 2
= _bz[—_z ]2— —bz[——1]zo
2(a ) ab(a + b) 7 2(a ) ab(a+ b)
and
3(c —1)(3¢ —2)(3¢c—5)?
f(X,X,C):5—6+2—5—27(2x2+C2): (C )( C )( C ) 20
x c 2¢(3—c¢)

P 2.97. If a, b, c are the lengths of the sides of a triangle, then
a®(b+c)+ bc(b?+c?) > a(b® +c2).
(Vasile C., 2010)

First Solution. Because the inequality is symmetric in b and ¢, we may assume
that b > c¢. Consider the following two cases.

Case 1: a > b. It suffices to show that
a®(b+c)>a(b®+c3).
We have

a*(b+c)—a(b®+c®) > ab?(b+c)—a(b®+c?)=ac(b*—c?)>0.
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Case 2: a < b. Write the inequality as
c(a®+b*)—c*(a—b)+ab(a®*—b>)>0.
It suffices to show that
c(a®+ b®)+ab(a®*—b?) > 0.
We have
c(a®+ b®) +ab(a®—b?) > c(a® + b®)—abc(a+ b)=c(a+ b)(a—b)*> 0.

The equality holds for a degenerate triangle with a = b and ¢ = 0, or a = ¢ and
b=0.

Second Solution. Consider two cases.

Case 1: b?+c? > a(b + c). Write the inequality as
be(b?+c?) > a(b+c)(b?+c?>—bc—a?).

It suffices to show that
bc > b*+c2—bc—a?,

which is equivalent to the obvious inequality
a?> (b—c)>.
Case 2: a(b +c) > b? + c?. Write the inequality as
a(b+c)(a®+ bc) > (b%+c?)(ab + ac — be).

It suffices to show that
a?+ bc>ab+ac—bc,

which is equivalent to the obvious inequality

bc > (a—c)(b—a).

P 2.98. If a, b, c are the lengths of the sides of a triangle, then

(a+b)* (a+c)? - (b +c¢)?
2ab+c2  2ac+ b2~ 2bc+a?’

(Vasile C., 2010)
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Solution. By the Cauchy-Schwarz inequality, we have

(a+b)* (a+c)? - (2a+Db+c)?
2ab+c2  2ac+b2 " 2a(b+c)+b2+c2

Therefore, it suffices to show that

(2a+Db+c)? - (b+c)?
2a(b+c)+b2+c2 ~ 2bc+a?’

We will show that
(2a+Db+c)? oo (b+c)?

2a(b+c)+b2+c2 "~ 2bc+a?
The left inequality reduces to 4a® > (b — c)?, and the right inequality reduces to

2a? > (b —c)?. These are true because a®> > (b —c)?. The equality holds for a
degenerate triangle with a =0 and b =c.

]

P 2.99. If a, b, c are the lengths of the sides of a triangle, then

a+b a+c b+c
+ > .
ab+c%2 ac+ b2 bc+a?

(Vasile C., 2010)

Solution. Without loss of generality, assume that b > c. Since a+ b > a + ¢ and
ab+c*—(ac+b*)=(b—c)la—b—c) <0,

by Chebyshev’s inequality, we have

a+b+a+c >1[(a+b)+(a+c)]( 1 + 1 )
ab+c2 ac+b%2 2 ab+c2 ac+ b2

2(2a + b +¢)?
“a(b+c)+b2+c?

On the other hand,

b+c < b+c _2(b+c)
2 = T B2 2"
bc+a %(b—c)2+bc b2+c

Therefore, it suffices to show that

2(2a+Db+c¢) S 2(b+c¢)
a(b+c)+b2+c2~ b2+c2’

which is equivalent to a(b — c)*> > 0. The equality holds for a degenerate triangle
witha=0and b =c.
OJ
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P 2.100. If a, b, c are the lengths of the sides of a triangle, then

b(a+c¢) c(a+b)>a(b+c)
ac+b%2  ab+4+c2 ~ bc+a?’

(Vo Quoc Ba Can, 2010)

Solution. Without loss of generality, assume that b > c. Since
ab+c>—(ac+b*)=(b—c)la—b—c)<0,

it suffices to prove that

b(a+c¢) c(a+b)>a(b+c)
ac+b2  ac+Db2 ~ bc+a?’

which is equivalent to

2bc+a(b+c¢) S a(b+c)
ac+b2 — bc+a?’
2 1 1
be 2a(b+c)( ),

ac + b2 bc+a? ac+ b2
2bc(bc+a*)>a(b+c)(b—a)(a+b—c).

Consider the nontrivial case b > a. Since ¢ > b — a, it suffices to show that
2b(bc+a?)>a(b+c)(a+b—c).
We have
2b(bc+a*)—a(b+c)(a+b—c)=ab(a—b)+c(2b*—a*+ac)

> —abc+c(2b®2—a*+ac)=ac(b+c—a)+2bc(b—a) > 0.

The equality holds for a degenerate triangle with a = b and ¢ = 0, or a = ¢ and
b=0.
O

P 2.101. Ifa, b,c,d are positive real numbers such that
a>b>c>d, ab*3d®>1,

then

1 2 3 6
a+2b+3c+6d=>—+—-+—-+ .
a b ¢ d

(Vasile C., 2018)
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Solution. It suffices to prove the homogeneous inequality
1 2 3 6
a+2b+3c+6d >V ab2c3d6(—+—+—+—).
a b ¢ d
Replacing a, b, c,d with a®, b®, c®,d®, we need to show that
b%*c® 2ac® 3ab?
a5 + b4 + CS
for a > b > ¢ > d. By the AM-GM inequality, we have

b%2c®  2ac® 3ab? ol b2¢3 [ac3 \? [ ab2\?
o B2 (42 (2 6=

a6+2b6+3c62( —6)d6+6ab2c3

Since d® < ab?c?, it suffices to show that
b%c®  2ac® 3ab?
as + b4 + 3

a®+2b° 43¢ 2( 6)ab2c3+6ab2c3,

which is equivalent to

b%c® 2a>c®
a® +2b% + 3¢ > —+
a

b* 2a?

6 6 214 6
a’+2b°—3a“b Z(E+F_3)C ,
(a® —b?)?(2a® + b?)c®

a4b? '

(a2 —b*)?(a? +2b%) >

We need to show that
a*b?(a® + 2b%) > (2a® + b?)c.
Since c® < a?b*, we have
a*b?(a®>+2b%)—(2a%+b?)c® > a*b?(a?+2b%)—(2a*+ b*)a*b* = a®b%(a*—b*) > 0.
The equality occurs fora=b=c=d = 1.
Remark. By induction method, we can prove the following generalization.
e Ifa;,a,,...,a, (n>3) are positive real numbers such that
G=a>-->a, qaddd-ah>1, k,=3-2"7,

then

1 2 3 6 k,
a; +2a,+3az;+6a,+---+ka, =2 —+—+—+—+--+—,
a, a, a; a, a,
with equality for a; = a, =---=a,.

For n = 3 and n = 4, we get the inequalities in P 2.93 and P 2.101.
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P 2.102. Ifa, b,c,d are positive real numbers such that
a>b>c>d, abc?d*>1,

then

1 1 2 4
at+b+2c+4d=—+_—+—+-.
a b ¢ d

(Vasile C., 2018)
Solution. It suffices to prove the homogeneous inequality
1 1 2 4
a+b+2c+4d> v abczd4(—+—+—+—).
a b ¢ d
Replacing a, b, c,d with a*, b* c*,d*, we need to show that

bc? ac® 2ab

4 4 4 4 2
at+b*+2c Z(F+F+C—2—4)d +4abc

for a > b > ¢ > d. By the AM-GM inequality, we have

bc? ac®* 2ab J be2 ac? [ab)?
e e VI iy i) )

as b3 c2 a3 b3\ ¢2
Since d* < abc?, it suffices to show that

bc? 2 2ab
a*+ b*+2c* > (L + ac + L—4)abc2 + 4abc?
a3 b3 c2
which is equivalent to

ZC4 a2c4

21,2
72 +?+2a b*,
(az_b2)2C4
a2p?  ’

(az—b2)2(1— ¢t )>0
a2b2 ) —

The equality occurs fora=b=c=d = 1.

a*+ b*+2¢* >

(a?—b?)?* >

Remark. By induction method, we can prove the following generalization.

e Ifa;,a,,...,a, (n=3) are positive real numbers such that

2 4 2n—2
a,=a,=-->d, aqdaa,---a. =1,

374 n
then
L 1 1 2 4 on-2
a;ta,+2as+4a,+---+2"%aq, 2 —+—+—+—+---+ ,
a, a, as; a, a,
with equality for a; = a, =---=a,.

For n = 4, we get the inequalities in P 2.102.
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P 2.103. Ifa, b, c,d are positive real numbers such that
abcd >1, a>b>c>d, ad=bc,

then

1 1 1 1
atb+c+td=>—-+—-+-+-.
a b ¢ d

(Vasile C., 2018)

Solution. It suffices to prove the homogeneous inequality

a+b+c+d>+abcd ( + = +i+611)

Replacing a, b, c,d with a?, b2, c?,d?, we need to show that
a’?+b2+c?+d% > (a +d)+ (b2+c2)
fora> b >c>d and ad > bc. Write the inequality as follows:

(a2+d2)(1—E)+(b2+c2)(1—g) >0,
ad bc

(ad—bc)(9+§—9—5)zo,
d a ¢

b
ac—bd bd—ac
d—>b >0.
(a c)( = + pr )_
(ad — bc)(ac—bd)(ab—cd)
abced

Clearly, the last inequality is true. The equality occurs for ad = bc = 1.

Remark. The following extension is valid.
e Ifa,b,c,d,e are positive real numbers such that
abcde>1, a>b>c>d>e, ae>bd>c?

then
1 1 1 1 1
atb+ctd+e=z—-—+—-+—-+-+-,
a b ¢ d e

with equality for af =c?=cd =1
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P 2.104. Ifa,b,c,d,e, f are positive real numbers such that
abcdef 21, a=2b>c>d=>e>f, af =be>cd,

then
1 1 1 1 1 1
atb+ct+d+tetf=2—+—+-+—-+—-+—.
a b ¢ d e f

(Vasile C., 2018)

Solution. Write the inequality as

(a+f)(1—$)+(b+e)(1—é)+(c+d)(1—$)20.

For
af =k =constant,

: L k
we claim that the sum a+ f is minimum for a = — > b and f = e. Indeed, we have
e

af (a )f:(a—eXe—f)ZO.

k
at+f———e=a+f———e=a—e—(——1
e e e e

In addition, for
cd = k = constant,

. . . k
we claim that the sum ¢ +d is maximum for c = — < b and d = e. Indeed, we have
e

c+d—k—e=c+d—ﬂ—e=c—e—(£—1)d:_(C_e)(d_e) <0.
e e e e

Thus, it suffices to prove the inequality for f = e and d = e, thatis ford =e = f.
So, we need to show that

1 1 1
a+b+ct3dz bt
a b ¢ d
for
a>b>c>d, abcd®>1.

It suffices to prove the homogeneous inequality

a+b+c+3d>V abcd3(1+%+1+3).
a C

Replacing a, b, c,d with a3, b3, ¢3,d?, we need to show that

b b
a3+b3+c32(—C+E+a——3)d3+3abc
az b2 2
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for a > b > ¢ > d. By the AM-GM inequality, we have

bc ca ab 3>0

Since d® < ¢3, it suffices to show that

bc ca ab

aAc+b+cc> (—+—+ ——3)c3+3abc,
a2 b2 2

which can be written as follows:

be*  ac*
a’®+ b3 +4c¢® > — + — + 4abc,
a2 c2

4

3, 13y _
(a+b )(1 2p2
(ab—c)[(a®+ b®)(ab + c¢?) — 4a*b*c] > 0.

) —4c(ab—c?) >0,

It is true since
2
(a®*+b*)(ab+c*)—4a*b%c > 2abv ab (ab + c*)—4a*b*c = 2abv ab (\/ ab —c) > 0.

The equality occurs for af = be=cd =1.
OJ

P 2.105. Let a, b, c,d be nonnegative real numbers such that
a’?—ab+b%=c?—cd +d>

Prove that
(a+b)(c+d)=2(ab +cd).
(Vasile C., 2000)

Solution. Let
x=a’—ab+b*>=c?>—cd+d>

Without loss of generality, assume that ab > cd. Then,
x>ab>cd, (a+b)?=x+3ab, (c+d)*=x+3cd.
By squaring, the desired inequality can be restated as
(x +3ab)(x +3cd) > 4(ab + cd)*.
It is true since
(x +3ab)(x +3cd)—4(ab +cd)?* > (ab + 3ab)(ab + 3cd) — 4(ab + cd)?
=4cd(ab—cd) > 0.

The equality occurs fora = b = c = d, and also fora = b = c and d = 0 (or any
cyclic permutation).
OJ
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P 2.106. Let a, b, c,d be nonnegative real numbers such that
a’*—ab+b*=c*—cd +d>

Prove that
1 1 8

+ < .
a?+b? c2+d?> " (a+Db)?+(c+d)?

(Vasile C. and Relic-93, 2021)

Solution. Let
x=a’—ab+b*>=c?>—cd+d>

Without loss of generality, assume that ab > cd. Then, x > ab > cd and
a’+b* =x+ab, c*+d*=x+cd, (a+b))=x+3ab, (c+d)?=x+3cd.

The required inequality can be rewritten as

1 1 8
+ < s
x+ab x+cd = 2x+3(ab+cd)

3(a?b? + c?d?) < 4x> + 2abcd.

It is true if
3(a®*b? + c*d?) < 4a*b* + 2abcd,

which is equivalent to
(ab—cd)(ab+3cd) > 0.

The equality occurs fora=b =c =d.

P 2.107. Let a, b,c,d be nonnegative real numbers such that
a’*—ab+b*=c*—cd +d>

Prove that
1 1 8

+ < )
a?2+ab+b2 c24+cd+d?2 "~ 3(a+b)(c+d)
(Anhduy98, 2021)

Solution. Without loss of generality, assume that ab > cd. Let
x=a*—ab+b*=c*—cd+d? y=ab, z=cd.
Then, x > y > z and

a’*+ab+b*=x+2y, c*+cd+d*=x+2z, (a+b)*=x+3y, (c+d)*=x+3z.
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The required inequality can be rewritten as F(x, y,z) < 0, where

1 1 8
+ — :
x+2y x+2z  3,/(x+3y)(x+32)

F(x,y,z)=

We will show that
F(x,y,z) < F(x,x,2) <0.

The left inequality is equivalent to

4 ( 1 1 )> xX—y
Vx+3z\/x+3y 2Vx) x(x+2y)’
6(x —y) S _XTY
\/x(x+3y)(x+32)(2ﬁ+\/x+32)_X(X‘l‘ZJ’)'

It is true if
6 N 1
\/(X+3_}/)(X+32) (21/x+ X+32) = (X+2y)ﬁ .

Since x > y > z, we only need to show that

6 1
(e +37) (2% + VAx) - A 2900

which is clearly true.
The right inequality F(x, x,z) < 0 is equivalent to
1 1 4
— <

+ < ,
3x  x+2z  34/x(x+32)

(2x +2)?*(x + 32) < 4x(x + 22)°.

It is true because
4x(x +22)* — (2x +2)*(x + 32) = 3(x —2)z* > 0.

The equality occurs for a = b = ¢ =d, and also for a = b = c and d = 0 (or any
cyclic permutation).
O]

P 2.108. Let a, b, c,d be nonnegative real numbers such that
a’?—ab+b%=c*—cd +d>

Prove that
1 1 2

+ < .
(ac+bd)* (ad+bc)* = (ab+cd)*

(Vasile C., 2021)
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Solution. Due to homogeneity, we may set
a*—ab+b*=c*—cd+d*=1.
Let
x=ab, y=cd, s=x+y, p=xy.

From 1 = a®> —ab + b? > ab, we get x < 1. Similarly, y < 1, hence p < 1. In
addition, from
(1-x)1-y)=0,

we get
s<1+p.

Since
(ac + bd)(ad + bc) = ab(c*+d?) +cd(a®>+ b)) =x(1+y)+y(1+x)=s+2p,
(ac+bd)*+(ad+bc)* = (a®*+b?)(c*+d*)+4abcd = (1+x)(1+y)+4xy = 1+s+5p,
(ac + bd)* + (ad + be)* = [(ac + bd)*+ (ad + bc)2:|2 —2(ac + bd)*(ad + bc)?
=(1+s+5p)*—2(s+2p)*,
we need to show that

(1+s+5p)*—2(s +2p)>

2
< =
(s +2p)* -

4°

92

that is equivalent to f(s,p) = g(s, p), where

4
f(s,p)=2(1+25—p) ,  g(s,p)=Q0+s+5p)*—2(s+2p)*.

Since
f(s,p)= f(1+p,p)

and

g(s,p)—g(1+p,p) = (s—1—p)(3+s+11p)—2(s—1—p)(1+s+5p) = —(s—1—p)* < 0,

it is enough to show that

f(1+p,p)=g(1+p,p),

that is
2(1+3p)*

(1+p)*
p(1—p)(1+3p)*(2+5p+p?)=>0.

The equality occurs fora = b = c = d, and also fora = b = c and d = 0 (or any
cyclic permutation).

> 2(1+ 3p)?,

O
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P 2.109. Let a, b, c,d be nonnegative real numbers such that a > b > ¢ > d and
a+b+c+d=13, a?+b*+c*+d*=43.

Prove that
ab>cd+3.

(PMO, 2021)

Solution (by Doxuantrong). From
2 2 2 2 1 2 1 2
43 —a“=b“+c*+d 2§(b+c+d) =§(13—a) ,

we get
(a—4)(2a—5) <0,

5
hence — < a,b,c,d < 4. On the other hand, we write the required inequality as

follows:
2ab > 2cd + 6,

(a+b)*—(a®*+b*)>(c+d)*—(c*+d?*)+6,
(13—c—d)?*—(43—c*—d*)>(c+d)*—(c*+d?*) +6,
c?+d*+60>13(c+d),
(c—d)P+(c+d)?+120>26(c+d),
(c—d)*>(c+d—6)(20—c—d).

Thus, it suffices to show that ¢ +d < 6, that is equivalenttoa+b > 7. If a = 4,

then
b+c+d_ 13—a

a+b>a+——=a+ 7.
3 3

Consider further that a < 4. From
(b—c)(b—d)=>=0,

we get
b —(c+d)b+cd >0,

that is equivalent to
2b*—2(c+d)b+(c+d)*—(c*+d?) >0,
b2+ (b—c—d)?—(c*+d?») >0,
b*+(a+2b—13)>*—(43—a*—b*) >0,
3b2—2(13—a)b+a®*—13a+63 >0,
3b>13—a++/(4—a)(2a—5).
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Note that we cannot have 3b < 13 —a — /(4 — a)(2a — 5) because this involves a
contradiction:

13—a=b+c+d<3b<13—a—+/(4—a)(2a—5)<13—a.

From

3a>3b>13—a++/(4—a)(2a—5),

we get

4a—13 > y/(4—a)(2a—5),
(2a—7)a—3)=>0,

hence a > 7/2. As a consequence, we have

3(a+b—7)=3(a—7)+3b>3(a—7)+13—a++/(4—a)(2a—5)

3v4—a (2a—7) >0
V2a—5+2V/4—a
The equality occurs fora =4 and b=c=d = 3.

=+vV4—a(vV2a—5-2v4—a)=

Second solution (by KaiRain) To show that a + b > 7, the key is
@ +b%+c2+d*+6(ab+cd)=(a+b+c+d)P+2(a—c)(b—d)+2(a—d)(b—c)

>(a+b+c+d)?,

which gives
ab+cd > 21,

(a+ b)Y+ (c+d)*>a*+b*+c*+d*+42,
(a+b)?>+(13—a—b)?> 85,
(a+b—6)la+b—7)=0,
a+b>7.

Hence,

c?+d? a2+b2—43_(a+b)2—43>

ab—cd > ab— =ab+ 3.
2 2 2
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P 2.110. Let a, b, c,d be nonnegative real numbers such that a > b > ¢ > d and
a+b+c+d=13, a®+Db%*+c%+d*=43.

Prove that ;
ab—cd > -

N

39
< — -
(a) for a_lo,

31
b d< —.
(b) for d< 1
(Vasile C., 2021)
Solution. (a) As shown at the preceding P 2.109, we have
7

—<a<4
2
and
b>B B— 13—a+ \/(z—a)(Za—S) .
Write the required inequality as follows:
2ab>2cd+7,

(a+Db)P—(a®>+b>)>(c+d)P—(c>+d?>)+7,
(a+b)—(a®+b*)>(13—a—Db)*>—(43—a®>—Db?) +7,

133
13a —a?+13b—b?* > -

Since
13b—b*—(13B—B*)=(b—B)(13—b—B) >0,
it suffices to show that

133
13a—a®>+13B—B?*> -

which is equivalent to

2(2a + 13)4/(4—a)(2a —5) > 16a> — 182a + 481. *)

Write this inequality in the form

2(2a + 13)(4—a)(2a —5) > (16a*> — 182a + 481)+/ (4 —a)(2a —5) .

Since

2a—5 2a—5 11—2a
<2(4—a)+ 2 = 7 ,

24/(4—a)(2a—5) = 2\J 2(4—a)-
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it suffices to show that
4(2a +13)(4—a)(2a —5) > (16a* — 182a + 481)(11 — 2a),
which is equivalent to the obvious inequality

(2a—7)(39—10a) = 0.
The equality occurs fora=b =c = g and d = g
Remark 1. Actually, the inequality is true for a < k, where
k ~ 3.980572
is a root of the equation
16k® — 256k* + 1742k — 3887 = 0.
Indeed, by squaring, the equation (*) becomes

(2a —7)(16a® — 256a® + 1742a — 3887) < 0.

It is easy to show that his inequality holds for
1
a< 613 A 3.980519.
154

Indeed, we have
16a® —256a® + 1742a — 3887 = 16(a — 4)® — 64(a — 4)* + 3(154a — 613)

< 3(154a—613) < 0.

(b) As shown at the preceding P 2.109, we have

5

d>—.
2

Write the required inequality as follows:
2ab>2cd+7,
(a+b)?—(a®*+b*)>(c+d)P—(c*+d*)+7,
(13—c—d)y’—(43—c*—d*) = (c+d)—(*+d*)+7,
2¢* —26¢ +2d* —26d + 119 > 0.

Ifd= E, then
2

a+b+c 13—-d
< =

7
=3 3 2

>
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hence
(7—2¢)(19 —2¢) >0,

2¢% —26¢ +2d*—26d +119 = 5

5
Consider further that d > 3 From

(c—a)(c—b)=0,
we get
c?—(a+Db)c+ab>0,

that is equivalent to
2+(a+b—c)—a®?—b%>0,

c2+(13—2c—d)*+c*+d*—43>0,
3c2—2(13—d)c+d*—13d +63 >0,

- 13—d—+/(4—d)(2d —5)
3 .

Note that we cannot have 3¢ > 13 —d + /(4 —d)(2d — 5) because this involves a
contradiction:

c<C,

13—d=a+b+c>3c>13—d++/(4—d)(2d—5)>13—d.

Fromd <c < C, we get

V(4 —d)(2d—5) < 13—4d,

(7—2d)(d—-3)<0,

hence
d<3.

Since
2c%—26¢c—(2C*—26C)=2(c—C)(c+C—26)>0,

it suffices to show that
2C2—26C +2d*—26d +119 >0,

which is equivalent to

2(2d +13)4/(4—d)(2d —5) > (2d — 5)(71 — 8d) .

2(2d +13) = (71 —8d)\ 2:1_—615 _ -

This is true if
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Since
2d—5 2d-5

) d—1
4—d ~ 4—d 4—d’

it is enough to show that
4(2d +13)(4—d) > (71—-8d)(d — 1),
which is equivalent to the obvious inequality

31—-11d > 0.
The equality occurs fora=b =c = g and d = g
Remark 2. The inequality is true for d < k, where
k ~ 2.84647
is a root of the equation
16k® —272k* + 1734k —3101 = 0.
Indeed, by squaring, the equation (**) becomes
16d°® —272d* +1734d — 3101 < 0.

It is easy to show that his inequality holds for

1517

d < — ~ 2.84082.
534

Indeed, we have
16d° —272d? +1734d — 3101 = 16(d —3)® —128(d — 3)* + 534d — 1517

<534d —1517 < 0.

P 2.111. Let a, b, c,d be nonnegative real numbers such that a > b > c > d and
a+b+c+d=13, a*+b*+c*+d*=43.

Prove that

3 16
8—Sac+bd£—9.
4 8

(Vasile C., 2021)
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Solution. As shown at P 2.109, we have

ESa,b,c,d <4.
Since
2(ac+bd)=(a+c)*+(b+d)*—(a®*+b*+c*+d*)=(a+c)*+(13—a—c)*—43

=2(a+c)*—26(a+c)+ 126,

the left required inequality is equivalent to

132
at+tc——| =20,
2

and the right required inequality is equivalent to

8(a+c)*—104(a+c)+335>0.

Since
a+b+c+d 13
atcz——m=—,
2 2
we only need yo show that
26+ V6
atcs —.
From
(c—b)(c—d) <0,
we get

c2—(b+d)b+bd <0,

that is equivalent to
2+ (b+d—c)-b2—-d*<o0,

2+ (13—a—2c)+a*+c*—43<0,
3c2—2(13—a)c+a®?—13a+63<0,

_13—a++/(4—a)(2a—5)
= 3 .

c<C, C

So, it suffices to show that

2
asc<26tV6

which is equivalent to

26 +3v6—8a > 44/(4—a)(2a—5),

V6—2
2

(V6+2)(4—a)+ (2a—5)>4+/(4—a)(2a—5) .
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Clearly, the last inequality is true (by the AM-GM inequality).
13 83
The left inequality is an equality fora+c=b+d = B and ac + bc = E while

13+\/6,b=c=£andd=13_‘/g.
4 4 4 -

the right inequality is an equality for a =

P 2.112. Ifa, b,c,d are positive real numbers such that
a+b+c+d=4, a<b<1<c<d,

then L1011
9(—+—+—+—)24+8(a2+b2+c2+d2).
a b ¢ d

(Vasile C., 2021)

Solution. For fixed b and d, write the required inequality as f (c) > 0, where

1 1 1 1
f(c)zg(—+—+—+—)—4—8(a2+b2+c2+d2), a=4—b—c—d.
a b ¢ d
We will show that
f©O=f1)=o0.
Since
a+b c+d
a+CS + :23
2
a+c 16
> = 2,
a2cz2 = (a+c)
we have 9 9 16
Sy B a+c
fc)—E—C—2+16(a—c)—9(c—a)(a2c2—3)
Z9(c—a)(a+c—2)20,
a2c2

f(c) is increasing, hence f(c) > f(1). The inequality f (1) > 0 has the form

1 1 1
9(—+—+—)—3—8(a2+b2+d2)20,
a b d

where
a=3—b—d.

We may write this inequality as g(a, b) > 0, where

g(a,b)=9(1+%+$)—3—8(a2+b2+d2), d=3—a—b.
a
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We will show that
g(a,b) = g(x,x) =0,

where .
x:a+ s 0<x<1.
2
We have
1 1 2 9 9 )
gla,b)—g(x,x)=9( =+ —=—=|—8(a®+ b*—2x?)
a b «x
—hH)2 — 1\2(0
:9(a b) —4(a—b)2=(a b)“(9 8abx)20
2abx 2abx
and

2 1
g(x,x)=9(;+E)—3—8(2x2+d2), d =3—2x,

1
3—2x
_ 6(16x*—56x> + 73x* —42x +9)
B x(3—2x)

_ 6(x—1)*(4x —3)° -0
B x(3—2x) -

2
g(x,x)=9(;+ )—3—163(2—8(3—2x)2

2

The equality holds fora=b=c=d =1, andalsofora:bzz,czl,dzg.
]

P 2.113. Ifa, b,c,d are positive real numbers such that
a?+b*+c*+d*=4, a<b<c<d,
then

1
—+a+b+c+d=>=5.
a

(Vasile C., 2021)

Solution. Write the inequality in the homogeneous form

a?+b>+c2+d?
4

a?+b2+c2+d?
) .

+a(a+b+c+d)25a%

For fixed a, b, d, we need to prove that f(c) > 0, where

f(e)=5a2+b*+c2+d*+4a(b+c+d)—10avVa2+ b2 +c2+d2, ce[b,d]
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From
10ac 10ac
f'(c)=2c+4a— >4a+2c— ——
Va2 + b2 +c2+d>2 v 2(a? +c2)

> 4+/2ac —5v/ac = (4v2—5)v/ac > 0,

it follows that f(c) is increasing, hence f(c) = f(b). The inequality f(b) = 0 is
equivalent to

5a® +2b* +d?* +4a(2b+d)—10av/ a% + 2b2 +d2 > 0.

For fixed a and d, we need to show that g(b) > 0, where

g(b)=5a*+2b*+d*+4a(2b+d)—10ava?+2b2+d2?, be[a,d].

From 20ab 20ab
a a
'(b) = 4b + 8a — > 4b+8q — ———22
£1(5) va?+2b2 +d? va?+3b?
> 8+v/2a —Zo"ab=4(2«/2— > )\/ab>0,
V243 V243

it follows that g(b) is increasing, hence g(b) > g(a), that is

g(b) > 15a* + 4ad + d* —10a v/ 3a2 + d2.

Thus, we only need to show that

1502 + 4ad + d* > 10av/3a2 + d2.

Due to homogeneity, we may set a = 1, hence d > 1. We need to show that

(15 +4d + d?)* > 100(3 + d?),

which is equivalent to
d*+8d®—54d*+120d — 75 > 0,
(d—1)(d®+9d*—45d + 75) > 0.

This is true because

d®+9d*—45d + 75 > 9d* —45d + 63 = 9(d* —5d + 7) > 0.
The equality holds fora=b=c=d =1.
Remark. Similarly, we can prove the following stronger inequality

3 1
—+a+b+c+d2—9.
4a 4



Noncyclic Inequalities 511

P 2.114. Ifa, b,c,d are real numbers, then
6(a®?+b%>+c?+d*)+(a+b+c+d)?>12(ab+ bc +cd).
(Vasile C., 2005)
Solution. Let
E(a,b,c,d)=6(a’+ b2+ c?+d>)+(a+b+c+d)*—12(ab+ bc+cd).
First Solution. We have
E(x+a,x+b,x+c,x+d)=
= 4x?4+4(2a—b—c+2d)x+7(a®+b*+c*+d*)+2(ac+ad+bd)—10(ab+bc+cd)
= (2x+2a—b—c+2d)*+3(a*+2b*+2c*+d*—2ab+2ac—2ad —4bc+2bd —2cd)

=(2x+2a—b—c+2d)P+3(b—c)P+3(a—b+c—d)>.

For x =0, we get
E(a,b,c,d)=(2a—b—c+2d)*+3(b—c)*+3(a—b+c—d)*>0.
The equality holds for 2a = b = ¢ = 2d.

Second Solution. Let

We have

E=6[(a—b)*+(c—d)*]+(a+b+c+d)*—12bc
=6(x%+y)+[x+y+2(b+c)]*—12bc
=3(x—y)l+3(x+y)P+[x+y+2(b+c)*—12bc
=3(x—y)l+4(x+y)P+4x+y)b+c)+(b+c)*+3(b—c)?
=3(x—y)l +@2x+2y+b+c)*+3(b—c)*>0.

P 2.115. If a, b,c,d are positive real numbers, then

1 + 1 + 1 + 1 > 4
a?4+ab b2+bc c2+cd d2+da  ac+bd
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Solution. Write the inequality as follows:
ac + bd
+1])=8,
Z ( a’?+ab )

Za(c+a)+b(d+a)>8
a(a+b) -

c+a b(d +a)
+ > 8.

Z a+b Z a(a+b) —
By the AM-GM inequality, we have

b(d + b(d +

e SR [N ECED

a(a+ b) a(a+b)

Therefore, it suffices to prove the inequality

Yezt

which is equivalent to

(a+c)(L+L)+(b+d)(i+ L )24.

a+b c+d b+c d+a
This inequality follows immediately from
1 1 4
+ >
a+b c+d  (a+b)+(c+d)

and

1 1 4
+ > .
b+c d+a  (b+c)+(d+a)
The equality occurs fora=b =c =d.

P 2.116. Ifa, b,c,d are positive real numbers, then

1 1 1 1 1
+ + + > 6
a(l1+b) b(d+4+a) c(1+d) d(1+c¢c) 1+8+vabcd
(Vasile C., 2007)

Solution. Let

x=+vab, y=+cd.
Write the inequality as
a+b+2ab c+d+2cd S 16

ab(1+a)(1+D)  cdl+00+d) - 1+87abed
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We claim that

a+b+2ab 1
> == > —,
ab(1+a)(1+b)  ab

and
a+b+2ab 2
x<l1

< - > .
ab(l+a)(1+b) ~ vab+ab
The first inequality is equivalent to ab > 1, while the second inequality is equivalent

to
(1—\/5)(\/5—\/3)220.

Similarly, we have

c+d+2cd >i
cd(14+d)(1+d) ~ cd

y=1

and
c+d+2cd 2

A1+ DA+~ Vadted

y<1

There are four cases to consider.

Case 1: x > 1, y > 1. It suffices to show that

1 1 16
>

+ > .
x2  y2  1+4+8xy

Indeed, we have
1 + 1 2 16

—t—2=2—> .
x2 y?2 xy 1+8xy
Case 2: x <1, y < 1. It suffices to show that

2 2 16
+ = .
x+x2 y+y?> 1+8xy

Putting s = x + y and p = /Xy, this inequality becomes

s?+s—2p? . _ 8
p2(s+p2+1) — 1+48p?’

(1+8p*)s*+s—24p*—10p* > 0.
Since s > 2p, we get
(1+8p*)s* +s—24p* —10p* > 4(1 + 8p?)p* + 2p — 24p* — 10p?
=2p(p+1)(2p—1)*=>0.
Case 3: x > 1, y < 1. It suffices to show that

1 2 16
>

+ = .
x2 y+y? 1+8xy
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This inequality is equivalent in succession to
(1+8xy)(2x*+y*+y)>16x*y(1+y),
(1+8xy)(x—y)*+8x3y +8xy*—16x%y +2xy +x*+y >0,
(1+8xy)(x—y)*+8xy(x—1)*+8xy*+x*+y > 6xy.
The last inequality is true since the AM-GM inequality yields

8xy?+x*+y>3+/8xy2-x2-y =23+/8x3y3 =6xy.

Case 4: x <1, y > 1. It suffices to show that

2 1 16
+—2= ,
x+x2 y> 1+8xy

which is equivalent to
(1+8xy)(x—y)+8xy(y —1)* +8x2%y + y*+ x > 6x.
As in the case 3, we have

8x%y +y*+x>3+/8x2y - y2-x =3+/8x3y3 = 6xy.

1
The proof is completed. The equality holds fora=b=c=d = 5

P 2.117. If a, b, c,d are positive real numbers such that a > b > ¢ > d and
atb+c+d=4,

then
ac+ bd < 2.

(Vasile C., 2019)

Solution. Write the inequality in the homogeneous form
(a+b+c+d)?*>8(ac + bd).
We have
(a+b+c+d)*—8(ac+bd)=a*+2(b+d—3c)a+(b+c+d)*—8bd

=(a+b+d—3c) > —(b+d—3c)>+(b+d+c)*—8bd
=(a+b+d—3c)*+8(b—c)(c—d)>0.
The equality holds for b=c=1and a+d = 2.
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P 2.118. If a, b,c,d are positive real numbers such that a > b > ¢ > d and
a+b+c+d=4,

then

1 1
2(5+E)2a2+b2+62+d2'

(Vasile C., 2019)

Solution. Write the inequality in the homogeneous form
(a+b+c+d)3(%+%)—32(a2+b2+c2+d2)20.
For fixed b, ¢, d, the inequality becomes f (a) > 0, with
f'(a)=3(a+b +c+d)2(% + %)—64&
Fora+b+c+d=4,whena=4—b—c—d <4—b—2d, we have

1, 1 1

:(%+4b)+(3+8d)—1624(\/§+ V(6)—4)> 0.

Therefore, f(a) is increasing, hence f(a) > f(b). Similarly, for fixed a, b,d, the
inequality becomes g(c) > 0, with

g'lc)=3(a+b+c +d)2(% + %)—64c > f'(a) > 0.

Therefore, g(c) is increasing, hence g(c) > g(d). As a consequence, it suffices to
prove the original inequality for a = b and ¢ = d. So, we only need to show that
b+ d =2 involves

> b%+d?,

41
7=

S| =

which is equivalent to
(bd—1)*>0.

The equality holds fora=b=c=d =1.

P 2.119. Let a, b, c,d be positive real numbers such that a > b > ¢ > d and
ab+ bc+cd+da=3.

Prove that
a®bcd < 4.

(Vasile C., 2012)
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Solution. Write the desired inequality as
4(ab+ bc+cd +da)® > 27a%bcd,

bc+cd
a

3
4(b+d+ ) > 27bcd.

It suffices to show that
4(b+d)® > 27bcd.

Indeed, by the AM-GM inequality, we have

3 2
(b+d)3:(9+9+d) 227(9) d > 27bed
2 2 2 4

P 2.120. Let a, b, c,d be positive real numbers such that a > b > ¢ > d and
ab+ bc+cd+da=6.

Prove that
acd < 2.

(Vasile C., 2012)
Solution. Write the desired inequality in the homogeneous form
(a+c)*(b+d)® > 54ac?d>.
Since b > ¢, we only need to show that
(a+c)*(c+d)® > 54a%c*d>.

By the AM-GM inequality, we have

3 2
(a+c)3=(§+g+c) 227(%)(%)c=—7a2c.

Thus, it suffices to show that
(c+d)® > 8cd>.

Indeed,
(c+d)P—8cd?>=(c—d)(c?+4cd—d?)>0.

The equality holds fora=2and b=c=d =1.
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P 2.121. Let a, b, c,d be positive real numbers such that a > b > ¢ > d and
ab+bc+cd+da=09.

Prove that
abd < 4.

(Vasile C., 2012)

Solution. Write the desired inequality in the homogeneous form

2
(a+c)Pb+d)P> 7—9a2b2d2.
16
Since ¢ > d, we only need to show that
229 b2z,

3 2
(a+d)° = (9+ 9+d) > 27(9)(9)d =27 2
2 2 2/\2
and, similarly,

(b+d)®> 2747b2d

Multiplying these inequalities, the desired inequality holds. The equality occurs for
a=b=2andc=d=1.
O

P 2.122. Let a, b, c,d be positive real numbers such that a > b > ¢ > d and
a’+ b*+c*+d*=10.

Prove that
2b+4d < 3c+5.

(Vasile C., 2012)

Solution. Write the desired inequality in the homogeneous form

2b—3c+4dS\J;(a2+b2+c2+d2).

It is true if
5(a®+ b%*+c*+d?*) > 2(2b — 3¢ + 4d)>.
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Since a > b, it remains to show that
5(2b% +c?+d?) > 2(2b—3c +4d)?,
which is equivalent to
2b* + 24bc +48cd > 13¢* +27d” + 32bd.
Since d? < cd, it suffices to prove that
2b% 4+ 24bc +48cd > 13c% + 27cd + 32bd,
which is equivalent to
2b* + 24bc > 13¢* + (32b —21c)d.
Since 32b —21c > 0 and c > d, it is enough to show that
2b% +24bc > 13¢% 4+ (32b—21c¢)c.
This reduces to the obvious inequality
2(b—2c)*>0.
The equality holds fora=b=2andc=d =1.

P 2.123. Let a, b, c,d be positive real numbers such that a < b < ¢ < d and
abcd = 1.

Prove that
a

4+
b

b d
+_+£+_22(a+b)(c+d).
c d a

Solution. Since

3

c a a c ca
we only need to prove that

a

b d
4+ +—+§+—22(a+b)(c+d),

b a c
which is equivalent to

(a+b)? N (c+d)?

>2(a+b)(c+4d),

ab cd
(a+b c+d)2
— > 0.
vab ved

The proof is completed. The equality holds fora=b=c=d = 1.
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P 2.124. Let a, b, c,d be positive real numbers such that a > b > ¢ > d and

3(a®+ b2 +c2+d>)=(a+b+c+d)>

Prove that
a+d
< .

(@ b+c ™

) a+c£7+21/6;
b+d 5

© a+c£3+\/§'
c+d 2

(Vasile C., 2010)
Solution. (a) Since
(a+d)(b+c)—2(ad+bc)=(a—b)(c—d)+(a—c)(b—d) >0,
we have
a’*+b*+c*+d*=(a+d)*+(b+c)*—2(ad + bc)
>(a+d)+(b+c)—(a+d)(b+oc),

hence 1
g(a+b+c+d)2 >(a+d)P+(b+c)>—(a+d)(b+c),

(a+d _2)(a+d _1) <o,
b+c b+c 2
from where the desired result follows. The equality holds for a/3 =b =c =d.

(b) From (a —d)(b —c¢) = 0 and the AM-GM inequality, we have

(a+b+c+d)?

2(ac+bc)<(a+d)b+c) < 2 ,

hence

a?+b*+c*+d*=(a+c)*+(b+d)*—2(ac+ bd)
(a+b+c+d)?

>(a+c)?+(b+d)>?— 2 ,

(a+b+c+d)?

4 )
(a+c _7+2J€)(a+c _7—2«/6)<0
b+d 2 b+d 2 -7

1
§(a+b+c+d)22(a+c)2+(b+d)2—
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from where the desired result follows. The equality holds for
B—V6a=b=c=(3+6)d.
(c) Writing the hypothesis 3(a® + b*> +c?>+d?)=(a+ b +c+d)* as
b ’—(a+c+d)b+a*+c*+d*—ac—cd—da=0,

(2b—a—c—d)* =3(2ac +2cd +2da —a®—c*—d?),

it follows that
2ac +2cd +2da > a®> + 2 + d?,

a’—2(c+d)a+(c—d)?<o,
a<c+d+2vcd.

Thus, it suffices to prove that

2c+d+2«/a<3+«/§
c+d - 2

which is equivalent to
(V5—1)c+(vV/5+1)d >4V cd.

This inequality follows immediately from the AM-GM inequality. The equality holds
for
a 2 _c d
3+v/5 4 2 3—45

P 2.125. Let a, b, c,d be nonnegative real numbers such that a> b > c > d and
2@®+b*+c2+d)=(a+b+c+d)>

Prove that
a>b+3c+(2v3—1)d.

(Vasile C., 2010)

First Solution. For ¢ = d = 0, the desired inequality is an equality. Assume further
that ¢ > 0. From the hypothesis 2(a®? + b*+ c¢*+d?) =(a + b + ¢ + d)?, we get

a=b+c+d=x2v bc+cd+db.

It is not possible to have

a=b+c+d—2vbc+cd+db,
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because this equality and a > b involve

c+d=>2vbc+cd+db,
(c—d)* > 4b(c +d),
(c—d)?* > 4c(c+d),
d? > 3c(c + 2d),

which is not true. Thus, we have

a=b+c+d+2v bc+cd+db.

Using this equality, we can rewrite the desired inequality as

b+c+d—2vVbc+cd+db>b+3c+(2vV3—1)d,
Vblc+d)+cd>c+(vV3-1)d.

Since b > c, it suffices to show that

Ve(c+d)+cd>c+(V/3-1)d.

By squaring, we get the obvious inequality d(c —d) > 0. The equality holds for
azbandc:dzo,for%:b:candd:O,andfor =b=c=d.

3+24/3

Second Solution (by Vo Quoc Ba Can). Write the hypothesis 2(a? + b% +c? + d?) =
(a+b+c+d)?as

(a—b)?*+(c—d)*>2(a+b)(c+d).
Since
a+b>(a—b)+2c,

we get
(a—b)*+(c—d)*>2[(a—b)+2c](c +d),

which is equivalent to
(a—b)?>—2(c+d)a—b)—3c>*—6¢cd +d*>0.

From this, we get
a—b>c+d+2vc2+2cd.

Thus, the desired inequality
a—b>3c+(2v3-1)d

is true if
c+d+2vVc2+2cd > 3c+(2v/3-1)d,
that is,

Ve2+2cd > c+(V3-1)d.

By squaring, we get the obvious inequality d(c —d) > 0.
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P2.126. Ifa>=b>c>d >0, then

(a) a+b+c+d—4ng(\/§—2ﬁ+ﬁ)2;

() a+b+c+d—4ng(3ﬁ—2ﬁ—ﬁ)2;
(© a+b+c+d—4mz%(3ﬁ—ﬁ_2ﬁ)2;
(d) a+b+c+d—4m2§(ﬁ_3ﬁ+2ﬁ)z;
(e) a+b+c+d—4mzé(2ﬁ—3ﬁ+\/ﬁ)2;
® a+b+c+d—4mzé(2ﬁ+ﬁ—3ﬁ)2,

(Vasile C., 2010)

Solution. First, we show that

a—4+vabed > b—4v/ bcd.
Write this inequality as

a—b24M(\7&—%),
and prove then the following sharper inequality

a—b2 435 (¥a- V).
Indeed,
a—b—4vb*(Va—vb)=(Va—Vb)(Va* + Vazb+ Vab2—3Vb?) > 0.

Thus, we have

a+b+c+d—4vabcd >2b+c+d—4+ b2cd,

which is equivalent to
4 4 2 2
a+b+c+d—4\/abcd22(\/g—\/cd) +(\/E—\/E) .

Since

ﬁ—mzﬁ—ﬁ%ﬁzo,

we have

a+b+c+d—4av abch%(Z\/g—\/E—\/E)2+(\/E—\/E)Z.
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Using the substitution

X:\/E_\/E, y:\/z_\/gs x:J’ZO,

we get
1
a+b+c+d—4vabed > E(2x+y)2+y2,

that is
1
a+b+c+d—4v abcd25(4x2+4xy+3y2). *)

The inequality (*) is an equality for a = b and ¢ =d.
(a) According to (*), it suffices to show that
4x* +4xy +3y* > 3(x — y)?,

which is equivalent to
x(x+10y)=>0.

The equality holds fora=b=c=d.
(b) According to (*), it suffices to show that
9(4x*+4xy +3y?) > 4(3x +y)?,

which is equivalent to
y(12x +23y) = 0.

The equality holds for a = b and ¢ =d.
(c) According to (*), it suffices to show that
19(4x? + 4xy +3y?) > 8(3x + 2y)?,

which is equivalent to
(2x —5y)*> 0.

The equality holds fora =b =c =d.
(d) According to (*), it suffices to show that
4(4x%* + 4xy +3y?) > 3(x —2y)?,

which is equivalent to
x(13x +28y) > 0.

The equality holds fora =b =c =d.
(e) According to (*), it suffices to show that

4x% +4xy +3y? > (2x — y)?,
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which is equivalent to
y(4x+y)=0.

The equality holds for a = b and ¢ =d.
(f) According to (*), it suffices to show that
3(4x%+4xy +3y?) > (2x +3y)?,

which is equivalent to

x*>0.
The equality holds fora =b=c =d.
O
P2.127. Ifa=b>c>d =0, then
(@) a+b+c+d—4vabcd >(\/_ x/_)
®) a+b+c+d—4vabed = 2(Vb—vi)';
(c) a+b+c+d—4\/4abcd>§( \/_)
4 3
@ a+b+c+d—4\/abcd>§( —vd)'.
(Vasile C., 2010)
Solution. (a) Write the inequality as
b+c+2vad > 4vabed,
which follows immediately from the AM-GM inequality. The equality holds for

b=c=+vad.
(b) First Solution. Since
4 4 4 4 2
a+b+c+d—4vabed > 2vab+2ved—4vabed =2(Vab—Ved)

we only need to show that

Vab—+ved = Vb— e,

which is equivalent to the obvious inequality

Vb (Va—Vb)+ve(Ve—-vd)zo
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The equality holds for a = b and ¢ =d.

Second Solution. According to the inequality (*) from the proof of the preceding
P 2.126, it suffices to show that

4x% +4xy +3y? > 4x2,
which is obvious.

(c) According to the inequality (*) from the proof of the preceding P 2.126, it
suffices to show that

3(4x* +4xy +3y?) > 8(x + y)?,

which is equivalent to
(2x—y)*=0.

The equality holds fora =b =c =d.

(d) According to the inequality (*) from the proof of the preceding P 2.126, it
suffices to show that
4x* +4xy +3y? > 3y?,

which is obvious. The equality holds fora =b =c =d.

P2.128. Ifa>=b>c>d>e>0, then

5 2
a+b+c+d+e—5\/abcd622(\/g—\/g) .

(Vasile C., 2010)

Solution. From the AM-GM inequality, we have

¢ +4+v abde > S\S/abcde,

which can be rewritten as
c—5+v abcde > —4+/ abde.

Thus, it suffices to show that

a+b+d+e—4v abdezz(\/g—\/g)z.

Since

a+b+d+e—4Vabde > 2V ab +2vde—4vabde = 2(V/ab— ¥/ de)z,
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we only need to prove that
Vab—Vde=vb—Vd,
which is equivalent to the obvious inequality
Vo (Va—+/b)+Vd(Vd-e)=o.

The equality holds for

P 2.129. Ifa,b,c,d, e are real numbers, then

ab+ bc+cd+de < V3

a2+ b24+c2+d2+e2” 2°

Solution. Using the AM-GM inequality, we have

2 2 3

1 2 1 1. 2 1
ZZ\Jaz-—b2+2Q—b2-—c2+2\J —c2-=d2+2\| =d?-e2
3 3 2 2 3 3

a+b*+c*+d*+e* = (a2+ %bz) + (§b2+ lc"‘)+ (1c2+ gdz) + (%d2+e2)

2
> —(ab+ bc+cd +da).
ﬁ( )
The equality holds for
a=b_c_d_
V3 2 /3

Remark. The following more general inequality holds

a;a, +aas+---+a,14a,

2 24 ... 2 -
ay+a;+---+a; n+1
with equality for
a; as a
T 0 2n o nm
ST singay ST
Denoting
. 1
sin (l++in
c;, = i=1,2,---,n—1,
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we have
T 4 1
¢, = COS s Cp1 = —7>
! n+1 ol cos =
— + ;41 = COS , 1=1,2,--- n—2,
4c; n+1
hence .
(a%+a§+---+a§)cosn+1=
=ca2+(i+c)a2+---+( ! +c )az + a’
Y1\ 4, %) 4¢,, M)V 4e,

1 1 1
= (claf + 4—C1a§) + (c2a§ + Eag) 4o g (cn_lai_1 + 0 ) ai)
e

1 1 1
> 2\] ca- 4—Cla§ +2\J cpas - Ea% ot Z\J Cpga> ;- ” 1ar21
n

= a,ay +a,das +---+a, 4a,.

P 2.130. If a, b,c,d, e are positive real numbers, then

a’b? N b%c? N c2a? 3abc
bd+ce cd+ae ad+be d+e

Solution. Using the Cauchy-Schwarz inequality

ab? N b2c? N c%a?® (ab + bc + ca)?
bd+ce cd+ae ad+be  (bd+ce)+(cd+ae)+(ad+ be)’

it suffices to show that

(ab + bc + ca)? - 3abc
(bd +ce)+(cd +ae)+(ad +be) ~ d+e’

which is equivalent to
(ab + bc +ca)?

a+b+c
a’(b—c)*+ b (c—a)*+c%(a—b)*>0.

> 3abc,

The equality holds for a = b =c.
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P 2.131. Ifa,b,c,d,e, f are nonnegative real numbers such that
a>b>c>d>e>f,

then
(a+b+c+d+e+f)>8(ac+ bd +ce+df).

(Vasile C., 2005)

First Solution. Let us denote
x=b+c+d+e+f,
and write the inequality as follows:
(a+x)*—8(ac+bd+ce+df) >0,

(a+x—4c)*+8(a+x)c—16c*—8(ac+bd +ce+df)>0,
(a+x—4c)?>—8[c2—(b+d+f)+d(b+f)] >0,
(a+x—4c)>—8(c—d)(c—b—f)=>0,
(a+x—4c)+8(c—d)b—c+f)=0.

The last inequality is clearly true. The equality holds forc =d =(a+b+e+f)/2,
and forc=b+ f = (a+d +e)/2; that is, for

and for

P2132. Ifa>b>c>d>e> f >0, then

2
a+b+c+d+e+f—6\6/abcdef22(\/3—1/5) )

(Vasile C., 2010)

Solution. Since
a+b=>2vab, c+d=2vcd, e+ f =24ef,

it suffices to show that

Vab++vcd+ vef —3+v/abcdef > (\/3—1/2)2.
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By the AM-GM inequality, we have

V'cd +2+/abef > 3+/abedef,
which can be rewritten as
Ved —3+¢/abedef > —2+/abef.
Thus, it suffices to show that
Vab + Vef —23/abef = (Vb—Ve) .

in
o Vab+ ef —23/abef = (Vab—/ef) ,
we only need to prove that
Vab—+/ef >Vb— e,
which is equivalent to the obvious inequality
Vb(Va—v/b)+Ve(Ve—/F)=o.

The equality holds for

P 2.133. Let a, b, c and x, y,z be positive real numbers such that
x+y+z=a+b+c.

Prove that
ax®*+by?*+cz*+ xyz > 4abc.

(Vasile C., 1989)

First Solution. Write the inequality as E > 0, where
E=ax?*+by?*+cz*+ xyz —4abc.

Among the numbers
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there are two of them with the same sign; let

pq =0,
where . iy
=ph— ) —
p 5 g=c 2
We have
+ + 4
b:p+¥, C:quxz , a:x+y+z_b_czy2z_p_q.
Then,
y+z ) 9 ( X+Z) 9 ( x+y) 5
E= —p—q)x*+(p+—— )y +(q+
( 2 p—qjx p 5 )Y q 5 )*
ytz xX+3z x+y
i (e ) o)
Xyz 5 p—q|lp 2 q 5
=4pq(p +q) +2p*(x + y) + 2q*(x + 2) + 4pqx

+ +
:4q2(p+_x2z)+4p2(q+_x 2y)+4pqx

=4(g*b + p*c + pqx) > 0.

y+z z+X x+y
= C: .

2’ 2
Second Solution. Consider the following two cases.
Case 1: x? > 4bc. We have

,b

The equality holds for a =

ax®+by*+cz* + xyz —4abc > ax* —4abc > 0.

Case 2: x* < 4bc. Let
u=x+y+z=a+b+c.

Substituting
Z2=u—x—Yy, a=u—b—c,

the inequality can be restated as

Au>+Bu+C >0,

where
A=c,

B=(x*—4bc)—2c(x+y)+xy,
C=—(b+c)(x*—4bc)+by*+c(x+y)?—xy(x+y).
Since the quadratic function Au?® + Bu + C has the discriminant
D= (x*—4bc)(2c—x—y)* <0,

the conclusion follows.
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P 2.134. Let a,b,c and x, y, 2z be positive real numbers such that
x+y+z=a+b+c.

Prove that

x(3x +a) N y(3y +b) N 2(3z +¢) S

12.
bc ca ab

(Vasile C., 1990)

Solution. Write the inequality as
1
ax?+by*+cz*+ g(azx + b%y +c*z) = 4abc.

Applying the Cauchy-Schwarz inequality, we have

(a+b+c)  xyz(x+y+z)°

2 2 2
a‘x+ by +cz> =
Y 1 1+1 Xy +yz+zx

> 3xyz.
x y z
Therefore, it suffices to show that
ax*+ by?*+cz*+ xyz > 4abc,
which is just the inequality in the preceding P 2.133. The equality holds for

x=y=gz=a=b=c.

P 2.135. Let a, b, ¢ be given positive numbers. Find the minimum value F(a, b, c) of

ax by cz

E(x,y,z)= + + )
(%, y2) y+z 2z+x x+Yy

where x,y, 2z are nonnegative real numbers, no two of which are zero.

(Vasile C., 2006)

Solution. Assume that
a = max{a, b, c}.

There are two cases to consider.
Case 1: y/a < v/b + 4/c. Using the Cauchy-Schwarz inequality, we get

alx+y+z)—aly +2) a
E:Z o =(x+y+z)zy+z—2a

Z(x+y+z)%—2a=ﬂ+m+ﬁ—%b+c.
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The equality holds for
yt+z z+x Xx+Yy,
va  Jb o Vo
that is, for
x Yy Z

Jb+vi—ya vetvya—vb va+Vb—+c
Case 2: y/a > +/b+ 4/c. Let us denote

A= (Vb+ ),
+ + x +
X_y Za Y:Z x) Z: y;
2 2 2
hence
x=Y+Z—-X, y=Z+X-Y, z=X+Y—Z.
We have

Ax by cz
E> + +
y+z z+x x+Yy

_AY+Z-X) bZ+X-Y) (X+Y-2)

2X 2Y 2Z
1Yy X\ 1(.Z Y\ 1(X Z
=—(A—+b—)+—(b—+c—)+—(c—+A—)—b—c—\/bc
2\Xx YvY/) 2VyYy zZ) 2\VZzZ X

> VAb+Vbc+vVcA—b—c—+v bc=2Vbc.

The equality holds for x = 0 and Y - ‘/%. Therefore, for a = max{a, b,c}, we
Z
have

a+b+c

vab + Vbc+ Jca— 5 , Ja< b+ 4/c
F(a,b,c) = 2/Be. \/52\/3+\/E.

P 2.136. Let a,b,c and x,y,z be real numbers.
(a) If ab+ bc+ca> 0, then

[(b+c)x+(c+a)y+(a+b)z]*>4(ab+ bc+ca)(xy + yz +2x);
(b) If a,b,c =0, then
[(b+c)x+(c+a)y+(a+b)z]*>4(a+b+c)ayz+ bzx +cxy).

(Vasile C., 1995)
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Solution. (a) First Solution. The condition ab + bc + ca > 0 yields b + ¢ # 0.
Indeed, if b+ ¢ = 0, then ab + bc + ca = —b? < 0, which is false. The desired
inequality is equivalent to D > 0, where D is the discriminant of the quadratic
function

f(t)=(at—x)(bt—y)+(bt—y)(ct—2)+ (ct —2)(at —x).

For the sake of contradiction, assume that D < O for some real numbers a, b, ¢ and
x,y,%. Since the coefficient of t? is positive, we have f(t) > O for all real t. This
is not true, because for

(bt—y)+(ct—2) =0,
we get
Ytz
 b+c

y+z) (bz—cy)2<
=— 0
f(b+c b+c h

For pqr # 0, the equality holds when

t

and

a
Second Solution. If xy + yz + zx < 0, then the inequality is obviously true. Oth-
erwise, due to homogeneity in x, y, 2, we may assume that

x+y+z=a+b+c.

Then, by the AM-GM inequality, we have

2\/(ab+ bc+ca)(xy + yz+2zx)<(ab+bc+ca)+ (xy+yz+2zx)

_(a+b+c)2—a2—b2—c2_I_(x+y+z)2—x2—y2—z2
2 2
a?+x? b2 +y? 2422
2 2 2
<(a+b+c)(x+y+z)—ax—by—cz=(b+c)x+(c+a)y+(a+Db)z.

=(a+b+c)(x+y+z)—

(b) Assume that x is between y and z, that is,
(x—y)x—2g)<O.

Consider the non-trivial case
a+b+c>0.
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The desired inequality is equivalent to D > 0, where D is the discriminant of the
quadratic function

f()=a(t—y)t—2z)+b(t—2)(t—x)+c(t—x)(t—y).

For the sake of contradiction, assume that D < O for some a,b,c > 0 and real

numbers x, y,z. Since the coefficient of t? is positive, we have f(t) > 0 for all real
t. This is false, because

flx)=alx—y)(x—2)<0.

+b
The equality holds for x = y = 2, and also for a = 0 and x = cy+ bz’ orb=0
c
+ bx +
and y = az Cx,orcanndzzu.
a+c b+a

Remark 1. For x = b, y = ¢, 2 = a, from the inequality in (b), we get the following
cyclic inequality:

(a4 b*+c*+ab+bc+ca)* > 4(a+ b +c)(ab®+ bc® + ca?),

b 5—-1

~ = [2 (or any cyclic permutation). Notice that this inequality is equivalent
c

to

where a,b,c > 0. The equality holds for a = b = ¢, and also for a = 0 and

a*+ b*+c*—a?b?—b%*c? —c?a® > 2(ab® + bc® + ca® —a®b — b3c —c3a),
which is the inequality in P 3.95 from Volume 1.

Remark 2. For x = 1/c, y = 1/a, z = 1/b, from the inequality in (b), we get the
following cyclic inequality:

a b ¢ 2 1 1 1
—+—+—+3| 24(a+b+c){ —+—-+—],
b ¢ a a b ¢
which is the inequality in P 1.49-(c).

Remark 3. Fora = x(x—y +2), b =y(y —2+x), c = 2(z — x + y), the inequality
in (b) turns into

(x2y + y?z2+2%x)* > xyz(x + y +2)(x* + y? + 2%).

where x, y,z are the lengths of the sides of a triangle (see P 1.187).
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P 2.137. Let a,b,c and x, y, 2z be positive real numbers such that

a b c
—+—+—=1.
Yz 2x Xy

Prove that
(a) x+y+22\/4(a+b+c+\/ab+\/E+\/a)+3v3abc;
(b) x+y+z>+va+b+vb+c++c+a.

Solution. (a) Write the desired inequality in the form

b 3
(i+_+L)(x+y+z)224(a+b+c+Vab+Vbc+M)+SVabc.

yz zx Xy

We have
(i+—+i)(x2+y2+22)zzﬂ+zw'
yz 2xX Xy vz ¥z
In addition, by the AM-GM inequality, we get
2
S > 3v/abe,
¥z
2 + 2
ZM >2(a+b+c).
¥z
Therefore,

b
(i+_+L)(x2+y2+22)23\3/abc+2(a+b+c).
yz zx Xy

Adding this inequality to the Cauchy-Schwarz inequality

2(i+£+i)(yz+zx+xy)22(1/E+\/E+\/E)2

Yz 2x Xy

yields the desired inequality. The equality holds for
XxX=y=2=+v3a=+v3 = /3.

(b) According to the inequality in (a), it suffices to show that

4(a+b+c+\/E+\/E+«/c_a)2(\/a+b+\/b+c+«/c+—a)2.

This inequality is equivalent to

(ﬁ+\/3+ﬁ)zz Va+b)(b+o)++/(b+c)c+a)++4/(c+a)a+b),

which follows immediately from the inequality P 2.24 in Volume 2.
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P 2.138. Ifa,b,c and x, y,z are nonnegative real numbers, then

2 2 2 9
+ + > .
(b+c)y+2) (c+a)z+x) (a+b)x+y) (b+c)x+(c+a)y+(a+Db)z
(Ji Chen and Vasile Cirtoaje, 2010)

Solution. Since
(b+c)x+(c+a)y+(a+b)z=aly+2z)+(b+c)x+bz+cy,

we can write the inequality as

Z 2a(y +2)+2(b+c)x+2(bz+cy)
(b+c)y+2)

2 bzf c DI e 9-2, (b2 S—bcz)-(l_yc—J!/—)z)
szfc Z:y+z>6 Z[ (bZ(ercz)—zryci)Z)]
PIaO WS LN e o}
Yiro0ra= 2070 320
it suffices to show that
) G R
which is equivalent to
sz—fc+zy+z _Z(bzf;z_z(yzﬁ)f
Z[bzfc+(b2+bz)2]+z[y2fz+(y2ﬁ)2]2 ’

2(ab+bc+ca)2(b+ 2 o +z)22

This inequality can be obtained by summing the known inequalities (see P 1.72 in
Volume 2, case k = 2)

=9,

Since

+2(xy +yz+zx)z

4(ab+bc+ca)z >9,

(b+ c)?

1
4(xy+yz+zx)z O +2)2 >
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The equality holds fora=b =c and x =y =z, and also fora=x =0, b =c and
y =z (or any cyclic permutation).

Remark. For x =a, y = b and z = c, we get the known inequality (Iran 1996):

1 + 1 + 1 > 9
(a+b)2 (a+c)®> (b+c)?>  4(ab+bc+ca)

P 2.139. Let a, b, ¢ be the lengths of the sides of a triangle. If x, y, z are real numbers,
then

(ya® +zb*+ xc®)(za® + xb* + yc?) > (xy + yz + 2x)(a®*b? + b*c* + c*a?).
(Vasile C., 2001)
First Solution. Write the inequality as follows:
x2b%c® + y*c?a® + z%a*b* > Z yza*(b* + c*—a?),

x%b%c® + y*c*a® + z%a®*b* > 2abc Zyza COSA,

x? N y? N 22 - 2yzcosA+ 2zx cosB N 2xy cosC
a2 b2 2 bc ca ab ’
Xy z 2 ry | z . )2
(— —=cosC — —cosB) + (—smC— —smB) > 0.
a b c b c
The equality holds for

y Z

@ b2 2
Second Solution. Write the inequality as
b*c*x*—Bx +C =0,
where
B =c*(a®*+b*—c?)y + b*(a®*—b* + c?)z,
C=a*[c*y?—(b*+c*—a?)yz + b%2?].
It suffices to show that
B*—4b*c*C <0,

which is equivalent to

A(c*y —b*2)* >0,

where
A=2a’b?+2b%c* + 2c*a® —a* — b* —c*.
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This inequality is true since
A=(a+b+c)la+b—c)(b+c—a)(c+a—Db)=0.

Remark 1. For x =1/b, y = 1/c and 2 = 1/a, we get the well-known inequality
from P 1.189-(a):
a®b + b3c + c*a > a®b* + b%c? + c?a?.

Remark 2. For x = 1/c?, y = 1/a? and z = 1/b?, we get the elegant cyclic inequal-

ity of Walker:
a*> b* ¢* s o o1 1 1
3(E+C—2+E)Z(a +b +C)(E+E+C—2).

P 2.140. Ifa, > a, > --- > ag > 0, then

a]_+a2+"'+a8_818/a1a2"'a823(\/(1_6_»\/61_7)2.

Solution. Let us denote

X=4/a10y -0, ¥ =4/0,03, X=0Ag=0a7;>Y.
By the AM-GM inequality, we have
a, +a,+---+as=6x, a,+ag=2y.

Also, we have
»\/a6_»‘/a7S'\/__»\/7.
Thus, it suffices to show that

6x +2y — 84/ x6y2 > 3(v/x — y/¥)~

For the nontrivial case y # 0, we can set y = 1 (due to homogeneity) and x = t*,
t > 1. The inequality can be restated as

6t* +2—8t%>3(t* — 1)

which is equivalent to
(t—1)°*@Bt+1)>0.

The equality holds for a; =a, =+ = ag.
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P 2.141. Let a;,a,,...,a, and by, by, ..., b, be real numbers. Prove that

2
a1b1+---+anbn+\/(a%+---+a§)(bf+---+bg)2E(a1+---+an)(b1+---+bn).

(Vasile C., 1989)

First Solution. Write the inequality as

V(@ +-+a2)(b?+ - +b2) = a;(2b—by) + -+ +a,(2b— b,),

where .
b=—(b;+:--+b,).
n

Using the substitution

we have

Zn:xi :2nb—zn: b, =2nb—nb =nb,
i=1 i=1

Zn:biz :Zn:(Zb—xi)2 =4nb2—4bzn:xi+zn:xi2 :Zn:xiz.
i=1 1 i=1 i=1 i=1

i=

Therefore, the desired inequality can be restated as

\/(af+---+a,%)(xf+---+xfl)2a1x1+---+anxn,

which is just the Cauchy-Schwarz inequality. If a;a,---a, # 0O, then the equality

holds for
2b—b; 2b—b, 2b—b,

> 0.
a; a, a

Second Solution. Consider the nontrivial case where a? + -+ +a # 0 and b? +

2
-+++ b # 0, denote
b2 4 ---+ b2
P= a4+ +a?’

biszi, i=1,2,...,n

and use the substitution

to have

4t ad=xi+ X
n 1 n

The desired inequality becomes

2
(alxl+---+anxn)+(af+---+a,21)2H(a1+---+an)(x1+---+xn),
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(a1 +x)* 4+ +(a, +x,)* > %(a1 ot a)(xg + e x).
Since
Aay+-+a) o+ +x) <[l ++a,)+ 0+ +x,)0,
it suffices to show that
(@ + 0P+ (@ + 3, 2 g+ 1)+ o+ (0 + )T
This follows immediately from the Cauchy-Schwarz inequality.

Remark. Substituting b; = 1/a; for all i, we get the following inequality

1 1 1 1
n2+n\l(a%+---+a§)(—2+---+—2)22(a1+---+an)(—+---+—).
a a

1 n a ay
Ifa; <a,<---<a,and nis even, n = 2k, then the equality holds for
A=Ay = = Ay, Ay = gy = 00 = g

If n is odd, then the equality holds only if a;, =a, =--- =a,,.

Conjecture. If a,,a,,...,a, are positive real numbers and n is odd, then

1 1
n2+1+\J(n2—1)(a§+---+ag)(—2+---+—2)—n2+12
al an

1 1
>2(a;+--+a)| —+-+—|.
a, a,

Ifa,<a,<---<a,andnis odd, n =2k + 1, then the equality holds for

a; =dy =+ =0y, Ag41 = Agyp = " = Aog41»

and for

) =dy =" = Agy1, Qg = Apqz = 77 = Aogyq-

P 2.142. Let a4, a,, ..., a, be positive real numbers such that a, = 2a,. Prove that
Gn—1)a®+az+---+a’)=5(a; +a, +--- +a,)*.

(Vasile C., 2009)
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541

Solution. Let
a, =ka,, k=2.

By the Cauchy-Schwarz inequality, we have

2
n

2 2 2 2 2 2
aj+a;+--+a =(k"+1a;+a;+---+a

[(k+Day+as+---+a, (ay+a,+-+a,)’

(k + 1) 2k
eyl T2 Rl "

Therefore, it suffices to show that

>

5n—1 2k
> +
5 k241

n—1,
which is equivalent to the obvious inequality

(k—2)(2k—1)=>0.
The equality holds if and only if k = 2 and

2

5 ,  (Baytaz+---+a,)”
Say+a;+---+a; = 5

§+Tl—2

b

that is, if and only if

P 2.143. If a;,a,,...,qa, are positive real numbers such that a, > 4a,, then

11 1 1\?
(e, +ay+--+a)[—+—+-+—]2 n+§ .

a a a

Solution. Setting
a, = kaz, k > 4,

the inequality becomes

1+k 1 1 1)?
[(1+k)a2+a3+---+an]( +—+---+—)2(n+—) )
ka, a, a,

By the Cauchy-Schwarz inequality, we have

1+k 1 1 1+k 2
[(1+k)a2+a3+---+an]( * +—+---+—)Z(L+n—2).

ka, a, a,
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Thus, we only need to show that

1+k 1
—4+n—2=2n+—,

Jk 2

which reduces to

(Vk-2)(2vk-1)>0.

The equality holds if and only if k =4 and

E:2a2:a3=---=an.

P 2.144. Ifa; > a, > --- = a, > O such that a; + a, + - - -+ a, = n, then

1 1 1 4(n—1)?
—4+ =+ +——n= (n—g)(al—az)z.
a, a, a, n

(Vasile C., 2009)

Solution. Since

(n—1  (n—1)
az a3 n a2+a3+"'+an Tl—al

and
a,+as+---+aq, n—a; n(a;—1)
=a, — = 5
Uon—-1 n—1

This is equivalent to the obvious inequality
(a; —1)*(2a, —n)*> 0.

The equality holds for

and also for
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P 2.145. If a;,a,,...,a, (n = 3) are real numbers such that
a,<a,<---<a, a+a,+---+a,=0,

then
a+a+---+dad®+na;a, <0
1 2 n 1%n = Y-

(Vasile C., 2009)

Solution. For the nontrivial case a?+a’+---+a>#0,leta; =a <0Oanda,=b>0
be fixed. We claim that for

a<a,<---<a,,;<b, ay+---+a,_,=—a—b,

the sum § = a2+ --- + a?_, is maximum when at least n — 3 of the numbers

a,,...,a,; are equal to a or b. In the contrary case, if a < a; < a; < b, then
2 2 2 2
a; +a;y <c;+¢;
for all ¢; and c; such that
a<¢<ag<a;<¢<b, c¢+c=a+a;
indeed,
2 2 2 2
a; +aj—c;i—c; = (a;—ci)(a;+¢;)+(a;—c;)(a;+¢;) = (a;—c;)(a; +¢;—a;—c;) <O0.

This result confirms our claim. Therefore, it suffices to consider the case where at
least n — 3 of the numbers a,,...,a,_; are equal to a or b. More precisely, assume
that k of a,,...,a,_; are equal to a and m of a,,...,a,_; are equal to b, where

k+m=n—-3, km=>=0.
Therefore, it suffices to show that
(k+1Da*>+c2+(m+1)b?>+(k+m+3)ab<0,

where
a<c<b, (k+1)a+c+(m+1)b=0.

We have

(k+1Da*+c2+(m+1)b*+(k+m+3)ab=c*+(a+b)[(k+1)a+(m+1)b]+ab
=c*—(a+b)c+ab=(c—a)(c—b)<O.

The equality holds if and only if

a,a,,...,a, € {a;,a,}, a;+a,+---+a,=0.
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P 2.146. Let a;,a,,...,a, (n = 4) be nonnegative real numbers such that

a12a2>"'2a

n

and
(@ +a+--+a) =4 +a+---+ad).

Prove that

a; +a, <14+ 2n—28'
n_

1<
a3+a4+“'+an

(Vasile C., 2007)

Solution. Denote
A=a,+a,, B=az;+a,+---+a,.

Since
2@ +a))=A, (n—2)ai+a,+---+a’)=B>

from the hypothesis
(@ +ay+--+a) =4a+a))+4(a+--+a’),
we get

(A+B)? > 2A% + iBz,
n—2

2n—8
AL| 1+ B
n—2

The right inequality is an equality for

_ n—2++2(n—2)(n—4)
5 .

a, =a, =ka; =---=ka,, k
To prove the left inequality, let

a12a22X2a3>--->a

= - ne

From
A 1 1 1 1 2
= — — < — - =,
aa, a; a, X X X
we get
2a,a, = Ax,
hence

a’+al =A*—2a,a, <A*—Ax.

In addition,

a+---+a’<asx+---+a,x =Bx.
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Therefore, from the hypothesis

(@ +ay+--+a) =4a+a))+4(a+---+a’),

we get
(A+B)* < 4(A* —Ax) + 4Bx,
4(A—B)x —3A%2+2AB+B2 <0,
(A—B)(3A+ B —4x) > 0.
Since

3A+B—4x>3A—4x>6x—4x >0,

it follows that A—B > 0. The left inequality is an equality only for n = 4 and
a1:a2:a3:a4.
U

P2.147. Ifa; > ay, > --->a, >0, then
1
(@) a1+a2+~~-+an—n"a1a2~~an2g(\/a_1+\/a_2—2\/a_n)2;
1 2
(b) al+a2+---+an—n1"/a1a2---anZ2(2‘/a_1—1/an_1—‘/a_n) .
(Vasile C., 2010)

Solution. (a) For n = 2, the inequality is equivalent to (\/a_l — ‘/a_z)z > 0. Consider
further n > 3. By the AM-GM inequality, we have

as+---+a,; +3ya,a,a, = n/a,a,--a,.
Therefore, it suffices to prove that
1 2
a, +a,+a,—3ya,a,a, = 3 (‘/a1 +4a,— 2,/an) .

Setting
(¢a—1+ \/a_z)z
x = T , X=a,,

since a; + a, = 2x and a;a, < x?, it suffices to show that
5 4 2
2x +a,—3 xzan2§(ﬁ—,/an) .

For the nontrivial case a,, # 0, we may consider a, = 1 (due to homogeneity). In
addition, substituting x = y°, y > 1, the inequality can be restated as

2y°+1-3y"2 2° -1
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(y—1’B+1Qy*+1)—4(0*+y +1)*1=0.

This inequality is true if

(y +1)4/3(2y2+1) > 2(y*+y + 1).

Since
V3(Q2y2+1)=2y +1,
we have
(y+D/3@2y2+1)—20*+y+ D)= (y+1D2y+1)—2(y*+y+1)=y—12>0.
This completes the proof. The equality holds for a;, =a, =--- =a,,.

(b) For n = 2, the inequality is equivalent to (\/a_1 - \/a_z)z > 0. Consider
further n > 3. By the AM-GM inequality, we have

a,+as+---+a,_,+3ya,a,,a,=ny/a,a, - a,.

Therefore, it suffices to prove that

1 2
a,+a,;+a,—3ya,a,_,a, = P (2,/a1 — Va1 — w/an) .
Setting
x =4/a,4,a,, x<a,
since a,_; +a, = 2x and ,/a,_; + ,/a, = 2+/x, it suffices to show that

a; +2x — 34 alxzz(\/a_l—ﬁ)z.

Due to homogeneity, we may consider a; = 1. In addition, substituting x = y®,
y <1, the inequality becomes

1+2y°—3y*> (1—y%),
which is equivalent to the obvious inequality
Y (y—=1(y+2)=0.

The equality holds for a; = a, =--- = a,. If n > 3, then the equality holds also for
a,=---=a,=0.
O]

P 2.148. Ifa; >a,>--->a, >0, n> 3, then

a;t+a,+---+a,—ny/a;a,--a, =

n

(VO + Vs —2v/a,) -

(Vasile C., 2010)

-1
2n
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Solution. Let us denote

a1+a2+"’+an_1
X = , X=da
n—1

By the AM-GM inequality, we have
n—1

A1y d,_ 1 <X

Also,

1/Cln_2+ 1/Cln_1 < an_2 +an_1 < al +a2+"' +an_1 _ 1/_
2 = 2 n—1 v

Then, it suffices to show that

(n—1)x+a,—ny/xla, > 2(n (1/_ \/_)

For the nontrivial case a,, # 0, we may consider a, = 1 (due to homogeneity). In
addition, substituting x = t*", t > 1, the inequality becomes g(t) > 0, where

g0 = (-1 +1—ne22 = 20D n gy
n
We have
g'(t) =2(n—1)t""h(t),
where
h(t) =n(t"—t"2)—2(¢t"—1).
Since

() =n(n—2)t"3(t* —-1)>0,

h(t) is increasing, h(t) > h(1) = 0, g’(t) = 0, g(t) is increasing, hence g(t) >
g(1) = 0. This completes the proof. The equality holds for a; =a, =--- =a,.
[

P2.149. Leta12a22"'2a 2

e

If

n

IA

k<n-—1,

NS

then
2k(n—k) ( _ m)z .

(Vasile C., 2010)

a;+a,+---+a,—ny/a;a,--a, =
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Solution. Let us denote

X= /a8y g, Y= "N Qe Gryn Ay X 2 A 2 Ay 2.
By the AM-GM inequality, we have
a,+ay+-+ag = kx, Qg+t aqaetoota,=(Mn—k)y.

Also, we have
V@ — @ S Vx— /Y.

Thus, it suffices to show that

kx + (n—k)y —n/ xkynk > @(ﬁ— VY2

For the nontrivial case y > 0, we can set y = 1 (due to homogeneity). In addition,
setting x = t", t > 1, the inequality becomes f (t) > 0, where

2k(n—k
f(t):kt2"+n—k—nt2"—L
n

(t"—1)2
We have the derivative
f/(t) = 2kt" (),

where
h(t) = n(t"—t* ™) —2(n—k)(t" —1).

Since
R'(t) =n2k —n)(t" ' — 1) >0,

h(t) is increasing for t > 1, h(t) > h(1) =0, f'(t) > 0, f(t) is increasing, f(t) >

f(1) = 0. This completes the proof. The equality holds for a; = a, =--- = a,. If
n is even and 2k = n, then the equality holds for a; = a, = -+ = q; and a;; =
iy ="+ = Ay

O

P 2.150. Leta, 2 ay,=>--->a,>0. If
1<k<j<n, k+j=2n+1,
then
(va—va).

(Vasile C., 2010)

2k(n—j+1)
a,+a,+---+a —n,”/aa---a > —
1 2 n 1%2 n Tl+k—]+1
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Solution. Let us denote
p— k(n—j+1)

n+k—j+1
and
X=4y/aayap, y="H/aa,00a, xZa=a;2y.

By the AM-GM inequality, we have
a;tay+--+a2kx, ajt+agtoct+a,=z2m—j+1)y

and

Apiq + "'+aj—1 > (j_k_l) j—k—1/ak+1 "'aj—l'
VU — /4, < Vx— /Y.

Thus, it suffices to show that

kx+(n—j+Dy+(—k—1)*Ya,;a_,—nyaa,---a,>2P(vVx— J/y).
By the AM-GM inequality, we have

(j—k—1) =Ty @+ (n—j+k+1) 73 (ay - a)(a; - a) = n{/aa, - a,,

which is equivalent to

Also, we have

(U—k—1) "Y1 a3 —ny/aag---a, =2 —(n—j+k+1) n_j+k+\1/(a1"’ak)(aj"'

n—j+1

= —(n—j+k + 1)x i1 y i
Therefore, we only need to show that
kx +(n—j+ 1)y—(n—j+k+1)x#yn§i—ﬁl > 2P(\/§—\/7)2.

For the nontrivial case y # 0, we can set y = 1 (due to homogeneity). Thus, we
need to prove that f(x) > 0 for x > 1, where

f)=kx+n—j+1—(n—j+k+1)xmre —2P(ﬁ—1)2.

We have the derivatives

flx)= k — kx#ET ! 4 2P (% — 1),
f'(x)= P(x"*ﬂ%_z—x%s).

Since f”(x) = 0 for x > 1, f’ is increasing, f'(x) = f’(1) = 0, f is increasing,
f(x) = f(1) = 0. This completes the proof. The equality holds for a; =a, =--- =
a,. If niseven, k =n/2 and j = k+1, then the equality holds fora; = a, =--- = a;
and a1 = Ay = = A,

Remark. For j =k + 1, we get the inequality in P 2.149.
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P2.151. Ifa; 2a,=---2a, =0, n=4, then

1 1
(a) a;+a,+---+a,—nya;a,---a, = 5(1——)(\/an_2—3\/an_1+21/a_n)
n

2
)

2

2

(b)) a +ay+---+a,—nyaa,--a, = (1 — —) (2\/an_2 —-3J/a,,+ 1/an)
n

(Vasile C., 2010)

Solution. Let

X:Van—Z_Van—lzoﬁ y:\/an—l_\/a_nzo'

For k =n—2 and k = n—1, the inequality in P 2.149 becomes respectively

4(n—2)x?
G +a,+ o t+a,—nyaa,a, > —————
n
and
2(n—1)y?
a,;+a,+---+a,—ny/aa,---a, = ————.
n
Therefore,

2
a,+a,+--+a,—ni/aya, --a, > =max{2(n—2)x*, (n—1)y?}.
n

(a) It suffices to show that
max{8(n—2)x?, 4(n—1)y*} > (n—1)(x —2y)*
This is true since
8(n—2)x*>(n—1)x?> (n—1)(x —2y)?

for x —2y > 0, and
4(n—1)y* = (n—1)(2y —x)?

for 2y —x > 0. The equality holds for a; = a, =--- = a,.
(b) First Solution. It suffices to show that

max{4(n—2)x?2, 2(n—1)y*} > (n—2)(2x — y)*.

This is true since
4(n—2)x*>>(n—2)(2x — y)?

for 2x —y >0, and

2(n—1)y*>(n—2)y* > (n—2)(y —2x)?
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for y—2x > 0. The equality holds for a; = a, = - - - = a,,. If n = 4, then the equality
holds for a; = a, and a; = a,.

Second Solution. Let us denote

— YOG G, B= Oty AZa,,>B.

By the AM-GM inequality, we have
a,+a,+-+a,,=>(n—2)A,

a,_,+a,=2B,

and

a,_1++/a,=2vVB.
Then, it suffices to show that
n 4(Tl—2) 2
(n—2)A+2B—nvVA—2B2> ———(VA—VB) .
n

For the nontrivial case B # 0, we may consider B = 1 (due to homogeneity). In
addition, substituting A = t?", t > 1, the inequality becomes g(t) > 0, where

-2
g(t)=n—2)""+2—nt*"*— M(t“ —1)%
n
We have
g'(t) =2(n—2)t""h(t),
where
h(t)=(n—4t"—nt"* + 4.
Since

() =nn—4Ht">(t*—1)>0,

h(t) is increasing, h(t) > h(1) = 0, g’(t) > 0, g(t) is increasing, hence g(t) >
g(1) = 0. This completes the proof.
]
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Appendix A

Glosar

1. AM-GM (ARITHMETIC MEAN-GEOMETRIC MEAN) INEQUALITY

If a;,a,,...,a, are nonnegative real numbers, then
a;+a,+---+a, =ny/a,a,---a,,
with equality if and only if a; = a, =--- = a,,.

2. WEIGHTED AM-GM INEQUALITY
Let p1,ps,--., P, be positive real numbers satisfying
pi+pyt--tp, =1
If a;,a,,...,a, are nonnegative real numbers, then
p

1402, 4P
p1ay +pya,+---+p,a,=a;a, ar,

with equality if and only if a; = a, =--- = a,,.

3. AM-HM (ARITHMETIC MEAN-HARMONIC MEAN) INEQUALITY

If a;,a,,...,a, are positive real numbers, then

1 1 1
SRPIRVRY £ W B  FF)
a; a, a

with equality if and only if a; = a, =--- =a,,.

553
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4. POWER MEAN INEQUALITY
The power mean of order k of positive real numbers a,,a,,...,qa,,

1
ko k k
(a1+a2+---+an

: )E, k#0
Jaja, - a, k=0

is an increasing function with respect to k € R. For instant, M, > M; > M, > M_;
is equivalent to

\Jaf+a§+...+a%>a1+a2+"‘+an n L
- > " = n 1 1 1°

5. BERNOULLI’S INEQUALITY

For any real number x > —1, we have
a) (1+x) =>21+rxforr>1andr <0;
b) (1+x) <l+rxfor0<r<1.

If a;,a,,...,a, are real numbers such that either a,,a,,...,a, >0 or
-1<a,,a,,...,a,<0,

then
(1+a)1+a)-(I+a,)=1+a;+a,+-+a,.

6. SCHUR’S INEQUALITY

For any nonnegative real numbers a, b, ¢ and any positive number k, the inequality
holds
a“(a—b)a—c)+ b (b—c)b—a)+c(c—a)(c—Db) >0,

with equality for a = b = ¢, and for a = 0 and b = ¢ (or any cyclic permutation).
For k = 1, we get the third degree Schur’s inequality, which can be rewritten as
follows
a®+b*+c®+3abc > ab(a+ b)+ be(b +¢)+calc+a),
(a+b+c)®+9abc>4(a+Db+c)ab+ bc+ca),
b
a2+b2+c2+£22(ab+bc+ca),
a+b+c

(b—c)(b+c—a)+(c—a)*(c+a—b)+(a—b)*(a+b—c)>0.
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For k = 2, we get the fourth degree Schur’s inequality, which holds for any real
numbers a, b, ¢, and can be rewritten as follows

a*+b*+c*+abc(a+b+c)>ab(a®+ b))+ be(b? + )+ ca(c® + a?),
a*+ b*+c*—a*b?*—b*c*—c*a*> (ab + bc +ca)(a®? + b* + c*—ab — bc —ca),
(b—cY*(b+c—a)+(c—a)*(c+a—Db)*+(a—Db)*(a+b—c)*>0,
6abcp > (p*—q)(4q—p?), p=a+b+c, g=ab+ bc+ca.

A generalization of the fourth degree Schur’s inequality, which holds for any
real numbers a, b, ¢ and any real number m, is the following (Vasile Cirtoaje, 2004)

Z(a —mb)(a—mc)(a—b)(a—c)=>0,

where the equality holds for a = b = ¢, and for a/m = b = ¢ (or any cyclic
permutation). This inequality is equivalent to

Za4+ m(m+2)Z:a2b2 +(1 —mz)acha > (m+ 1)Z:ab(a2 + b?),

Z(b —c)*(b+c—a—ma)*=>0.
A more general result is given by the following theorem (Vasile Cirtoaje, 2004).

Theorem. Let

fala,b,c) = Za“ + aZasz + ﬁacha —yZab(aZ + b?),
where a, 3,y are real constants such that 1+ a+ 3 =2y. Then,
(@) fs4(a,b,c) =0 forall a,b,c € R if and only if

1+a>y%
(b) fi(a,b,c)=0forall a,b,c >0 if and only if

a>(y—1)max{2,y +1}.

7. CAUCHY-SCHWARZ INEQUALITY

If a;,a,,...,a, and by, b,,..., b, are real numbers, then
(@+a+---+a)(bi+b2+---+b2) > (a;by +ayby + -+ +a,b,),

with equality for
a _ as _ a

b, b, b,

Notice that the equality conditions are also valid for a; = b; =0, where 1 <i < n.
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8. HOLDER’S INEQUALITY

If x; i=1,2,---,m;j=1,2,---n) are nonnegative real numbers, then

[1(350)=(1)

9. CHEBYSHEV’S INEQUALITY

Leta, = a, > --- > a, be real numbers.

a)If b, >b,>---b,, then

nZaibiZ( ai)( bl):
i=1 i=1 i=1

b) Ifb1§b2S"'Sbn,then

nzn:aibi < (Zn:ai)( ” bi).
i=1 i=1 i=1

10. REARRANGEMENT INEQUALITY

(1) 1f(ay,ay,...,a,)and (by, by, ..., b,) are two increasing (or decreasing) real
sequences, and (ij,1,, - ,1,) is an arbitrary permutation of (1,2,---,n), then

a;by +ayby +---+a,b, = a,b;, +ayb;, +---+a,b;
and
n(a,b; +a,by +---+a,b,) > (a; +ay,+---+a,)(b; + by+---+Db,).
(2) If (a;,a,,...,a,) is decreasing and (b, b,, ..., b,) is increasing, then
a;b; +ayby +---+a,b, <a,b; +a,b;, +---+a,b;
and
n(a,b; +a,by +---+a,b,) <(a;+ay,+:--+a,)(b; +by+---+Db,).
(3) Let by, by,...,b,) and (c4,c¢,, ..., c,) be two real sequences such that
by+---+bj=2c;+-+¢, i=12,---,n.
Ifa,>a,>--->a, >0, then

a1b1 +a2b2+"' +anbn 2 alcl +a2C2+"' +anCn.
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Notice that all these inequalities follow immediately from the identity

i

n n i

Zai(bi_ci):Z(ai_aHl)(Z bj_zcj): a1 = 0.
=1 i=1 j=1 j=1

11. CONVEX FUNCTIONS

A function f defined on a real interval I is said to be convex if

flax+py)<af(x)+pf(¥)

forall x, y €l and any a, 8 > 0 with a + 8 = 1. If the inequality is reversed, then
f is said to be concave.

If f is differentiable on I, then f is (strictly) convex if and only if the derivative f’
is (strictly) increasing. If f” > 0 on I, then f is convex on I. Also, if f” > 0 on (a,
b) and f is continuous on [a, b], then f is convex on [a, b].

Jensen’s inequality. Let p,,p,,..., P, be positive real numbers. If f is a convex
function on a real interval 1, then for any a,, a,, ..., a, € L, the inequality holds

pif(a;) +pof(ay) +---+p.f(a,) >f (plal +P2a2+"'+pnan)
pitpyt+---+p, B p1+p2t--+p,

For p, = p, =--- = p,,, Jensen’s inequality becomes

f(a1)+f(a2)+...+f(an)2nf(a1+a2+...+an).

n

12. SQUARE PRODUCT INEQUALITY
Let a, b, ¢ be real numbers, and let

p=a+b+c, g=ab+bc+ca, r=abc,

s=4+p>—3q= vVa2+b2+c2—ab—bc—ca.

From the identity
(a—Db)*(b—c)*(c—a)* = —27r* +2(9pq — 2p*)r + p°q* — 4¢°,
it follows that

—2p> +9pq —2(p* —3q)+/p2—3q <, —2p® 4+ 9pq + 2(p*> —3q)+/p2—3q
27 - 27 ’

which is equivalent to

IA

p3—3ps®—2s° p®—3ps? +2s°
r :
27 27

IA
IA
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Therefore, for constant p and g, the product r is minimal and maximal when two
of a, b, c are equal.

13. KARAMATA'S MAJORIZATION INEQUALITY

Let f be a convex function on a real interval I. If a decreasingly ordered sequence
A=(ay,a,,...,a,), a €I,

majorizes a decreasingly ordered sequence
B=(by,by,...,b,), b;€l,

then

flay)+f(ag)+---+f(a,) = f(by) + f(by) +---+ f(b,).

We say that a sequence A= (a;,a,,...,a,) with a; > a, > --- > a, majorizes a

sequence B = (b,, b,, ..., b,) with b; > b, > --- > b,, and write it as
A B,

if
a, > by,

a, +a, > b, + b,

a1+a2+"'+an_12b1+b2+"'+bn_1,
a1+a2+"'+an:b1+b2+"'+bn.

14. VASC’S EXPONENTIAL INEQUALITY

Let0O< k <e.
(@) If a,b > 0, then (Vasile Cirtoaje, 2006)

aka + bkb > akb + bka;
(b) Ifa,b €(0,1], then (Vasile Cirtoaje, 2010)

2/ akapkb > g*b + p*,
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