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Chapter 1

Cyclic Inequalities

1.1 Applications

1.1. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

ab2 + bc2 + ca2 ≤ 4.

1.2. If a, b, c are positive real numbers such that a+ b+ c = 3, then

(ab+ bc + ca)(ab2 + bc2 + ca2)≤ 9.

1.3. If a, b, c are nonnegative real numbers such that a2 + b2 + c2 = 3, then

(a) ab2 + bc2 + ca2 ≤ abc + 2;

(b)
a

b+ 2
+

b
c + 2

+
c

a+ 2
≤ 1.

1.4. If a, b, c ≥ 1, then

(a) 2(ab2 + bc2 + ca2) + 3≥ 3(ab+ bc + ca);

(b) ab2 + bc2 + ca2 + 6≥ 3(a+ b+ c).

1
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1.5. If a, b, c are nonnegative real numbers such that

a+ b+ c = 3, a ≥ b ≥ c,

then

(a) a2 b+ b2c + c2a ≥ ab+ bc + ca;

(b) 8(ab2 + bc2 + ca2) + 3abc ≤ 27;

(c)
18

a2 b+ b2c + c2a
≤

1
abc

+ 5.

1.6. If a, b, c are nonnegative real numbers such that

a2 + b2 + c2 = 3, a ≥ b ≥ c,

then
ab2 + bc2 + ca2 ≤

3
4
(ab+ bc + ca+ 1).

1.7. If a, b, c are nonnegative real numbers such that a2 + b2 + c2 = 3, then

a2 b3 + b2c3 + c2a3 ≤ 3.

1.8. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

a4 b2 + b4c2 + c4a2 + 4≥ a3 b3 + b3c3 + c3a3.

1.9. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

(a) ab2 + bc2 + ca2 + abc ≤ 4;

(b)
a

4− b
+

b
4− c

+
c

4− a
≤ 1;

(c) ab3 + bc3 + ca3 + (ab+ bc + ca)2 ≤ 12;

(d)
ab2

1+ a+ b
+

bc2

1+ b+ c
+

ca2

1+ c + a
≤ 1.

1.10. If a, b, c are positive real numbers, then

1
a(a+ 2b)

+
1

b(b+ 2c)
+

1
c(c + 2a)

≥
3

ab+ bc + ca
.
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1.11. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a
b2 + 2c

+
b

c2 + 2a
+

c
a2 + 2b

≥ 1.

1.12. If a, b, c are positive real numbers such that a+ b+ c ≥ 3, then

a− 1
b+ 1

+
b− 1
c + 1

+
c − 1
a+ 1

≥ 0.

1.13. If a, b, c are positive real numbers such that a+ b+ c = 3, then

(a)
1

2ab2 + 1
+

1
2bc2 + 1

+
1

2ca2 + 1
≥ 1;

(b)
1

ab2 + 2
+

1
bc2 + 2

+
1

ca2 + 2
≥ 1.

1.14. If a, b, c are positive real numbers such that a+ b+ c = 3, then

ab
9− 4bc

+
bc

9− 4ca
+

ca
9− 4ab

≤
3
5

.

1.15. If a, b, c are positive real numbers such that a+ b+ c = 3, then

(a)
a2

2a+ b2
+

b2

2b+ c2
+

c2

2c + a2
≥ 1;

(b)
a2

a+ 2b2
+

b2

b+ 2c2
+

c2

c + 2a2
≥ 1.

1.16. Let a, b, c be positive real numbers such that a+ b+ c = 3. Then,

1
a+ b2 + c3

+
1

b+ c2 + a3
+

1
c + a2 + b3

≤ 1.

1.17. If a, b, c are positive real numbers, then

1+ a2

1+ b+ c2
+

1+ b2

1+ c + a2
+

1+ c2

1+ a+ b2
≥ 2.
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1.18. If a, b, c are nonnegative real numbers, then

a
4a+ 4b+ c

+
b

4b+ 4c + a
+

c
4c + 4a+ b

≤
1
3

.

1.19. If a, b, c are positive real numbers, then

a+ b
a+ 7b+ c

+
b+ c

b+ 7c + a
+

c + a
c + 7a+ b

≥
2
3

.

1.20. If a, b, c are positive real numbers, then

a+ b
a+ 3b+ c

+
b+ c

b+ 3c + a
+

c + a
c + 3a+ b

≥
6
5

.

1.21. If a, b, c are positive real numbers, then

2a+ b
2a+ c

+
2b+ c
2b+ a

+
2c + a
2c + b

≥ 3.

1.22. If a, b, c are positive real numbers, then

a(a+ b)
a+ c

+
b(b+ c)

b+ a
+

c(c + a)
c + b

≤
3(a2 + b2 + c2)

a+ b+ c
.

1.23. If a, b, c are real numbers, then

a2 − bc
4a2 + b2 + 4c2

+
b2 − ca

4b2 + c2 + 4a2
+

c2 − ab
4c2 + a2 + 4b2

≥ 0.

1.24. If a, b, c are real numbers, then

(a) a(a+ b)3 + b(b+ c)3 + c(c + a)3 ≥ 0;

(b) a(a+ b)5 + b(b+ c)5 + c(c + a)5 ≥ 0.

1.25. If a, b, c are real numbers, then

3(a4 + b4 + c4) + 4(a3 b+ b3c + c3a)≥ 0.
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1.26. If a, b, c are positive real numbers, then

(a− b)(2a+ b)
(a+ b)2

+
(b− c)(2b+ c)
(b+ c)2

+
(c − a)(2c + a)
(c + a)2

≥ 0.

1.27. If a, b, c are positive real numbers, then

(a− b)(2a+ b)
a2 + ab+ b2

+
(b− c)(2b+ c)

b2 + bc + c2
+
(c − a)(2c + a)

c2 + ca+ a2
≥ 0.

1.28. If a, b, c are positive real numbers, then

(a− b)(3a+ b)
a2 + b2

+
(b− c)(3b+ c)

b2 + c2
+
(c − a)(3c + a)

c2 + a2
≥ 0.

1.29. Let a, b, c be positive real numbers such that abc = 1. Then,

1
1+ a+ b2

+
1

1+ b+ c2
+

1
1+ c + a2

≤ 1.

1.30. Let a, b, c be positive real numbers such that abc = 1. Then,

a
(a+ 1)(b+ 2)

+
b

(b+ 1)(c + 2)
+

c
(c + 1)(a+ 2)

≥
1
2

.

1.31. If a, b, c are positive real numbers such that ab+ bc + ca = 3, then

(a+ 2b)(b+ 2c)(c + 2a)≥ 27.

1.32. If a, b, c are positive real numbers such that ab+ bc + ca = 3, then

a
a+ a3 + b

+
b

b+ b3 + c
+

c
c + c3 + a

≤ 1.

1.33. If a, b, c are positive real numbers such that a ≥ b ≥ c and ab+ bc+ ca = 3,
then

1
a+ 2b

+
1

b+ 2c
+

1
c + 2a

≥ 1.
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1.34. If a, b, c ∈ [0, 1], then

a
4b2 + 5

+
b

4c2 + 5
+

c
4a2 + 5

≥
1
3

.

1.35. If a, b, c ∈
�

1
3

,3
�

, then

a
a+ b

+
b

b+ c
+

c
c + a

≥
7
5

.

1.36. If a, b, c ∈
�

1
p

2
,
p

2
�

, then

3
a+ 2b

+
3

b+ 2c
+

3
c + 2a

≥
2

a+ b
+

2
b+ c

+
2

c + a
.

1.37. If a, b, c are nonnegative real numbers, no two of which are zero, then

4abc
ab2 + bc2 + ca2 + abc

+
a2 + b2 + c2

ab+ bc + ca
≥ 2.

1.38. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

1
ab2 + 8

+
1

bc2 + 8
+

1
ca2 + 8

≥
1
3

.

1.39. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

ab
bc + 3

+
bc

ca+ 3
+

ca
ab+ 3

≤
3
4

.

1.40. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

(a)
a

b2 + 3
+

b
c2 + 3

+
c

a2 + 3
≥

3
4

;

(b)
a

b3 + 1
+

b
c3 + 1

+
c

a3 + 1
≥

3
2

.
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1.41. Let a, b, c be positive real numbers, and let

x = a+
1
b
− 1, y = b+

1
c
− 1, z = c +

1
a
− 1.

Prove that
x y + yz + zx ≥ 3.

1.42. Let a, b, c be positive real numbers such that abc = 1. Prove that
�

a−
1
b
−
p

2
�2

+
�

b−
1
c
−
p

2
�2

+
�

c −
1
a
−
p

2
�2

≥ 6.

1.43. Let a, b, c be positive real numbers such that abc = 1. Prove that
�

�

�

�

1+ a−
1
b

�

�

�

�

+

�

�

�

�

1+ b−
1
c

�

�

�

�

+

�

�

�

�

1+ c −
1
a

�

�

�

�

> 2.

1.44. If a, b, c are different positive real numbers, then
�

�

�1+
a

b− c

�

�

�+

�

�

�

�

1+
b

c − a

�

�

�

�

+
�

�

�1+
c

a− b

�

�

�> 2.

1.45. Let a, b, c be positive real numbers such that abc = 1. Prove that
�

2a−
1
b
−

1
2

�2

+
�

2b−
1
c
−

1
2

�2

+
�

2c −
1
a
−

1
2

�2

≥
3
4

.

1.46. Let

x = a+
1
b
−

5
4

, y = b+
1
c
−

5
4

, z = c +
1
a
−

5
4

,

where a ≥ b ≥ c > 0. Prove that

x y + yz + zx ≥
27
16

.

1.47. Let a, b, c be positive real numbers, and let

E =
�

a+
1
a
−
p

3
��

b+
1
b
−
p

3
��

c +
1
c
−
p

3
�

;

F =
�

a+
1
b
−
p

3
��

b+
1
c
−
p

3
��

c +
1
a
−
p

3
�

.

Prove that E ≥ F .
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1.48. If a, b, c are positive real numbers such that
a
b
+

b
c
+

c
a
= 5, then

b
a
+

c
b
+

a
c
≥

17
4

.

1.49. If a, b, c are positive real numbers, then

(a) 1+
a
b
+

b
c
+

c
a
≥ 2

√

√

1+
b
a
+

c
b
+

a
c

;

(b) 1+ 2
�

a
b
+

b
c
+

c
a

�

≥
√

√

1+ 16
�

b
a
+

c
b
+

a
c

�

;

(c) 3+
a
b
+

b
c
+

c
a
≥ 2

√

√

(a+ b+ c)
�

1
a
+

1
b
+

1
c

�

.

1.50. If a, b, c are positive real numbers, then

a2

b2
+

b2

c2
+

c2

a2
+ 15

�

b
a
+

c
b
+

a
c

�

≥ 16
�

a
b
+

b
c
+

c
a

�

.

1.51. If a, b, c are positive real numbers such that abc = 1, then

(a)
a
b
+

b
c
+

c
a
≥ a+ b+ c;

(b)
a
b
+

b
c
+

c
a
≥

3
2
(a+ b+ c − 1);

(c)
a
b
+

b
c
+

c
a
+ 2≥

5
3
(a+ b+ c).

1.52. If a, b, c are positive real numbers such that a2 + b2 + c2 = 3, then

(a)
a
b
+

b
c
+

c
a
≥ 2+

3
ab+ bc + ca

;

(b)
a
b
+

b
c
+

c
a
≥

9
a+ b+ c

.

1.53. If a, b, c are positive real numbers such that a2 + b2 + c2 = 3, then

6
�

a
b
+

b
c
+

c
a

�

+ 5(ab+ bc + ca)≥ 33.
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1.54. If a, b, c are positive real numbers such that a+ b+ c = 3, then

(a) 6
�

a
b
+

b
c
+

c
a

�

+ 3≥ 7(a2 + b2 + c2);

(b)
a
b
+

b
c
+

c
a
≥ a2 + b2 + c2.

1.55. If a, b, c are positive real numbers, then

a
b
+

b
c
+

c
a
+ 2≥

14(a2 + b2 + c2)
(a+ b+ c)2

.

1.56. Let a, b, c be positive real numbers such that a+ b+ c = 3, and let

x = 3a+
1
b

, y = 3b+
1
c

, z = 3c +
1
a

.

Prove that
x y + yz + zx ≥ 48.

1.57. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a+ 1
b
+

b+ 1
c
+

c + 1
a
≥ 2(a2 + b2 + c2).

1.58. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a2

b
+

b2

c
+

c2

a
+ 3≥ 2(a2 + b2 + c2).

1.59. If a, b, c are positive real numbers, then

a3

b
+

b3

c
+

c3

a
+ 2(ab+ bc + ca)≥ 3(a2 + b2 + c2).

1.60. If a, b, c are positive real numbers such that a4 + b4 + c4 = 3, then

(a)
a2

b
+

b2

c
+

c2

a
≥ 3;

(b)
a2

b+ c
+

b2

c + a
+

c2

a+ b
≥

3
2

.
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1.61. If a, b, c are positive real numbers, then

a2

b
+

b2

c
+

c2

a
≥

3(a3 + b3 + c3)
a2 + b2 + c2

.

1.62. If a, b, c are positive real numbers, then

a2

b
+

b2

c
+

c2

a
+ a+ b+ c ≥ 2

√

√

(a2 + b2 + c2)
�

a
b
+

b
c
+

c
a

�

.

1.63. If a, b, c are positive real numbers, then

a
b
+

b
c
+

c
a
+ 32

�

a
a+ b

+
b

b+ c
+

c
c + a

�

≥ 51.

1.64. Find the greatest positive real number K such that the inequalities below
hold for any positive real numbers a, b, c:

(a)
a
b
+

b
c
+

c
a
− 3≥ K

�

a
b+ c

+
b

c + a
+

c
a+ b

−
3
2

�

;

(b)
a
b
+

b
c
+

c
a
− 3+ K

�

a
2a+ b

+
b

2b+ c
+

c
2c + a

− 1
�

≥ 0.

1.65. If a, b, c ∈
�

1
2

,2
�

, then

(a) 8
�

a
b
+

b
c
+

c
a

�

≥ 5
�

b
a
+

c
b
+

a
c

�

+ 9;

(b) 20
�

a
b
+

b
c
+

c
a

�

≥ 17
�

b
a
+

c
b
+

a
c

�

.

1.66. If a, b, c are positive real numbers such that a ≤ b ≤ c, then

a
b
+

b
c
+

c
a
≥

2a
b+ c

+
2b

c + a
+

2c
a+ b

.
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1.67. Let a, b, c be positive real numbers such that abc = 1.

(a) If a ≤ b ≤ c, then

a
b
+

b
c
+

c
a
≥ a3/2 + b3/2 + c3/2;

(b) If a ≤ 1≤ b ≤ c, then

a
b
+

b
c
+

c
a
≥ a

p
3 + b

p
3 + c

p
3.

1.68. If k and a, b, c are positive real numbers, then

1
(k+ 1)a+ b

+
1

(k+ 1)b+ c
+

1
(k+ 1)c + a

≥
1

ka+ b+ c
+

1
kb+ c + a

+
1

kc + a+ b
.

1.69. If a, b, c are positive real numbers, then

(a)
a

p
2a+ b

+
b

p
2b+ c

+
c

p
2c + a

≤
p

a+ b+ c;

(b)
a

p
a+ 2b

+
b

p
b+ 2c

+
c

p
c + 2a

≥
p

a+ b+ c.

1.70. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

a

√

√a+ 2b
3

+ b

√

√ b+ 2c
3

+ c

√

√ c + 2a
3
≤ 3.

1.71. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

a
p

1+ b3 + b
p

1+ c3 + c
p

1+ a3 ≤ 5.

1.72. If a, b, c are positive real numbers such that abc = 1, then

(a)
s

a
b+ 3

+

√

√ b
c + 3

+
s

c
a+ 3

≥
3
2

;

(b) 3

s

a
b+ 7

+ 3

√

√ b
c + 7

+ 3

s

c
a+ 7

≥
3
2

.
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1.73. If a, b, c are positive real numbers, then

�

1+
4a

a+ b

�2

+
�

1+
4b

b+ c

�2

+
�

1+
4c

c + a

�2

≥ 27.

1.74. If a, b, c are positive real numbers, then
√

√ 2a
a+ b

+

√

√ 2b
b+ c

+

√

√ 2c
c + a

≤ 3.

1.75. If a, b, c are nonnegative real numbers, then

s

a
4a+ 5b

+

√

√ b
4b+ 5c

+
s

c
4c + 5a

≤ 1.

1.76. If a, b, c are positive real numbers, then

a
p

4a2 + ab+ 4b2
+

b
p

4b2 + bc + 4c2
+

c
p

4c2 + ca+ 4a2
≤ 1.

1.77. If a, b, c are positive real numbers, then

s

a
a+ b+ 7c

+

√

√ b
b+ c + 7a

+
s

c
c + a+ 7b

≥ 1.

1.78. If a, b, c are nonnegative real numbers, no two of which are zero, then

(a)
s

a
3b+ c

+

√

√ b
3c + a

+
s

c
3a+ b

≥
3
2

;

(b)
s

a
2b+ c

+

√

√ b
2c + a

+
s

c
2a+ b

≥ 4p8.

1.79. If a, b, c are positive real numbers such that ab+ bc + ca = 3, then

(a)
1

(a+ b)(3a+ b)
+

1
(b+ c)(3b+ c)

+
1

(c + a)(3c + a)
≥

3
8

;

(b)
1

(2a+ b)2
+

1
(2b+ c)2

+
1

(2c + a)2
≥

1
3

.
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1.80. If a, b, c are nonnegative real numbers, then

a4 + b4 + c4 + 15(a3 b+ b3c + c3a)≥
47
4
(a2 b2 + b2c2 + c2a2).

1.81. If a, b, c are nonnegative real numbers such that a+ b+ c = 4, then

a3 b+ b3c + c3a ≤ 27.

1.82. Let a, b, c be nonnegative real numbers such that

a2 + b2 + c2 =
10
3
(ab+ bc + ca).

Prove that
a4 + b4 + c4 ≥

82
27
(a3 b+ b3c + c3a).

1.83. If a, b, c are positive real numbers, then

a3

2a2 + b2
+

b3

2b2 + c2
+

c3

2c2 + a2
≥

a+ b+ c
3

.

1.84. If a, b, c are positive real numbers, then

a4

a3 + b3
+

b4

b3 + c3
+

c4

c3 + a3
≥

a+ b+ c
2

.

1.85. If a, b, c are positive real numbers such that abc = 1, then

(a) 3
�

a2

b
+

b2

c
+

c2

a

�

+ 4
�

b
a2
+

c
b2
+

a
c2

�

≥ 7(a2 + b2 + c2);

(b) 8
�

a3

b
+

b3

c
+

c3

a

�

+ 5
�

b
a3
+

c
b3
+

a
c3

�

≥ 13(a3 + b3 + c3).

1.86. If a, b, c are positive real numbers, then

ab
b2 + bc + c2

+
bc

c2 + ca+ a2
+

ca
a2 + ab+ b2

≤
a2 + b2 + c2

ab+ bc + ca
.
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1.87. If a, b, c are positive real numbers, then

a− b
b(2b+ c)

+
b− c

c(2c + a)
+

c − a
a(2a+ b)

≥ 0.

1.88. If a, b, c are positive real numbers, then

(a)
a2 + 6bc
ab+ 2bc

+
b2 + 6ca
bc + 2ca

+
c2 + 6ab
ca+ 2ab

≥ 7;

(b)
a2 + 7bc
ab+ bc

+
b2 + 7ca
bc + ca

+
c2 + 7ab
ca+ ab

≥ 12.

1.89. If a, b, c are positive real numbers, then

(a)
ab

2b+ c
+

bc
2c + a

+
ca

2a+ b
≤

a2 + b2 + c2

a+ b+ c
;

(b)
ab

b+ c
+

bc
c + a

+
ca

a+ b
≤

3(a2 + b2 + c2)
2(a+ b+ c)

;

(c)
ab

4b+ 5c
+

bc
4c + 5a

+
ca

4a+ 5b
≤

a2 + b2 + c2

3(a+ b+ c)
.

1.90. If a, b, c are positive real numbers, then

(a) a
p

b2 + 8c2 + b
p

c2 + 8a2 + c
p

a2 + 8b2 ≤ (a+ b+ c)2;

(b) a
p

b2 + 3c2 + b
p

c2 + 3a2 + c
p

a2 + 3b2 ≤ a2 + b2 + c2 + ab+ bc + ca.

1.91. If a, b, c are positive real numbers, then

(a)
1

a
p

a+ 2b
+

1

b
p

b+ 2c
+

1

c
p

c + 2a
≥
s

3
abc

;

(b)
1

a
p

a+ 8b
+

1

b
p

b+ 8c
+

1

c
p

c + 8a
≥
s

1
abc

.

1.92. If a, b, c are positive real numbers, then

a
p

5a+ 4b
+

b
p

5b+ 4c
+

c
p

5c + 4a
≤

√

√a+ b+ c
3

.
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1.93. If a, b, c are positive real numbers, then

(a)
a

p
a+ b

+
b

p
b+ c

+
c

p
c + a

≥
p

a+
p

b+
p

c
p

2
;

(b)
a

p
a+ b

+
b

p
b+ c

+
c

p
c + a

≥ 4

√

√27(ab+ bc + ca)
4

.

1.94. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then
p

3a+ b2 +
p

3b+ c2 +
p

3c + a2 ≥ 6.

1.95. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then
p

a2 + b2 + 2bc +
p

b2 + c2 + 2ca+
p

c2 + a2 + 2ab ≥ 2(a+ b+ c).

1.96. If a, b, c are nonnegative real numbers, then
p

a2 + b2 + 7bc +
p

b2 + c2 + 7ca+
p

c2 + a2 + 7ab ≥ 3
Æ

3(ab+ bc + ca).

1.97. If a, b, c are positive real numbers, then

a2 + 3ab
(b+ c)2

+
b2 + 3bc
(c + a)2

+
c2 + 3ca
(a+ b)2

≥ 3.

1.98. If a, b, c are positive real numbers, then

a2 b+ 1
a(b+ 1)

+
b2c + 1
b(c + 1)

+
c2a+ 1
c(a+ 1)

≥ 3.

1.99. If a, b, c are positive real numbers such that a+ b+ c = 3, then
p

a3 + 3b+
p

b3 + 3c +
p

c3 + 3a ≥ 6.

1.100. If a, b, c are positive real numbers such that abc = 1, then

s

a
a+ 6b+ 2bc

+

√

√ b
b+ 6c + 2ca

+
s

c
c + 6a+ 2ab

≥ 1.
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1.101. If a, b, c are positive real numbers such that abc = 1, then

�

a+
1
b

�2

+
�

b+
1
c

�2

+
�

c +
1
a

�2

≥ 6(a+ b+ c − 1).

1.102. If a, b, c are positive real numbers, then

a
a+ b

+
b

b+ c
+

c
c + a

≥
a+ b+ c

a+ b+ c − 3pabc
.

1.103. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a
p

b2 + b+ 1+ b
p

c2 + c + 1+ c
p

a2 + a+ 1≤ 3
p

3.

1.104. If a, b, c are positive real numbers, then

1
b(a+ 2b+ 3c)2

+
1

c(b+ 2c + 3a)2
+

1
a(c + 2a+ 3b)2

≤
1

12abc
.

1.105. Let a, b, c be positive real numbers such that a+ b+ c = 3. Prove that

(a)
a2 + 9b

b+ c
+

b2 + 9c
c + a

+
c2 + 9a
a+ b

≥ 15;

(b)
a2 + 3b
a+ b

+
b2 + 3c
b+ c

+
c2 + 3a
c + a

≥ 6.

1.106. If a, b, c ∈ [0,1], then

(a)
bc

2ab+ 1
+

ca
2bc + 1

+
ab

2ca+ 1
≤ 1.

(b)
a

ab+ 1
+

b
bc + 1

+
c

ca+ 1
≤

3
2

.

1.107. If a, b, c are nonnegative real numbers, then

a4 + b4 + c4 + 5(a3 b+ b3c + c3a)≥ 6(a2 b2 + b2c2 + c2a2).
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1.108. If a, b, c are positive real numbers, then

a5 + b5 + c5 − a4 b− b4c − c4a ≥ 2abc(a2 + b2 + c2 − ab− bc − ca).

1.109. If a, b, c are positive real numbers such that a2 + b2 + c2 = 3, then

a
1+ b

+
b

1+ c
+

c
1+ a

≥
3
2

.

1.110. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

a
p

a+ b+ b
p

b+ c + c
p

c + a ≥ 3
p

2.

1.111. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a
2b2 + c

+
b

2c2 + a
+

c
2a2 + b

≥ 1.

1.112. If a, b, c are positive real numbers such that a+ b+ c = ab+ bc + ca, then

1
a2 + b+ 1

+
1

b2 + c + 1
+

1
c2 + a+ 1

≤ 1.

1.113. If a, b, c are positive real numbers, then

1
(a+ 2b+ 3c)2

+
1

(b+ 2c + 3a)2
+

1
(c + 2a+ 3b)2

≤
1

4(ab+ bc + ca)
.

1.114. If a, b, c are positive real numbers, then

s

a
a+ b+ 2c

+

√

√ b
b+ c + 2a

+
s

c
c + a+ 2b

≤
3
2

.

1.115. If a, b, c are positive real numbers, then
√

√ 5a
a+ b+ 3c

+

√

√ 5b
b+ c + 3a

+

√

√ 5c
c + a+ 3b

≤ 3.
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1.116. If a, b, c ∈ [0, 1], then

ab2 + bc2 + ca2 +
5
4
≥ a+ b+ c.

1.117. If a, b, c are nonnegative real numbers such that

a+ b+ c = 3, a ≤ b ≤ 1≤ c,

then
a2 b+ b2c + c2a ≤ 3.

1.118. Let a, b, c be nonnegative real numbers such that

a+ b+ c = 3, a ≤ 1≤ b ≤ c.

Prove that

(a) a2 b+ b2c + c2a ≥ ab+ bc + ca;

(b) a2 b+ b2c + c2a ≥ abc + 2;

(c)
1

abc
+ 2≥

9
a2 b+ b2c + c2a

;

(d) ab2 + bc2 + ca2 ≥ 3.

1.119. If a, b, c are nonnegative real numbers such that

a+ b+ c = 3, a ≤ 1≤ b ≤ c,

then

(a)
5− 2a
1+ b

+
5− 2b
1+ c

+
5− 2c
1+ a

≥
9
2

;

(b)
3− 2b
1+ a

+
3− 2c
1+ b

+
3− 2a
1+ c

≤
3
2

.

1.120. If a, b, c are nonnegative real numbers such that

ab+ bc + ca = 3, a ≤ 1≤ b ≤ c,

then

(a) a2 b+ b2c + c2a ≥ 3;

(b) ab2 + bc2 + ca2 + 3(
p

3− 1)abc ≥ 3
p

3.
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1.121. If a, b, c are nonnegative real numbers such that

a2 + b2 + c2 = 3, a ≤ 1≤ b ≤ c,

then

(a) a2 b+ b2c + c2a ≥ 2abc + 1;

(b) 2(ab2 + bc2 + ca2)≥ 3abc + 3.

1.122. If a, b, c are nonnegative real numbers such that

ab+ bc + ca = 3, a ≤ b ≤ 1≤ c,

then
ab2 + bc2 + ca2 + 3abc ≥ 6.

1.123. If a, b, c are nonnegative real numbers such that

a2 + b2 + c2 = 3, a ≤ b ≤ 1≤ c,

then
2(a2 b+ b2c + c2a)≤ 3abc + 3.

1.124. If a, b, c are nonnegative real numbers such that

a2 + b2 + c2 = 3, a ≤ b ≤ 1≤ c,

then
2(a3 b+ b3c + c3a)≤ abc + 5.

1.125. If a, b, c are real numbers, then

(a2 + b2 + c2)2 ≥ 3(a3 b+ b3c + c3a).

1.126. If a, b, c are real numbers, then

a4 + b4 + c4 + ab3 + bc3 + ca3 ≥ 2(a3 b+ b3c + c3a).
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1.127. If a, b, c are positive real numbers, then

(a)
a2

ab+ 2c2
+

b2

bc + 2a2
+

c2

ca+ 2b2
≥ 1;

(b)
a3

a2 b+ 2c3
+

b3

b2c + 2a3
+

c3

c2a+ 2b3
≥ 1.

1.128. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a
ab+ 1

+
b

bc + 1
+

c
ca+ 1

≥
3
2

.

1.129. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a
3a+ b2

+
b

3b+ c2
+

c
3c + a2

≤
3
2

.

1.130. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a
b2 + c

+
b

c2 + a
+

c
a2 + b

≥
3
2

.

1.131. If a, b, c are positive real numbers such that abc = 1, then

a
b3 + 2

+
b

c3 + 2
+

c
a3 + 2

≥ 1.

1.132. Let a, b, c be positive real numbers such that

am + bm + cm = 3,

where m> 0. Prove that

am−1

b
+

bm−1

c
+

cm−1

a
≥ 3.

1.133. If a, b, c are positive real numbers, then

(a)
1

4a
+

1
4b
+

1
4c
+

1
a+ b

+
1

b+ c
+

1
c + a

≥ 3
�

1
3a+ b

+
1

3b+ c
+

1
3c + a

�

;

(b)
1

4a
+

1
4b
+

1
4c
+

1
a+ 3b

+
1

b+ 3c
+

1
c + 3a

≥ 2
�

1
3a+ b

+
1

3b+ c
+

1
3c + a

�

.
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1.134. If a, b, c are positive real numbers such that a6 + b6 + c6 = 3, then

a5

b
+

b5

c
+

c5

a
≥ 3.

1.135. If a, b, c are positive real numbers such that a2 + b2 + c2 = 3, then

a3

a+ b5
+

b3

b+ c5
+

c3

c + a5
≥

3
2

.

1.136. If a, b, c are real numbers such that a2 + b2 + c2 = 3, then

a2 b+ b2c + c2a+ 9≥ 4(a+ b+ c).

1.137. If a, b, c are real numbers such that a2 + b2 + c2 = 3, then

a2 b+ b2c + c2a+ 3≥ a+ b+ c + ab+ bc + ca.

1.138. If a, b, c are positive real numbers such that a+ b+ c = 3, then

12
a2 b+ b2c + c2a

≤ 3+
1

abc
.

1.139. If a, b, c are positive real numbers such that a+ b+ c = 3, then

24
a2 b+ b2c + c2a

+
1

abc
≥ 9.

1.140. Let a, b, c be nonnegative real numbers such that

2(a2 + b2 + c2) = 5(ab+ bc + ca).

Prove that

(a) 8(a4 + b4 + c4)≥ 17(a3 b+ b3c + c3a);

(b) 16(a4 + b4 + c4)≥ 34(a3 b+ b3c + c3a) + 81abc(a+ b+ c).
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1.141. Let a, b, c be nonnegative real numbers such that

2(a2 + b2 + c2) = 5(ab+ bc + ca).

Prove that

(a) 2(a3 b+ b3c + c3a)≥ a2 b2 + b2c2 + c2a2 + abc(a+ b+ c);

(b) 11(a4 + b4 + c4)≥ 17(a3 b+ b3c + c3a) + 129abc(a+ b+ c);

(c) a3 b+ b3c + c3a ≤
14+

p
102

8
(a2 b2 + b2c2 + c2a2).

1.142. If a, b, c are real numbers such that

a3 b+ b3c + c3a ≤ 0,

then
a2 + b2 + c2 ≥ k(ab+ bc + ca),

where

k =
1+

p

21+ 8
p

7
2

≈ 3.7468.

1.143. If a, b, c are real numbers such that

a3 b+ b3c + c3a ≥ 0,

then
a2 + b2 + c2 + k(ab+ bc + ca)≥ 0,

where

k =
−1+

p

21+ 8
p

7
2

≈ 2.7468.

1.144. If a, b, c are real numbers such that

k(a2 + b2 + c2) = ab+ bc + ca, k ∈
�

−1
2

, 1
�

,

then

αk ≤
a3 b+ b3c + c3

(a2 + b2 + c2)2
≤ βk,

where

27αk = 1+ 13k− 5k2 − 2(1− k)(1+ 2k)

√

√7(1− k)
1+ 2k

,

27βk = 1+ 13k− 5k2 + 2(1− k)(1+ 2k)

√

√7(1− k)
1+ 2k

.
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1.145. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a2

4a+ b2
+

b2

4b+ c2
+

c2

4c + a2
≥

3
5

.

1.146. If a, b, c are positive real numbers, then

a2 + bc
a+ b

+
b2 + ca
b+ c

+
c2 + ab
c + a

≤
(a+ b+ c)3

3(ab+ bc + ca)
.

1.147. If a, b, c are positive real numbers such that a+ b+ c = 3, then
p

ab2 + bc2 +
p

bc2 + ca2 +
p

ca2 + ab2 ≤ 3
p

2.

1.148. If a, b, c are positive real numbers such that a5 + b5 + c5 = 3, then

a2

b
+

b2

c
+

c2

a
≥ 3.

1.149. Let P(a, b, c) be a cyclic homogeneous polynomial of degree three. The
inequality

P(a, b, c)≥ 0

holds for all a, b, c ≥ 0 if and only if the following two conditions are fulfilled:

(a) P(1,1, 1)≥ 0;

(b) P(0, b, c)≥ 0 for all b, c ≥ 0.

1.150. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

8(a2 b+ b2c + c2a) + 9≥ 11(ab+ bc + ca).

1.151. If a, b, c are nonnegative real numbers such that a+ b+ c = 6, then

a3 + b3 + c3 + 8(a2 b+ b2c + c2a)≥ 166.

1.152. If a, b, c are nonnegative real numbers, then

a3 + b3 + c3 − 3abc ≥
Æ

9+ 6
p

3 (a− b)(b− c)(c − a).
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1.153. If a, b, c are nonnegative real numbers, no two of which are zero, then

a
b+ c

+
b

c + a
+

c
a+ b

+ 7≥
17
3

�

a
a+ b

+
b

b+ c
+

c
c + a

�

.

1.154. Let a, b, c be nonnegative real numbers, no two of which are zero. If 0 ≤
k ≤ 5, then

ka+ b
a+ c

+
kb+ c
b+ a

+
kc + a
c + b

≥
3
2
(k+ 1).

1.155. Let a, b, c be nonnegative real numbers, no two of which are zero. If k ≤
23
8

,

then
ka+ b
2a+ c

+
kb+ c
2b+ a

+
kc + a
2c + b

≥ k+ 1.

1.156. Let a, b, c be nonnegative real numbers. Prove that

(a) if k ≤ 1−
2

5
p

5
, then

ka+ b
2a+ b+ c

+
kb+ c

a+ 2b+ c
+

kc + a
a+ b+ 2c

≥
3
4
(k+ 1).

(b) if k ≥ 1+
2

5
p

5
, then

ka+ b
2a+ b+ c

+
kb+ c

a+ 2b+ c
+

kc + a
a+ b+ 2c

≤
3
4
(k+ 1).

1.157. If a, b, c are positive real numbers such that a ≤ b ≤ c, then

a
b
+

b
c
+

c
a
+ 3≥ 2

�

a+ b
b+ c

+
b+ c
c + a

+
c + a
a+ b

�

.

1.158. If a ≥ b ≥ c ≥ 0, then

3a+ b
2a+ c

+
3b+ c
2b+ a

+
3c + a
2c + b

≥ 4.
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1.159. Let a, b, c be nonnegative real numbers such that

a ≥ b ≥ 1≥ c, a+ b+ c = 3.

Prove that
1

a2 + 3
+

1
b2 + 3

+
1

c2 + 3
≤

3
4

.

1.160. Let a, b, c be nonnegative real numbers such that

a ≥ 1≥ b ≥ c, a+ b+ c = 3.

Prove that
1

a2 + 2
+

1
b2 + 2

+
1

c2 + 2
≥ 1.

1.161. Let a, b, c be real numbers such that

a ≥ b ≥ 1≥ c ≥ −5, a+ b+ c = 3.

Prove that
6

a3 + b3 + c3
+ 1≥

8
a2 + b2 + c2

.

1.162. If a ≥ 1≥ b ≥ c > −3 such that ab+ bc + ca = 3, then

1
a2 + ab+ b2

+
1

b2 + bc + c2
+

1
c2 + ca+ a2

≥ 1.

1.163. If a ≥ b ≥ 1≥ c ≥ 0 such that a+ b+ c = 3, then

1
a2 + ab+ b2

+
1

b2 + bc + c2
+

1
c2 + ca+ a2

≤
3

ab+ bc + ca
.

1.164. If a, b, c are positive real numbers such that

a ≥ 1≥ b ≥ c, abc = 1,

then
1− a
3+ a2

+
1− b
3+ b2

+
1− c
3+ c2

≥ 0.
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1.165. If a, b, c are positive real numbers such that

a ≥ 1≥ b ≥ c, abc = 1,

then
1

p
3a+ 1

+
1

p
3b+ 1

+
1

p
3c + 1

≥
3
2

.

1.166. If a, b, c are positive real numbers such that

a ≥ 1≥ b ≥ c, abc = 1,

then
1

a2 + 4ab+ b2
+

1
b2 + 4bc + c2

+
1

c2 + 4ca+ a2
≥

1
2

.

1.167. Let a ≥ 1≥ b ≥ c ≥ 0 such that

a+ b+ c = 3, ab+ bc + ca = q,

where q ∈ [0,3] is a fixed number. Prove that the product r = abc is maximal for
b = c, and minimal for b = 1 or c = 0.

1.168. Let p and q be fixed real numbers such that there exist three real numbers
a, b, c satisfying

a ≥ 1≥ b ≥ c ≥ 0, a+ b+ c = p, ab+ bc + ca = q.

Prove that

(a) the product r = abc is maximal for b = c;

(b) the product r = abc is minimal for a = 1 or b = 1 or c = 0.

1.169. Let p and q be fixed real numbers such that there exist three real numbers
a, b, c satisfying

a ≥ b ≥ c ≥ 1, a+ b+ c = p, ab+ bc + ca = q.

Prove that

(a) the product r = abc is maximal for b = c;

(b) the product r = abc is minimal for a = b or c = 1.



Cyclic Inequalities 27

1.170. Let a ≥ b ≥ 1≥ c ≥ 0 such that

a+ b+ c = 3, ab+ bc + ca = q,

where q ∈ [0,3] is a fixed number. Prove that the product r = abc is maximal for
b = 1, and minimal for a = b or c = 0.

1.171. Let p and q be fixed real numbers such that there exist three real numbers
a, b, c satisfying

a ≥ b ≥ 1≥ c ≥ 0, a+ b+ c = p, ab+ bc + ca = q.

Prove that

(a) the product r = abc is maximal for b = 1 or c = 1;

(b) the product r = abc is minimal for a = b or c = 0.

1.172. Let p and q be fixed real numbers such that there exist three real numbers
a, b, c satisfying

1≥ a ≥ b ≥ c ≥ 0, a+ b+ c = p, ab+ bc + ca = q.

Prove that

(a) the product r = abc is maximal for b = c or a = 1;

(b) the product r = abc is minimal for a = b or c = 0.

1.173. If a ≥ 1≥ b ≥ c ≥ 0 such that a+ b+ c = 3, then

abc +
9

ab+ bc + ca
≥ 4.

1.174. If a ≥ 1≥ b ≥ c ≥ 0 such that a+ b+ c = 3, then

abc +
2

ab+ bc + ca
≥

5
a2 + b2 + c2

.

1.175. If a ≥ b ≥ 1≥ c > 0 such that a+ b+ c = 3, then

1
abc

+ 2≥
9

ab+ bc + ca
.
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1.176. If a ≥ b ≥ 1≥ c > 0 such that a+ b+ c = 3, then

1
a
+

1
b
+

1
c
+ 11≥ 4(a2 + b2 + c2).

1.177. If a ≥ b ≥ 1≥ c > 0 such that a+ b+ c = 3, then

1
abc

+
2

a2 + b2 + c2
≥

5
ab+ bc + ca

.

1.178. If a ≥ b ≥ 1≥ c ≥ 0 such that a+ b+ c = 3, then

9
a3 + b3 + c3

+ 2≤
15

a2 + b2 + c2
.

1.179. If a ≥ b ≥ 1≥ c ≥ 0 such that a+ b+ c = 3, then

36
a3 + b3 + c3

+ 9≤
65

a2 + b2 + c2
.

1.180. If a ≥ b ≥ c ≥ 0 and ab+ bc + ca = 2 , then
p

a+ ab+
p

b+ bc +
p

c + ca ≥ 3.

1.181. If a ≥ b ≥ c are nonnegative numbers such that ab+ bc + ca = 3 , then
p

a+ 2ab+
p

b+ 2bc +
p

c + 2ca ≥ 4.

1.182. If a, b, c are nonnegative real numbers such that ab+ bc + ca = 3, then
p

a+ 3b+
p

b+ 3c +
p

c + 3a ≥ 6.

1.183. If a, b, c are the lengths of the sides of a triangle, then

10
�

a
b
+

b
c
+

c
a

�

> 9
�

b
a
+

c
b
+

a
c

�

.
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1.184. If a, b, c are the lengths of the sides of a triangle, then

a
3a+ b− c

+
b

3b+ c − a
+

c
3c + a− b

≥ 1.

1.185. If a, b, c are the lengths of the sides of a triangle, then

a2 − b2

a2 + bc
+

b2 − c2

b2 + ca
+

c2 − a2

c2 + ab
≤ 0.

1.186. If a, b, c are the lengths of the sides of a triangle, then

a2(a+ b)(b− c) + b2(b+ c)(c − a) + c2(c + a)(a− b)≥ 0.

1.187. If a, b, c are the lengths of the sides of a triangle, then

a2 b+ b2c + c2a ≥
Æ

abc(a+ b+ c)(a2 + b2 + c2).

1.188. If a, b, c are the lengths of the sides of a triangle, then

a2
�

b
c
− 1

�

+ b2
� c

a
− 1

�

+ c2
�a

b
− 1

�

≥ 0.

1.189. If a, b, c are the lengths of the sides of a triangle, then

(a) a3 b+ b3c + c3a ≥ a2 b2 + b2c2 + c2a2;

(b) 3(a3 b+ b3c + c3a)≥ (ab+ bc + ca)(a2 + b2 + c2);

(c)
a3 b+ b3c + c3

3
≥
�

a+ b+ c
3

�4

.

1.190. If a, b, c are the lengths of the sides of a triangle, then

2
�

a2

b2
+

b2

c2
+

c2

a2

�

≥
b2

a2
+

c2

b2
+

a2

c2
+ 3.
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1.191. If a, b, c are the lengths of the sides of a triangle such that a < b < c, then

a2

a2 − b2
+

b2

b2 − c2
+

c2

c2 − a2
≤ 0.

1.192. If a, b, c are the lengths of the sides of a triangle, then

a
b
+

b
c
+

c
a
+ 3≥ 2

�

a+ b
b+ c

+
b+ c
c + a

+
c + a
a+ b

�

.

1.193. Let a, b, c be the lengths of the sides of a triangle. If k ≥ 2, then

ak b(a− b) + bkc(b− c) + cka(c − a)≥ 0.

1.194. Let a, b, c be the lengths of the sides of a triangle. If k ≥ 1, then

3(ak+1 b+ bk+1c + ck+1a)≥ (a+ b+ c)(ak b+ bkc + cka).

1.195. Let a, b, c, d be positive real numbers such that a+ b+ c+d = 4. Prove that

a
3+ b

+
b

3+ c
+

c
3+ d

+
d

3+ a
≥ 1.

1.196. Let a, b, c, d be positive real numbers such that a+ b+ c+d = 4. Prove that

a
1+ b2

+
b

1+ c2
+

c
1+ d2

+
d

1+ a2
≥ 2.

1.197. If a, b, c, d are nonnegative real numbers such that a+ b+ c + d = 4, then

a2 bc + b2cd + c2da+ d2ab ≤ 4.

1.198. If a, b, c, d are nonnegative real numbers such that a+ b+ c + d = 4, then

a(b+ c)2 + b(c + d)2 + c(d + a)2 + d(a+ b)2 ≤ 16.
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1.199. If a, b, c, d are positive real numbers, then

a− b
b+ c

+
b− c
c + d

+
c − d
d + a

+
d − a
a+ b

≥ 0.

1.200. If a, b, c, d are positive real numbers, then

(a)
a− b

a+ 2b+ c
+

b− c
b+ 2c + d

+
c − d

c + 2d + a
+

d − a
d + 2a+ b

≥ 0;

(b)
a

2a+ b+ c
+

b
2b+ c + d

+
c

2c + d + a
+

d
2d + a+ b

≤ 1.

1.201. If a, b, c, d are positive real numbers such that abcd = 1, then

1
a(a+ b)

+
1

b(b+ c)
+

1
c(c + d)

+
1

d(d + a)
≥ 2.

1.202. If a, b, c, d are positive real numbers, then

1
a(1+ b)

+
1

b(1+ c)
+

1
c(1+ d)

+
1

d(1+ a)
≥

16

1+ 8
p

abcd
.

1.203. If a, b, c, d are nonnegative real numbers such that a2 + b2 + c2 + d2 = 4,
then

(a) 3(a+ b+ c + d)≥ 2(ab+ bc + cd + da) + 4;

(b) a+ b+ c + d − 4≥ (2−
p

2)(ab+ bc + cd + da− 4).

1.204. Let a, b, c, d be positive real numbers.

(a) If a, b, c, d ≥ 1, then
�

a+
1
b

��

b+
1
c

��

c +
1
d

��

d +
1
a

�

≥ (a+ b+ c + d)
�

1
a
+

1
b
+

1
c
+

1
d

�

;

(b) If abcd = 1, then
�

a+
1
b

��

b+
1
c

��

c +
1
d

��

d +
1
a

�

≥ (a+ b+ c + d)
�

1
a
+

1
b
+

1
c
+

1
d

�

.
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1.205. If a, b, c, d are positive real numbers, then

�

1+
a

a+ b

�2
+
�

1+
b

b+ c

�2

+
�

1+
c

c + d

�2
+
�

1+
d

d + a

�2

> 7.

1.206. If a, b, c, d are positive real numbers, then

a2 − bd
b+ 2c + d

+
b2 − ca

c + 2d + a
+

c2 − d b
d + 2a+ b

+
d2 − ac

a+ 2b+ c
≥ 0.

1.207. If a, b, c, d are positive real numbers such that a ≤ b ≤ c ≤ d, then
√

√ 2a
a+ b

+

√

√ 2b
b+ c

+

√

√ 2c
c + d

+

√

√ 2d
d + a

≤ 4.

1.208. Let a, b, c, d be nonnegative real numbers, and let

x =
a

b+ c
, y =

b
c + d

, z =
c

d + a
, t =

d
a+ b

.

Prove that

(a)
p

xz +
p

y t ≤ 1;

(b) x + y + z + t + 4(xz + y t)≥ 4.

1.209. If a, b, c, d are nonnegative real numbers, then
�

1+
2a

b+ c

��

1+
2b

c + d

��

1+
2c

d + a

��

1+
2d

a+ b

�

≥ 9.

1.210. Let a, b, c, d be nonnegative real numbers. If k > 0, then
�

1+
ka

b+ c

��

1+
kb

c + d

��

1+
kc

d + a

��

1+
kd

a+ b

�

≥ (1+ k)2.

1.211. If a, b, c, d are positive real numbers such that a+ b+ c + d = 4, then

1
ab
+

1
bc
+

1
cd
+

1
da
≥ a2 + b2 + c2 + d2.
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1.212. If a, b, c, d are positive real numbers, then

a2

(a+ b+ c)2
+

b2

(b+ c + d)2
+

c2

(c + d + a)2
+

d2

(d + a+ b)2
≥

4
9

.

1.213. If a, b, c, d are positive real numbers such that a+ b+ c + d = 3, then

ab(b+ c) + bc(c + d) + cd(d + a) + da(a+ b)≤ 4.

1.214. If a ≥ b ≥ c ≥ d ≥ 0 and a+ b+ c + d = 2, then

ab(b+ c) + bc(c + d) + cd(d + a) + da(a+ b)≤ 1.

1.215. Let a, b, c, d be nonnegative real numbers such that a + b + c + d = 4. If

k ≥
37
27

, then

ab(b+ kc) + bc(c + kd) + cd(d + ka) + da(a+ kb)≤ 4(1+ k).

1.216. If a, b, c, d are nonnegative real numbers such that a+ b+ c + d = 4, then

√

√ 3a
b+ 2

+

√

√ 3b
c + 2

+

√

√ 3c
d + 2

+

√

√ 3d
a+ 2

≤ 4.

1.217. Let a, b, c, d be positive real numbers such that a ≤ b ≤ c ≤ d. Prove that

2
�

a
b
+

b
c
+

c
d
+

d
a

�

≥ 4+
a
c
+

c
a
+

b
d
+

d
b

.

1.218. Let a, b, c, d be positive real numbers such that

a ≤ b ≤ c ≤ d, abcd = 1.

Prove that
a
b
+

b
c
+

c
d
+

d
a
≥ ab+ bc + cd + da.



34 Vasile Cîrtoaje

1.219. Let a, b, c, d be positive real numbers such that

a ≤ b ≤ c ≤ d, abcd = 1.

Prove that

4+
a
b
+

b
c
+

c
d
+

d
a
≥ 2(a+ b+ c + d).

1.220. Let A= {a1, a2, a3, a4} be a set of real numbers such that

a1 + a2 + a3 + a4 = 0.

Prove that there exists a permutation {a, b, c, d} of A such that

a2 + b2 + c2 + d2 + 3(ab+ bc + cd + da)≥ 0.

1.221. If a, b, c, d are nonnegative real numbers such that

a ≥ b ≥ 1≥ c ≥ d, a+ b+ c + d = 3,

then
a2 + b2 + c2 + d2 + 10abcd ≤ 5.

1.222. If a, b, c, d are nonnegative real numbers such that

a ≥ b ≥ 1≥ c ≥ d, a+ b+ c + d = 6,

then
a2 + b2 + c2 + d2 + 4abcd ≤ 26.

1.223. Let a, b, c, d be nonnegative real numbers such that

a ≥ b ≥ 1≥ c ≥ d, a+ b+ c + d = p, p ≥ 2.

Prove that
p2 − 4p+ 8

2
≤ a2 + b2 + c2 + d2 ≤ p2 − 2p+ 2.

1.224. Let a ≥ b ≥ 1≥ c ≥ d ≥ 0 such that

a+ b+ c + d = 4, a2 + b2 + c2 + d2 = q,

where q ∈ [4,10] is a fixed number. Prove that the product r = abcd is maximal
when b = 1 and c = d.
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1.225. If a, b, c, d are nonnegative real numbers such that

a ≥ b ≥ 1≥ c ≥ d, a+ b+ c + d = 4,

then
a2 + b2 + c2 + d2 + 6abcd ≤ 10.

1.226. If a, b, c, d are nonnegative real numbers such that

a ≥ b ≥ 1≥ c ≥ d, a+ b+ c + d = 4,

then
a2 + b2 + c2 + d2 + 6

p

abcd ≤ 10.

1.227. If a, b, c, d, e are positive real numbers, then

a
a+ 2b+ 2c

+
b

b+ 2c + 2d
+

c
c + 2d + 2e

+
d

d + 2e+ 2a
+

e
e+ 2a+ 2b

≥ 1.

1.228. Let a, b, c, d, e be positive real numbers such that a+ b+c+d+e = 5. Prove
that

a
b
+

b
c
+

c
d
+

d
e
+

e
a
≤ 1+

4
abcde

.

1.229. If a, b, c, d, e are real numbers such that a+ b+ c + d + e = 0, then

−
p

5− 1
4

≤
ab+ bc + cd + de+ ea
a2 + b2 + c2 + d2 + e2

≤
p

5− 1
4

.

1.230. Let a, b, c, d, e be positive real numbers such that

a2 + b2 + c2 + d2 + e2 = 5.

Prove that

a2

b+ c + d
+

b2

c + d + e
+

c2

d + e+ a
+

d2

e+ a+ b
+

e2

a+ b+ c
≥

5
3

.

1.231. Let a, b, c, d, e be nonnegative real numbers such that a+ b+ c+ d + e = 5.
Prove that

(a2 + b2)(b2 + c2)(c2 + d2)(d2 + e2)(e2 + a2)≤
729

2
.
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1.232. If a, b, c, d, e ∈ [1, 5], then

a− b
b+ c

+
b− c
c + d

+
c − d
d + e

+
d − e
e+ a

+
e− a
a+ b

≥ 0.

1.233. If a, b, c, d, e, f ∈ [1, 3], then

a− b
b+ c

+
b− c
c + d

+
c − d
d + e

+
d − e
e+ f

+
e− f
f + a

+
f − a
a+ b

≥ 0.

1.234. If a1, a2, . . . , an (n≥ 3) are positive real numbers, then
n
∑

i=1

ai

ai−1 + 2ai + ai+1
≤

n
4

,

where a0 = an and an+1 = a1.

1.235. Let a1, a2, . . . , an (n≥ 3) be positive real numbers such that a1a2 · · · an = 1.
Prove that

1
n− 2+ a1 + a2

+
1

n− 2+ a2 + a3
+ · · ·+

1
n− 2+ an + a1

≤ 1.

1.236. If a1, a2, ..., an ≥ 1, then
∏

�

a1 +
1
a2
+ n− 2

�

≥ nn−2(a1 + a2 + · · ·+ an)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

;

1.237. If a1, a2, ..., an ≥ 1, then
�

a1 +
1
a1

��

a2 +
1
a2

�

· · ·
�

an +
1
an

�

+ 2n ≥ 2
�

1+
a1

a2

��

1+
a2

a3

�

· · ·
�

1+
an

a1

�

.

1.238. Let k and n be positive integers, and let a1, a2, ..., an be real numbers such
that

a1 ≤ a2 ≤ · · · ≤ an.

Consider the inequality

(a1 + a2 + · · ·+ an)
2 ≥ n(a1ak+1 + a2ak+2 + · · ·+ anan+k),

where an+i = ai for any positive integer i. Prove this inequality for

(a) n= 2k;

(b) n= 4k.
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1.239. If a1, a2, . . . , an are real numbers, then

a1(a1 + a2) + a2(a2 + a3) + · · ·+ an(an + a1)≥
2
n
(a1 + a2 + · · ·+ an)

2.

1.240. If a1, a2, . . . , an ∈ [1, 2], then

n
∑

i=1

3
ai + 2ai+1

≥
n
∑

i=1

2
ai + ai+1

,

where an+1 = a1.

1.241. Let a1, a2, . . . , an (n≥ 3) be real numbers such that a1 + a2 + · · ·+ an = n.

(a) If a1 ≥ 1≥ a2 ≥ · · · ≥ an, then

a3
1 + a3

2 + · · ·+ a3
n + 2n≥ 3(a2

1 + a2
2 + · · ·+ a2

n);

(b) If a1 ≤ 1≤ a2 ≤ · · · ≤ an, then

a3
1 + a3

2 + · · ·+ a3
n + 2n≤ 3(a2

1 + a2
2 + · · ·+ a2

n).

1.242. Let a1, a2, . . . , an (n ≥ 3) be nonnegative real numbers such that a1 + a2 +
· · ·+ an = n.

(a) If a1 ≥ 1≥ a2 ≥ · · · ≥ an, then

a4
1 + a4

2 + · · ·+ a4
n + 5n≥ 6(a2

1 + a2
2 + · · ·+ a2

n);

(b) If a1 ≤ 1≤ a2 ≤ · · · ≤ an, then

a4
1 + a4

2 + · · ·+ a4
n + 6n≤ 7(a2

1 + a2
2 + · · ·+ a2

n).

1.243. If a1, a2, . . . , an are positive real numbers such that

a1 ≥ 1≥ a2 ≥ · · · ≥ an,
1
a1
+

1
a2
+ · · ·+

1
an
= n,

then
a2

1 + a2
2 + · · ·+ a2

n + 2n≥ 3(a1 + a2 + · · ·+ an).
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1.244. If a1, a2, . . . , an are real numbers such that

a1 ≤ 1≤ a2 ≤ · · · ≤ an, a1 + a2 + · · ·+ an = n,

then

(a)
a1 + 1
a2

1 + 1
+

a2 + 1
a2

2 + 1
+ · · ·+

an + 1
a2

n + 1
≤ n;

(b)
1

a2
1 + 3

+
1

a2
2 + 3

+ · · ·+
1

a2
1 + 3

≤
n
4

.

1.245. If a1, a2, . . . , an are nonnegative real numbers such that

a1 ≤ 1≤ a2 ≤ · · · ≤ an, a1 + a2 + · · ·+ an = n,

then
a2

1 − 1

(a1 + 3)2
+

a2
2 − 1

(a2 + 3)2
+ · · ·+

a2
n − 1

(an + 3)2
≥ 0.

1.246. If a1, a2, . . . , an are nonnegative real numbers such that

a1 ≥ 1≥ a2 ≥ · · · ≥ an, a1 + a2 + · · ·+ an = n,

then
1

3a3
1 + 4

+
1

3a3
2 + 4

+ · · ·+
1

3a3
n + 4

≥
n
7

.

1.247. If a1, a2, . . . , an are nonnegative real numbers such that

a1 ≤ 1≤ a2 ≤ · · · ≤ an, a1 + a2 + · · ·+ an = n,

then
√

√ 3a1

4− a1
+

√

√ 3a2

4− a2
+ · · ·+

√

√ 3an

4− an
≤ n.

1.248. If a1, a2, . . . , an are nonnegative real numbers such that

a1 ≤ 1≤ a2 ≤ · · · ≤ an, a2
1 + a2

2 + · · ·+ a2
n = n,

then
1

3− a1
+

1
3− a2

+ · · ·+
1

3− an
≤

n
2

.
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1.249. If a1, a2, . . . , an are real numbers such that

a1 ≤ 1≤ a2 ≤ · · · ≤ an, a1 + a2 + · · ·+ an = n,

then
(1+ a2

1)(1+ a2
2) · · · (1+ a2

n)≥ 2n.

1.250. If a1, a2, . . . , an are positive real numbers such that

a1 ≥ 1≥ a2 ≥ · · · ≥ an, a1a2 · · · an = 1,

then
1

(a1 + 1)2
+

1
(a2 + 1)2

+ · · ·+
1

(an + 1)2
≥

n
4

.

1.251. If a1, a2, . . . , an are positive real numbers such that

a1 ≥ 1≥ a2 ≥ · · · ≥ an, a1a2 · · · an = 1,

then
1

(a1 + 2)2
+

1
(a2 + 2)2

+ · · ·+
1

(an + 2)2
≥

n
9

.

1.252. If a1, a2, . . . , an are positive real numbers such that

a1 ≥ 1≥ a2 ≥ · · · ≥ an, a1a2 · · · an = 1,

then

an
1 + an

2 + · · ·+ an
n − n≥ n2

�

1
a1
+

1
a2
+ · · ·+

1
an
− n

�

.

1.253. If a1, a2, . . . , an (n≥ 3) are real numbers such that

a1 + a2 + · · ·+ an = n, a1 ≥ a2 ≥ 1≥ a3 ≥ · · · ≥ an,

then

a4
1 + a4

2 + · · ·+ a4
n − n≥

14
3
(a2

1 + a2
2 + · · ·+ a2

n − n).
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1.254. Let a1, a2, . . . , an be positive real numbers such that

a1 ≥ 1≥ a2 ≥ · · · ≥ an, a1a2 · · · an = 1.

Prove that
1− a1

3+ a2
1

+
1− a2

3+ a2
2

+ · · ·+
1− an

3+ a2
n

≥ 0.

1.255. Let a1, a2, . . . , an (n≥ 3) be nonnegative real numbers such that

a1 ≥ · · · ≥ ak ≥ 1≥ ak+1 ≥ · · · ≥ an, 1≤ k ≤ n− 1,

and
a1 + a2 + · · ·+ an = p.

Prove that

(a) if p ≥ k , then

a2
1 + a2

2 + · · ·+ a2
n ≤ (p− k+ 1)2 + k− 1;

(b) if k ≤ p ≤ n , then

a2
1 + a2

2 + · · ·+ a2
n ≥

p2 − 2kp+ kn
n− k

;

(c) if p ≥ n , then

a2
1 + a2

2 + · · ·+ a2
n ≥

p2 − 2(n− k)p+ n(n− k)
k

.

1.256. Let a1, a2, . . . , an (n≥ 3) be nonnegative real numbers such that

a1 ≥ · · · ≥ ak ≥ 1≥ ak+1 ≥ · · · ≥ an, 1≤ k ≤ n− 1,

and
a1 + a2 + · · ·+ an = n, a2

1 + a2
2 + · · ·+ a2

n = q,

where q is a fixed number. Prove that the product r = a1a2 · · · an is maximal when

a2 = · · ·= ak = 1, ak+1 = · · ·= an.

1.257. If a1, a2, . . . , an are nonnegative real numbers such that

a1 ≤ 1≤ a2 ≤ · · · ≤ an, a1 + a2 + · · ·+ an = n,

then
(a1a2 · · · an)

2
n (a2

1 + a2
2 + · · ·+ a2

n)≤ n.
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1.258. Let a1, a2, . . . , an (n≥ 3) be nonnegative real numbers such that

a1 ≥ · · · ≥ ak ≥ 1≥ ak+1 ≥ · · · ≥ an, 1≤ k ≤ n− 1,

and
a1 + a2 + · · ·+ an = p, a2

1 + a2
2 + · · ·+ a2

n = q,

where p and q are fixed numbers.
(a) For p ≤ n, the product r = a1a2 · · · an is maximal when a2 = · · · = ak = 1

and ak+1 = · · ·= an;
(b) For p ≥ n and q ≥ n−1+(p−n+1)2, the product r = a1a2 · · · an is maximal

when a2 = · · ·= ak = 1 and ak+1 = · · ·= an;
(c) For p ≥ n and q < n−1+(p−n+1)2, the product r = a1a2 · · · an is maximal

when a2 = · · ·= ak and ak+1 = · · ·= an = 1.

1.259. If a1, a2, . . . , an (n≥ 3) are nonnegative real numbers such that

a1 ≤ a2 ≤ 1≤ a3 ≤ · · · ≤ an, a1 + a2 + · · ·+ an = n− 1,

then
a2

1 + a2
2 + · · ·+ a2

n + 10a1a2 · · · an ≤ n+ 1.

1.260. If a, b, c, d, e are nonnegative real numbers such that

a ≤ b ≤ 1≤ c ≤ d ≤ e, a+ b+ c + d + e = 8,

then
a2 + b2 + c2 + d2 + e2 + 3abcde ≤ 38.
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1.2 Solutions

P 1.1. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

ab2 + bc2 + ca2 ≤ 4.

(Canada, 1999)

First Solution. Assume that a =max{a, b, c}. Since

ab2 + bc2 + ca2 ≤ ab ·
a+ b

2
+ abc + ca2 =

a(a+ b)(b+ 2c)
2

,

it suffices to show that
a(a+ b)(b+ 2c)≤ 8.

By the AM-GM inequality, we have

a(a+ b)(b+ 2c)≤
�

a+ (a+ b) + (b+ 2c)
3

�3

= 8
�

a+ b+ c
3

�3

= 8.

The equality holds for a = 2, b = 0, c = 1 (or any cyclic permutation).

Second Solution. Let (x , y, z) be a permutation of (a, b, c) such that

x ≥ y ≥ z.

Since
x y ≥ zx ≥ yz,

by the rearrangement inequality, we have

ab2 + bc2 + ca2 = b · ab+ c · bc + a · ca
≤ x · x y + y · zx + z · yz

= y(x2 + xz + z2).

Using this result and the AM-GM inequality, we get

ab2 + bc2 + ca2 ≤ y(x + z)2 = 4y ·
x + z

2
·

x + z
2

≤ 4

�

y + x+z
2 +

x+z
2

3

�3

= 4
� x + y + z

3

�3

= 4.

Third Solution. Without loss of generality, assume that b is between a and c; that
is,

(b− a)(b− c)≤ 0, b2 + ac ≤ b(a+ c).
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Since

ab2 + bc2 + ca2 = a(b2 + ac) + bc2 ≤ ab(a+ c) + bc2 = b(a2 + ac + c2)

≤ b(a+ c)2 = b(3− b)2,

it suffices to show that
b(3− b)2 ≤ 4.

Indeed,

b(3− b)2 − 4= (b− 1)2(b− 4)≤ (b− 1)2(b− 3) = −(b− 1)2(a+ c)≤ 0.

Fourth Solution. Write the inequality in the homogeneous form

4(a+ b+ c)3 ≥ 27(ab2 + bc2 + ca2),

which is equivalent to

4(a3 + b3 + c3) + 12(a+ b)(b+ c)(c + a)≥ 27(ab2 + bc2 + ca2),

4
∑

a3 + 12
�∑

a2 b+
∑

ab2 + 2abc
�

≥ 27
∑

ab2,

4
∑

a3 + 12
∑

a2 b+ 24abc ≥ 15
∑

ab2.

On the other hand, the obvious inequality

∑

a(2a− pb− qc)2 ≥ 0

is equivalent to

4
∑

a3 + (q2 − 4p)
∑

a2 b+ 6pqabc ≥ (4q− p2)
∑

ab2.

Setting p = 1 and q = 4 leads to the desired inequality; in addition,

4(a+ b+ c)3 − 27(ab2 + bc2 + ca2) =
∑

a(2a− b− 4c)2 ≥ 0.

P 1.2. If a, b, c are positive real numbers such that a+ b+ c = 3, then

(ab+ bc + ca)(ab2 + bc2 + ca2)≤ 9.
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Solution. Let (x , y, z) be a permutation of (a, b, c) such that x ≥ y ≥ z. As shown
in the second solution of P 1.1,

ab2 + bc2 + ca2 ≤ y(x2 + xz + z2).

Consequently, it suffices to show that

y(x y + yz + zx)(x2 + xz + z2)≤ 9.

By the AM-GM inequality, we get

4(x y + yz + zx)(x2 + xz + z2)≤ (x y + yz + zx + x2 + xz + z2)2

= (x + z)2(x + y + z)2 = 9(x + z)2.

Thus, we still have to show that

y(x + z)2 ≤ 4.

This follows from the AM-GM inequality, as follows:

2y(x + z)2 ≤
�

2y + (x + z) + (x + z)
3

�3

= 8.

The equality holds for a = b = c = 1.

P 1.3. If a, b, c are nonnegative real numbers such that a2 + b2 + c2 = 3, then

(a) ab2 + bc2 + ca2 ≤ abc + 2;

(b)
a

b+ 2
+

b
c + 2

+
c

a+ 2
≤ 1.

(Vasile C., 2005)

Solution. (a) First Solution. Without loss of generality, assume that b is between
a and c; that is,

(b− a)(b− c)≤ 0, b2 + ac ≤ b(a+ c).

Since

ab2 + bc2 + ca2 = a(b2 + ac) + bc2 ≤ ab(a+ c) + bc2 = b(a2 + c2) + abc,

it suffices to show that
b(a2 + c2)≤ 2.

We have
2− b(a2 + c2) = 2− b(3− b2) = (b− 1)2(b+ 2)≥ 0.
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The equality holds for a = b = c = 1, and also for a = 0, b = 1, c =
p

2 (or any
cyclic permutation).

Second Solution. Let (x , y, z) be a permutation of (a, b, c) such that x ≥ y ≥ z. As
shown in the second solution of P 1.1,

ab2 + bc2 + ca2 ≤ y(x2 + xz + z2).

Therefore, it suffices to show that

y(x2 + xz + z2)≤ x yz + 2,

which can be written as
y(x2 + z2)≤ 2.

Indeed,
2− y(x2 + z2) = 2− y(3− y2) = (y − 1)2(y + 2)≥ 0.

(b) Write the inequality as follows:
∑

a(a+ 2)(c + 2)≤ (a+ 2)(b+ 2)(c + 2),

ab2 + bc2 + ca2 + 2(a2 + b2 + c2)≤ abc + 8,

ab2 + bc2 + ca2 ≤ abc + 2.

The last inequality is just the inequality in (a).

P 1.4. If a, b, c ≥ 1, then

(a) 2(ab2 + bc2 + ca2) + 3≥ 3(ab+ bc + ca);

(b) ab2 + bc2 + ca2 + 6≥ 3(a+ b+ c).

Solution. (a) First Solution. From

a(b− 1)2 + b(c − 1)2 + c(a− 1)2 ≥ 0,

we get
ab2 + bc2 + ca2 ≥ 2(ab+ bc + ca)− (a+ b+ c).

Using this inequality gives

2(ab2 + bc2 + ca2) + 3− 3(ab+ bc + ca)≥ (ab+ bc + ca)− 2(a+ b+ c) + 3

= (a− 1)(b− 1) + (b− 1)(c − 1) + (c − 1)(a− 1)≥ 0.

The equality holds for a = b = c = 1.
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Second Solution. From
∑

b(a− 1)(b− 1)≥ 0,

we get
ab2 + bc2 + ca2 ≥ a2 + b2 + c2 + ab+ bc + ca− (a+ b+ c).

Thus, it suffices to show that

2(a2 + b2 + c2) + 2(ab+ bc + ca)− 2(a+ b+ c) + 3≥ 3(ab+ bc + ca),

which is equivalent to

2(a2 + b2 + c2)− 2(a+ b+ c) + 3≥ ab+ bc + ca,

(a− 1)2 + (b− 1)2 + (c − 1)2 + (a2 + b2 + c2 − ab− bc − ca)≥ 0,

2(a− 1)2 + 2(b− 1)2 + 2(c − 1)2 + (a− b)2 + (b− c)2 + (c − a)2 ≥ 0.

(b) The inequality in (b) follows by summing the inequality in (a) and the
obvious inequality

3(a− 1)(b− 1) + 3(b− 1)(c − 1) + 3(c − 1)(a− 1)≥ 0.

The equality holds for a = b = c = 1.

P 1.5. If a, b, c are nonnegative real numbers such that

a+ b+ c = 3, a ≥ b ≥ c,

then

(a) a2 b+ b2c + c2a ≥ ab+ bc + ca;

(b) 8(ab2 + bc2 + ca2) + 3abc ≤ 27;

(c)
18

a2 b+ b2c + c2a
≤

1
abc

+ 5.

Solution. (a) Write the inequality in the homogeneous form

3(a2 b+ b2c + c2a)≥ (a+ b+ c)(ab+ bc + ca),

which is equivalent to

a2 b+ b2c + c2a− 3abc ≥ ab2 + bc2 + ca2 − a2 b− b2c − c2a.

This inequality is true because

a2 b+ b2c + c2a− 3abc ≥ 0
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(by the AM-GM inequality) and

ab2 + bc2 + ca2 − a2 b− b2c − c2a = (a− b)(b− c)(c − a)≤ 0.

The equality holds for a = b = c = 1, and also for a = 3 and b = c = 0.

(b) Write the inequality in the homogeneous form

(a+ b+ c)3 ≥ 8(ab2 + bc2 + ca2) + 3abc,
∑

a3 + 3abc + 3
∑

a2 b ≥ 5
∑

ab2,
∑

a3 + 3abc −
�∑

ab2 +
∑

a2 b
�

≥ 4
�∑

ab2 −
∑

a2 b
�

,
∑

a3 + 3abc −
∑

ab(a+ b)≥ 4(a− b)(b− c)(c − a).

The inequality is true since

(a− b)(b− c)(c − a)≤ 0

and, by Schur’s inequality of degree three,
∑

a3 + 3abc −
∑

ab(a+ b)≥ 0.

The equality holds for a = b = c = 1, and also for a = b = 3/2 and c = 0.

(c) Since

ab2 + bc2 + ca2 − a2 b− b2c − c2a = (a− b)(b− c)(c − a)≤ 0,

it suffices to prove the symmetric inequality

36
(a2 b+ b2c + c2a) + (ab2 + bc2 + ca2)

≤
1

abc
+ 5,

which is equivalent to

36
(a+ b+ c)(ab+ bc + ca)− 3abc

≤
1

abc
+ 5,

12
ab+ bc + ca− abc

≤
1

abc
+ 5,

12
a(b+ c)− (a− 1)bc

≤
1

a · bc
+ 5,

12
a(3− a)− (a− 1)bc

≤
1

a · bc
+ 5.

Since a− 1≥ 0 and
4bc ≤ (b+ c)2 = (3− a)2,
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it suffices to show that

48
4a(3− a)− (a− 1)(3− a)2

≤
4

a(3− a)2
+ 5,

which is equivalent to

48
(3− a)(3+ a2)

≤
4

a(3− a)2
+ 5,

5a5 − 30a4 + 60a3 − 38a2 − 9a+ 12≥ 0,

(a− 1)2(5a3 − 20a2 + 15a+ 12)≥ 9.

We need to show that 1≤ a ≤ 3 involves

5a3 − 20a2 + 15a+ 12≥ 0.

If 1≤ a ≤ 2, then

5a3 − 20a2 + 15a+ 12= 5a(a− 2)2 + (12− 5a)> 0.

If 2≤ a ≤ 3, then

5a3 − 20a2 + 15a+ 12= 5(a− 2)3 + 10a2 − 45a+ 52≥ 10a2 − 45a+ 52> 0

= 10
�

a−
9
4

�2

+
11
8
> 0.

The equality holds for a = b = c = 1.

P 1.6. If a, b, c are nonnegative real numbers such that

a2 + b2 + c2 = 3, a ≥ b ≥ c,

then

ab2 + bc2 + ca2 ≤
3
4
(ab+ bc + ca+ 1).

Solution. Let us denote

p = a+ b+ c, q = ab+ bc + ca.

From a2 + b2 + c2 = 3, it follows that

2q = p2 − 3.
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In addition, from the known inequalities

(a+ b+ c)2 ≥ a2 + b2 + c2

and
3(a2 + b2 + c2)≥ (a+ b+ c)2,

we get p
3≤ p ≤ 3.

Since
ab2 + bc2 + ca2 − a2 b− b2c − c2a = (a− b)(b− c)(c − a)≤ 0,

it suffices to show that

ab2 + bc2 + ca2 + (a2 b+ b2c + c2a)≤
3
2
(ab+ bc + ca+ 1).

which is equivalent to

pq ≤ 3abc +
3
2
(q+ 1),

6abc + 3(q+ 1)≥ 2pq.

Consider two cases:
p

3≤ p ≤
12
5

and
12
5
≤ p ≤ 3.

Case 1:
p

3≤ p ≤
12
5

. Since

6abc + 3(q+ 1)− 2pq ≥ 3(q+ 1)− 2pq = 3− (2p− 3)q =
1
2
[6− (2p− 3)(p2− 3)],

it suffices to show that
(2p− 3)(p2 − 3)≤ 6.

Indeed, we have

(2p− 3)(p2 − 3)≤
�

24
5
− 3

��

144
25
− 3

�

=
621
125

< 6.

Case 2:
12
5
≤ p ≤ 3. According to Schur’s inequality of degree three, we have

p3 + 9abc ≥ 4pq.

Thus, it suffices to prove that

2(4pq− p3) + 9(q+ 1)≥ 6pq,

which is equivalent to
(2p+ 9)q− 2p3 + 9≥ 0,
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(2p+ 9)(p2 − 3)− 4p3 + 18≥ 0,

−2p3 + 9p2 − 6p− 9≥ 0,

(3− p)(2p2 − 3p− 3)≥ 0.

This inequality is true since 3− p ≥ 0 and

2p2 − 3p− 3≥
24
5

p− 3p− 3=
9
5

p− 3≥
9
5
·

12
5
− 3> 0.

The equality holds for a = b = c = 1.

P 1.7. If a, b, c are nonnegative real numbers such that a2 + b2 + c2 = 3, then

a2 b3 + b2c3 + c2a3 ≤ 3.

(Vasile C., 2005)

Solution. Let (x , y, z) be a permutation of (a, b, c) such that

x ≥ y ≥ z.

Since
x2 y2 ≥ z2 x2 ≥ y2z2,

the rearrangement inequality yields

a2 b3 + b2c3 + c2a3 = b · a2 b2 + c · b2c2 + a · c2a2 ≤ x · x2 y2 + y · z2 x2 + z · y2z2

= y(x3 y + z2 x2 + yz3)≤ y

�

x2 ·
x2 + y2

2
+ z2 x2 + z2 ·

y2 + z2

2

�

=
y(x2 + z2)(x2 + y2 + z2)

2
=

3y(x2 + z2)
2

.

Thus, it suffices to show that
y(x2 + z2)≤ 2

for x2 + y2 + z2 = 3. By the AM-GM inequality, we get

6= 2y2 + (x2 + z2) + (x2 + z2)≥ 3 3
Æ

2y2(x2 + z2)2.

The equality holds for a = b = c = 1.

P 1.8. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

a4 b2 + b4c2 + c4a2 + 4≥ a3 b3 + b3c3 + c3a3.
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Solution. Write the inequality as

a2(a2 b2 + c4 − ab3 − ac3) + 4≥ b2c2(bc − b2).

Since

2
∑

(a2 b2 + c4 − ab3 − ac3) =
∑

[a4 + b4 + 2a2 b2 − 2ab(a2 + b2)]

=
∑

(a2 + b2)(a− b)2 ≥ 0,

we may assume (without loss of generality) that

a2 b2 + c4 − ab3 − ac3 ≥ 0.

Thus, it suffices to show that

4≥ b2c2(bc − b2).

Since

bc − b2 ≤
c2

4
,

it is enough to prove that
16≥ b2c4.

From

3= a+ b+ c ≥ b+
c
2
+

c
2
≥ 3

3

√

√

b
� c

2

�2
,

the conclusion follows. The equality holds for a = 0, b = 1, c = 2 (or any cyclic
permutation).

P 1.9. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

(a) ab2 + bc2 + ca2 + abc ≤ 4;

(b)
a

4− b
+

b
4− c

+
c

4− a
≤ 1;

(c) ab3 + bc3 + ca3 + (ab+ bc + ca)2 ≤ 12;

(d)
ab2

1+ a+ b
+

bc2

1+ b+ c
+

ca2

1+ c + a
≤ 1.
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Solution. (a) First Solution. Let (x , y, z) be a permutation of (a, b, c) such that

x ≥ y ≥ z.

As shown in the second solution of P 1.1,

ab2 + bc2 + ca2 ≤ y(x2 + xz + z2);

hence
ab2 + bc2 + ca2 + abc ≤ y(x + z)2.

Thus, it suffices to show that x + y + z = 3 involves

y(x + z)2 ≤ 4.

According to the AM-GM inequality, we have

1
4

y(x + z)2 = y ·
x + z

2
·

x + z
2
≤





y +
x + z

2
+

x + z
2

3





3

= 1.

The equality holds for a = b = c = 1, and also for a = 0, b = 1, c = 2 (or any cyclic
permutation).

Second Solution. Without loss of generality, assume that b is between a and c;
that is,

(b− a)(b− c)≤ 0, b2 + ca ≤ b(c + a).

Therefore,

ab2 + bc2 + ca2 + abc = a(b2 + ca) + bc2 + abc ≤ ab(c + a) + bc2 + abc

= b(a+ c)2 = b(3− b)2 = 4+ (b3 − 6b2 + 9b− 4) = 4− (1− b)2(4− b)≤ 4.

Third Solution. Write the inequality in the homogeneous form

4(a+ b+ c)3 ≥ 27(ab2 + bc2 + ca2 + abc).

Without loss of generality, suppose that a = min{a, b, c}. Putting b = a + x and
c = a+ y , where x , y ≥ 0, the inequality can be restated as

9(x2 − x y + y2)a+ (2x − y)2(x + 4y)≥ 0,

which is obviously true.

(b) First Solution. Write the inequality in the homogeneous form

∑ a
4a+ b+ 4c

≤
1
3

.
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Multiplying by a+ b+ c, the inequality becomes as follows:

∑ a2 + ab+ ac
4a+ b+ 4c

≤
a+ b+ c

3
,

∑

�

a2 + ab+ ac
4a+ b+ 4c

−
a
4

�

≤
a+ b+ c

12
,

∑ 9ab
4a+ b+ 4c

≤ a+ b+ c.

Since

9
4a+ b+ 4c

=
9

(2a+ c) + (2a+ c) + (2c + b)
≤

1
2a+ c

+
1

2a+ c
+

1
2c + b

=
2

2a+ c
+

1
2c + b

,

we have
∑ 9ab

4a+ b+ 4c
≤
∑ 2ab

2a+ c
+
∑ ab

2c + b
=
∑ 2ab

2a+ c
+
∑ bc

2a+ c

=
∑ 2ab+ bc

2a+ c
=
∑

b = a+ b+ c.

The equality holds for a = b = c = 1, and also for a = 0, b = 1, c = 2 (or any cyclic
permutation).

Second Solution. Write the inequality as follows:
∑

a(4− a)(4− c)≤ (4− a)(4− b)(4− c),

32+
∑

ab2 + abc ≤ 4
�∑

a2 + 2
∑

ab
�

,

32+
∑

ab2 + abc ≤ 4
�∑

a
�2

,

ab2 + bc2 + ca2 + abc ≤ 4.

The last inequality is just the inequality in (a).

(c) Using the inequality in (a), we get

(a+ b+ c)(ab2 + bc2 + ca2 + abc)≤ 12,

which is equivalent to the desired inequality

ab3 + bc3 + ca3 + (ab+ bc + ca)2 ≤ 12.

(d) Let q = ab+ bc + ca. Since
∑

ab2(1+ b+ c)(1+ c+ a) =
∑

ab2(4+q+ c+ c2) = (4+q)
∑

ab2+(3+q)abc
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and
∏

(1+ a+ b) = 1+
∑

(a+ b) +
∑

(b+ c)(c + a) +
∏

(a+ b)

= 7+ 3q+
∑

c2 + (3q− abc) = 16+ 4q− abc,

the inequality is equivalent to

(4+ q)
∑

ab2 + (3+ q)abc ≤ 16+ 4q− abc,

(4+ q)
�∑

ab2 + abc − 4
�

≤ 0.

According to (a), the desired inequality is clearly true.

Remark. The following statement is also valid:

• If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

ab2 + bc2 + ca2 + abc + (a− 1)2(b− 1)2(c − 1)2 ≤ 4,

with equality for a = b = c = 1, and also for a = 0, b = 1, c = 2 (or any cyclic
permutation).

Having in view the second solution of (a), it is enough to show that

(a− 1)2(b− 1)2(c − 1)2 ≤ (4− b)(1− b)2,

where b is between a and c. This is true if

|(a− 1)(c − 1)| ≤
p

4− b.

Assuming that a ≤ c (hence a ≤ b ≤ c, a ≤ 1, c ≥ 1), the inequality can be written
as follows:

(1− a)(c − 1)≤
p

4− b,

a+ c − 1≤ ac +
p

4− b,

2− b ≤ ac +
p

4− b.

This is true if
2− b ≤

p

4− b.

Indeed,
p

4− b− (2− b) =
4− b− (2− b)2
p

4− b+ 2− b
=

b(3− b)
p

4− b+ 2− b

=
b(a+ c)

p
4− b+ 2− b

)≥ 0.



56 Vasile Cîrtoaje

P 1.10. If a, b, c are positive real numbers, then

1
a(a+ 2b)

+
1

b(b+ 2c)
+

1
c(c + 2a)

≥
3

ab+ bc + ca
.

First Solution. Write the inequality as

∑ a(b+ c) + bc
a(a+ 2b)

≥ 3,

∑ b+ c
a+ 2b

+
∑ bc

a(a+ 2b)
≥ 3.

It suffices to show that
∑ b+ c

a+ 2b
≥ 2

and
∑ bc

a(a+ 2b)
≥ 1.

By the Cauchy-Schwarz inequality, we have

∑ b+ c
a+ 2b

≥

�∑

(b+ c)
�2

∑

(b+ c)(a+ 2b)
=

4
�∑

a
�2

2
∑

a2 + 4
∑

ab
= 2

and

∑ bc
a(a+ 2b)

≥

�∑

bc
�2

abc
∑

(a+ 2b)
=

�∑

bc
�2

3abc
∑

a
= 1+

∑

a2(b− c)2

6abc
∑

a
≥ 1.

The equality holds for a = b = c.

Second Solution. We apply the Cauchy-Schwarz inequality in the following way

∑ 1
a(a+ 2b)

≥

�∑

c
�2

∑

ac2(a+ 2b)
=

�∑

a
�2

∑

a2 b2 + 2abc
∑

a
.

Thus, it suffices to show that
�∑

a
�2

∑

a2 b2 + 2abc
∑

a
≥

3
∑

ab
,

which is equivalent to
�∑

ab
��∑

a2 + 2
∑

ab
�

≥ 3
∑

a2 b2 + 6abc
∑

a,

∑

ab(a2 + b2)≥
∑

a2 b2 + abc
∑

a.
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The last inequality follows by summing the obvious inequalities

∑

ab(a2 + b2)≥ 2
∑

a2 b2

and
∑

a2 b2 ≥ abc
∑

a.

P 1.11. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a
b2 + 2c

+
b

c2 + 2a
+

c
a2 + 2b

≥ 1.

Solution. Using the Cauchy-Schwarz inequality, we get

∑ a
b2 + 2c

≥

�∑

a
�2

∑

a(b2 + 2c)
= 1+

∑

a2 −
∑

ab2

∑

ab2 + 2
∑

ab
.

Thus, it suffices to show that
∑

a2 −
∑

ab2 ≥ 0.

Write this inequality in the homogeneous form

(a+ b+ c)(a2 + b2 + c2)≥ 3(ab2 + bc2 + ca2),

which is equivalent to the obvious inequality

a(a− c)2 + b(b− a)2 + c(c − b)2 ≥ 0.

The equality holds for a = b = c = 1.

P 1.12. If a, b, c are positive real numbers such that a+ b+ c ≥ 3, then

a− 1
b+ 1

+
b− 1
c + 1

+
c − 1
a+ 1

≥ 0.
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Solution. Write the inequality as

(a2 − 1)(c + 1) + (b2 − 1)(a+ 1) + (c2 − 1)(b+ 1)≥ 0,

ab2 + bc2 + ca2 + a2 + b2 + c2 ≥ a+ b+ c + 3.

From
a(b− 1)2 + b(c − 1)2 + c(a− 1)2 ≥ 0,

we get
ab2 + bc2 + ca2 ≥ 2(ab+ bc + ca)− (a+ b+ c).

Using this inequality yields

ab2 + bc2 + ca2 + a2 + b2 + c2 − a− b− c − 3≥ (a+ b+ c)2 − 2(a+ b+ c)− 3

= (a+ b+ c − 3)(a+ b+ c + 1)≥ 0.

The equality holds for a = b = c = 1.

P 1.13. If a, b, c are positive real numbers such that a+ b+ c = 3, then

(a)
1

2ab2 + 1
+

1
2bc2 + 1

+
1

2ca2 + 1
≥ 1;

(b)
1

ab2 + 2
+

1
bc2 + 2

+
1

ca2 + 2
≥ 1.

Solution. By the AM-GM inequality, we have

1=
�

a+ b+ c
3

�3

≥ abc.

(a) Since

2ab2 + 1≤
2b
c
+ 1=

2b+ c
c

,

it suffices to show that

c
2b+ c

+
a

2c + a
+

b
2a+ b

≥ 1.

Using the Cauchy-Schwarz inequality, we get

∑ c
2b+ c

≥

�∑

c
�2

∑

c(2b+ c)
=
(a+ b+ c)2

(a+ b+ c)2
= 1.

The equality holds for a = b = c = 1.
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(b) By expanding, the inequality can be restated as

a3 b3c3 + abc(a2 b+ b2c + c2a)≤ 4.

Applying the AM-GM inequality gives

(a+ b+ c)3 =
∑

a3 + 6abc + 3
∑

ab2 + 3
∑

a2 b

≥ 3abc + 6abc + 9abc + 3
∑

a2 b,

i.e.
a2 b+ b2c + c2a ≤ 9− 6abc.

Therefore, it suffices to show that

a3 b3c3 + abc(9− 6abc)≤ 4,

which is equivalent to the obvious inequality

(abc − 1)2(abc − 4)≤ 0.

The equality holds for a = b = c = 1.

P 1.14. If a, b, c are positive real numbers such that a+ b+ c = 3, then

ab
9− 4bc

+
bc

9− 4ca
+

ca
9− 4ab

≤
3
5

.

Solution. We have
∑ ab

9− 4bc
≤
∑ ab

9− (b+ c)2
=
∑ b

3+ b+ c
=
∑ b

a+ 2b+ 2c

=
1
2

∑

�

1−
a+ 2c

a+ 2b+ 2c

�

=
3
2
−

1
2

∑ a+ 2c
a+ 2b+ 2c

.

Thus, it suffices to show that
∑ a+ 2c

a+ 2b+ 2c
≥

9
5

.

Using the Cauchy-Schwarz inequality, we get

∑ a+ 2c
a+ 2b+ 2c

≥
[
∑

(a+ 2c)]2
∑

(a+ 2c)(a+ 2b+ 2c)
=

9(a+ b+ c)2

5(a+ b+ c)2
=

9
5

.

The equality holds for a = b = c = 1.
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P 1.15. If a, b, c are positive real numbers such that a+ b+ c = 3, then

(a)
a2

2a+ b2
+

b2

2b+ c2
+

c2

2c + a2
≥ 1;

(b)
a2

a+ 2b2
+

b2

b+ 2c2
+

c2

c + 2a2
≥ 1.

Solution. (a) By the Cauchy-Schwarz inequality, we have

∑ a2

2a+ b2
≥

�∑

a2
�2

∑

a2(2a+ b2)
=

∑

a4 + 2
∑

a2 b2

2
∑

a3 +
∑

a2 b2
.

Thus, it suffices to prove that
∑

a4 +
∑

a2 b2 ≥ 2
∑

a3,

which is equivalent to the homogeneous inequalities

3
∑

a4 + 3
∑

a2 b2 ≥ 2
�∑

a
��∑

a3
�

,
∑

a4 + 3
∑

a2 b2 − 2
∑

ab(a2 + b2)≥ 0,
∑

(a− b)4 ≥ 0.

The equality holds for a = b = c = 1.

(b) By the Cauchy-Schwarz inequality, we get

∑ a2

a+ 2b2
≥

�∑

a2
�2

∑

a2(a+ 2b2)
=

∑

a4 + 2
∑

a2 b2

∑

a3 + 2
∑

a2 b2
.

Thus, it suffices to prove that
∑

a4 ≥
∑

a3.

We have
∑

a4 −
∑

a3 =
∑

(a4 − a3 − a+ 1) =
∑

(a− 1)(a3 − 1)≥ 0.

The equality holds for a = b = c = 1.

P 1.16. Let a, b, c be positive real numbers such that a+ b+ c = 3. Then,

1
a+ b2 + c3

+
1

b+ c2 + a3
+

1
c + a2 + b3

≤ 1.

(Vasile C., 2009)
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Solution (by Vo Quoc Ba Can). By the Cauchy-Schwarz inequality, we have

∑ 1
a+ b2 + c3

≤
∑ a3 + b2 + c
(a2 + b2 + c2)2

=

∑

a3 +
∑

a2 + 3

(a2 + b2 + c2)2
.

Therefore, it suffices to show that

(a2 + b2 + c2)2 ≥ a3 + b3 + c3 + (a2 + b2 + c2) + 3,

or, equivalently,

(a2 + b2 + c2)2 +
∑

a2(3− a)≥ 4(a2 + b2 + c2) + 3.

Let us denote t = a2 + b2 + c2. Applying again the Cauchy-Schwarz inequality, we
get

∑

a2(3− a)≥
[
∑

a(3− a)]2
∑

(3− a)
=
(9− a2 − b2 − c2)2

6
.

Thus, it is enough to show that

t2 +
(9− t)2

6
≥ 4t + 3.

This inequality reduces to (t − 3)2 ≥ 0. The equality occurs for a = b = c = 1.

P 1.17. If a, b, c are positive real numbers, then

1+ a2

1+ b+ c2
+

1+ b2

1+ c + a2
+

1+ c2

1+ a+ b2
≥ 2.

Solution. From

1+ b+ c2 ≤ 1+
1+ b2

2
+ c2,

we have
1+ a2

1+ b+ c2
≥

2(1+ a2)
1+ b2 + 2(1+ c2)

.

Thus, it suffices to show that

x
y + 2z

+
y

z + 2x
+

z
x + 2y

≥ 1,

where
x = 1+ a2, y = 1+ b2, z = 1+ c2.
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Using the Cauchy-Schwarz inequality gives

x
y + 2z

+
y

z + 2x
+

z
x + 2y

≥
(x + y + z)2

x(y + 2z) + y(z + 2x) + z(x + 2y)

=
(x + y + z)2

3(x y + yz + zx)
≥ 1.

The equality occurs for a = b = c = 1.

P 1.18. If a, b, c are nonnegative real numbers, then

a
4a+ 4b+ c

+
b

4b+ 4c + a
+

c
4c + 4a+ b

≤
1
3

.

(Pham Kim Hung, 2007)

Solution. If two of a, b, c are zero, then the inequality is trivial. Otherwise, multi-
plying by 4(a+ b+ c), the inequality becomes as follows:

∑ 4a(a+ b+ c)
4a+ 4b+ c

≤
4
3
(a+ b+ c),

∑

�

4a(a+ b+ c)
4a+ 4b+ c

− a
�

≤
1
3
(a+ b+ c),

∑ ca
4a+ 4b+ c

≤
1
9
(a+ b+ c).

By the Cauchy-Schwarz inequality, we get

9
4a+ 4b+ c

=
9

(2b+ c) + 2(2a+ b)
≤

1
2b+ c

+
2

2a+ b
.

Therefore,
∑ ca

4a+ 4b+ c
≤

1
9

∑

ca
�

1
2b+ c

+
2

2a+ b

�

=
1
9

�

∑ ca
2b+ c

+
∑ 2ab

2b+ c

�

=
1
9

∑

a,

as desired. The equality occurs for a = b = c, and also for a = 2b and c = 0 (or
any cyclic permutation).

P 1.19. If a, b, c are positive real numbers, then

a+ b
a+ 7b+ c

+
b+ c

b+ 7c + a
+

c + a
c + 7a+ b

≥
2
3

.
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Solution. Write the inequality as
∑

�

a+ b
a+ 7b+ c

−
1
k

�

≥
2
3
−

3
k

, k > 0,

∑ (k− 1)a+ (k− 7)b− c
a+ 7b+ c

≥
2k− 9

3
.

Consider that all fractions in the left hand side are nonnegative and apply the
Cauchy-Schwarz inequality, as follows:

∑ (k− 1)a+ (k− 7)b− c
a+ 7b+ c

≥
[(k− 1)

∑

a+ (k− 7)
∑

b−
∑

c]2
∑

(a+ 7b+ c)[(k− 1)a+ (k− 7)b− c]

=
(2k− 9)2

�∑

a
�2

(8k− 51)
∑

a2 + 2(5k− 15)
∑

ab
.

We choose k = 12 to have 8k− 51= 5k− 15, hence

(8k− 51)
∑

a2 + 2(5k− 15)
∑

ab = 45
�∑

a
�2

.

For this value of k, the desired inequality
∑ (k− 1)a+ (k− 7)b− c

a+ 7b+ c
≥

2k− 9
3

can be restated as
∑ 11a+ 5b− c

a+ 7b+ c
≥ 5.

Without loss of generality, assume that a = max{a, b, c}. Consider further two
cases.
Case 1: 11b+ 5c − a ≥ 0. By the Cauchy-Schwarz inequality, we have

∑ 11a+ 5b− c
a+ 7b+ c

≥
[
∑

(11a+ 5b− c)]2
∑

(a+ 7b+ c)(11a+ 5b− c)
=

225
�∑

a
�2

45
�∑

a
�2 = 5.

Case 2: 11b+ 5c − a < 0. We have
∑ a+ b

a+ 7b+ c
>

a+ b
a+ 7b+ c

=
2
3
+

a− 11b− 2c
3(a+ 7b+ c)

>
2
3

.

Thus, the proof is completed. The equality holds for a = b = c.

P 1.20. If a, b, c are positive real numbers, then

a+ b
a+ 3b+ c

+
b+ c

b+ 3c + a
+

c + a
c + 3a+ b

≥
6
5

.

(Vasile C., 2007)
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Solution. Due to homogeneity, we may assume that

a+ b+ c = 1,

when the inequality becomes

∑ 1− c
1+ 2b

≥
6
5

,

5
∑

(1− c)(1+ 2c)(1+ 2a)≥ 6(2a+ 1)(2b+ 1)(2c + 1),

5
�

4+ 6
∑

ab− 4
∑

a2 b
�

= 6
�

3+ 4
∑

ab+ 8abc
�

,

1+ 3
∑

ab ≥ 10
∑

a2 b+ 24abc,

(a+ b+ c)3 + 3(a+ b+ c)(ab+ bc + ca)≥ 10(a2 b+ b2c + ca) + 24abc,
∑

a3 + 6
∑

ab2 ≥ 4
∑

a2 b+ 9abc,
�

2
∑

a3 −
∑

ab(a+ b)
�

+ 3
�∑

ab(a+ b)− 6abc
�

+ 10
�∑

ab2 −
∑

a2 b
�

≥ 0,
∑

(a+ b)(a− b)2 + 3
∑

c(a− b)2 + 10
�∑

ab2 −
∑

a2 b
�

≥ 0,
∑

(a+ b+ 3c)(a− b)2 + 10(a− b)(b− c)(c − a)≥ 0.

Assume that
a =min{a, b, c},

and use the substitution

b = a+ x , c = a+ y, x , y ≥ 0.

The inequality becomes

(5a+ x + 3y)x2 + (5a+ x + y)(x − y)2 + (5a+ 3x + y)y2 − 10x y(x − y)≥ 0.

Clearly, it suffices to consider the case a = 0, when the inequality becomes

x3 − 4x2 y + 6x y2 + y3 ≥ 0.

Indeed, we have

x3 − 4x2 y + 6x y2 + y3 = x(x − 2y)2 + 2x y2 + y3 ≥ 0.

The equality holds for a = b = c.
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P 1.21. If a, b, c are positive real numbers, then

2a+ b
2a+ c

+
2b+ c
2b+ a

+
2c + a
2c + b

≥ 3.

(Pham Kim Hung, 2007)

Solution. Without loss of generality, assume that a =max{a, b, c}. There are two
cases to consider.

Case 1: a ≤ 2b+ 2c. Write the inequality as

∑

�

2a+ b
2a+ c

−
1
2

�

≥
3
2

,

∑ 2a+ 2b− c
2a+ c

≥ 3.

Since
2a+ 2b− c > 0, 2b+ 2c − a ≥ 0, 2c + 2a− b > 0,

we may apply the Cauchy-Schwarz inequality to get

∑ 2a+ 2b− c
2a+ c

≥

�∑

(2a+ 2b− c)
�2

∑

(2a+ 2b− c)(2a+ c)
=

9
�∑

a
�2

3
�∑

a
�2 = 3.

Case 2: a > 2b+ 2c. Since

2a+ c − (2b+ a) = (a− 2b− 2c) + 3c > 0,

we have
2a+ b
2a+ c

+
2b+ c
2b+ a

>
2a+ b
2a+ c

+
2b+ c
2a+ c

= 1+
3b

2a+ c
> 1.

Therefore, it suffices to show that

2c + a
2c + b

≥ 2.

Indeed,
2c + a
2c + b

>
2c + 2b+ 2c

2c + b
= 2.

Thus, the proof is completed. The equality holds for a = b = c.

P 1.22. If a, b, c are positive real numbers, then

a(a+ b)
a+ c

+
b(b+ c)

b+ a
+

c(c + a)
c + b

≤
3(a2 + b2 + c2)

a+ b+ c
.

(Pham Huu Duc, 2007)
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Solution. Write the inequality as

∑ a(a+ b)(a+ b+ c)
a+ c

≤ 3(a2 + b2 + c2),

∑ ab(a+ b) + a(a+ b)(a+ c)
a+ c

≤ 3(a2 + b2 + c2),

∑ ab(a+ b)
a+ c

≤ 2(a2 + b2 + c2)− (ab+ bc + ca).

Let (x , y, z) be a permutation of (a, b, c) such that x ≥ y ≥ z. Since

x + y ≥ z + x ≥ y + z

and
x y(x + y)≥ zx(z + x)≥ yz(y + z),

by the rearrangement inequality, we have

∑ ab(a+ b)
a+ c

≤
x y(x + y)

y + z
+

zx(z + x)
z + x

+
yz(y + z)

x + y
.

Consequently, it suffices to show that

x y(x + y)
y + z

+
yz(y + z)

x + y
≤ 2(x2 + y2 + z2)− x y − yz − 2zx .

Write this inequality as follows:

x y
�

x + y
y + z

− 1
�

+ yz
�

y + z
x + y

− 1
�

≤ 2(x2 + y2 + z2 − x y − yz − zx),

x y(x − z)
y + z

+
yz(z − x)

x + y
≤ (x − y)2 + (y − z)2 + (z − x)2,

y(x + y + z)(z − x)2

(x + y)(y + z)
≤ (x − y)2 + (y − z)2 + (z − x)2.

Since
y(x + y + z)< (x + y)(y + z),

the last inequality is clearly true. The equality holds for a = b = c.

P 1.23. If a, b, c are real numbers, then

a2 − bc
4a2 + b2 + 4c2

+
b2 − ca

4b2 + c2 + 4a2
+

c2 − ab
4c2 + a2 + 4b2

≥ 0.

(Vasile C., 2006)
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Solution. Since
4(a2 − bc)

4a2 + b2 + 4c2
= 1−

(b+ 2c)2

4a2 + b2 + 4c2
,

we may rewrite the inequality as

(b+ 2c)2

4a2 + b2 + 4c2
+

(c + 2a)2

4b2 + c2 + 4a2
+

(a+ 2b)2

4c2 + a2 + 4b2
≤ 3.

Using the Cauchy-Schwarz inequality gives

(b+ 2c)2

4a2 + b2 + 4c2
=

(b+ 2c)2

(2a2 + b2) + 2(2c2 + a2)
≤

b2

2a2 + b2
+

2c2

2c2 + a2
.

Therefore,

∑ (b+ 2c)2

4a2 + b2 + 4c2
≤
∑ b2

2a2 + b2
+
∑ 2c2

2c2 + a2
=
∑ b2

2a2 + b2
+
∑ 2a2

2a2 + b2
= 3.

The equality occurs when

a(2b2 + c2) = b(2c2 + a2) = c(2a2 + b2);

that is, when a = b = c, and also when a = 2b = 4c (or any cyclic permutation).

Remark. Similarly, we can prove the following generalization.

• Let a, b, c be real numbers. If k > 0, then

a2 − bc
2ka2 + b2 + k2c2

+
b2 − ca

2kb2 + c2 + k2a2
+

c2 − ab
2kc2 + a2 + k2 b2

≥ 0,

with equality for a = b = c, and also for a = kb = k2c (or any cyclic permutation).

P 1.24. If a, b, c are real numbers, then

(a) a(a+ b)3 + b(b+ c)3 + c(c + a)3 ≥ 0;

(b) a(a+ b)5 + b(b+ c)5 + c(c + a)5 ≥ 0.
(Vasile C., 1989)

Solution. (a) Using the substitution

b+ c = 2x , c + a = 2y, a+ b = 2z,

which are equivalent to

a = y + z − x , b = z + x − y, c = x + y − z,
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the inequality becomes in succession

x4 + y4 + z4 + x y3 + yz3 + zx3 ≥ x3 y + y3z + z3 x ,
∑

(x4 + 2x y3 − 2x3 y + y4)≥ 0,
∑

(x2 − x y − y2)2 +
∑

x2 y2 ≥ 0,

the last being clearly true. The equality occurs for a = b = c = 0.

(b) Using the same substitution, the inequality turns into

x6 + y6 + z6 + x y5 + yz5 + zx5 ≥ x5 y + y5z + z5 x ,

which is equivalent to
∑

[x6 + y6 − 2x y(x4 − y4)]≥ 0,

∑

[(x2 + y2)(x4 − x2 y2 + y4)− 2x y(x2 + y2)(x2 − y2)]≥ 0,
∑

(x2 + y2)(x2 − x y − y2)2 ≥ 0.

The equality occurs for a = b = c = 0.

P 1.25. If a, b, c are real numbers, then

3(a4 + b4 + c4) + 4(a3 b+ b3c + c3a)≥ 0.

(Vasile C., 2005)

Solution. If a, b, c are nonnegative, then the inequality is trivial. Since the inequal-
ity remains unchanged by replacing a, b, c with −a,−b,−c, respectively, it suffices
to consider the case when only one of a, b, c is negative; let c < 0. Replacing now
c with −c, the inequality can be restated as

3(a4 + b4 + c4) + 4a3 b ≥ 4(b3c + c3a),

where a, b, c ≥ 0. It is enough to prove that

3(a4 + b4 + c4 + a3 b)≥ 4(b3c + c3a).

Case 1: a ≤ b. Since a3 b ≥ a4, it suffices to show that

6a4 + 3b4 + 3c4 ≥ 4(b3c + ac3).

Using the AM-GM inequality yields

3b4 + c4 ≥ 4
4
p

b12c4 = 4b3c.
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Therefore, it suffices to show that

6a4 + 2c4 ≥ 4ac3.

Indeed, we have

3a4 + c4 = 3a4 +
1
3

c4 +
1
3

c4 +
1
3

c4 ≥ 4
4

√

√a4c12

9
=

4
p

3
ac3 ≥ 2ac3.

Case 2: a ≥ b. Since 3a3 b ≥ 3b4, it suffices to show that

3a4 + 6b4 + 3c4 ≥ 4(b3c + ac3).

By the AM-GM inequality, we get

6b4 +
c4

8
= 2b4 + 2b4 + 2b4 +

c4

8
≥ 4

4
p

b12c4 = 4b3c.

Thus, we still have to show that

3a4 +
23
8

c4 ≥ 4ac3.

We will prove the sharper inequality

3a4 +
5
2

c4 ≥ 4ac3.

Indeed, we have

3a4 +
5
2

c4 = 3a4 +
5
6

c4 +
5
6

c4 +
5
6

c4 ≥ 4
4

√

√125a4c12

72
≥ 4ac3.

The equality occurs for a = b = c = 0.

P 1.26. If a, b, c are positive real numbers, then

(a− b)(2a+ b)
(a+ b)2

+
(b− c)(2b+ c)
(b+ c)2

+
(c − a)(2c + a)
(c + a)2

≥ 0.

(Vasile C., 2006)

Solution. Since

(a− b)(2a+ b)
(a+ b)2

=
2a2 − b(a+ b)
(a+ b)2

=
2a2

(a+ b)2
−

b
a+ b

,
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we can write the inequality as

2
∑

� a
a+ b

�2
−
∑ b

a+ b
≥ 0.

According to P 1.1 in Volume 2, we have

2
∑

� a
a+ b

�2
=
∑

� a
a+ b

�2
+
∑

�

b
b+ c

�2

=
∑

�

1
(1+ b/a)2

+
1

(1+ c/b)2

�

≥
∑ 1

1+ c/a
=
∑ a

a+ c
=
∑ b

b+ a
.

Therefore,

2
∑

� a
a+ b

�2
−
∑ b

a+ b
≥
∑ b

b+ a
−
∑ b

a+ b
= 0.

The equality holds for a = b = c.

P 1.27. If a, b, c are positive real numbers, then

(a− b)(2a+ b)
a2 + ab+ b2

+
(b− c)(2b+ c)

b2 + bc + c2
+
(c − a)(2c + a)

c2 + ca+ a2
≥ 0.

(Vasile C., 2006)

Solution. Since

(a− b)(2a+ b)
a2 + ab+ b2

=
3a2 − (a2 + ab+ b2)

a2 + ab+ b2
=

3a2

a2 + ab+ b2
− 1,

we can write the inequality as

∑ a2

a2 + ab+ b2
≥ 1,

∑ 1
1+ b/a+ (b/a)2

≥ 1.

Clearly, this inequality follows immediately from P 1.45 in Volume 2. The equality
holds for a = b = c.
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P 1.28. If a, b, c are positive real numbers, then

(a− b)(3a+ b)
a2 + b2

+
(b− c)(3b+ c)

b2 + c2
+
(c − a)(3c + a)

c2 + a2
≥ 0.

(Vasile C., 2006)

Solution. Since
(a− b)(3a+ b) = (a− b)2 + 2(a2 − b2),

we can write the inequality as
∑ (a− b)2

a2 + b2
+ 2

∑ a2 − b2

a2 + b2
≥ 0.

Using the identity
∑ a2 − b2

a2 + b2
+
∏ a2 − b2

a2 + b2
= 0,

the inequality becomes
∑ (a− b)2

a2 + b2
≥ 2

∏ a2 − b2

a2 + b2
.

By the AM-GM inequality, we have

∑ (a− b)2

a2 + b2
≥ 3

3

√

√∏ (a− b)2

a2 + b2
.

Thus, it suffices to show that

3
3

√

√∏ (a− b)2

a2 + b2
≥ 2

∏ a2 − b2

a2 + b2
,

which is equivalent to

27
∏ (a− b)2

a2 + b2
≥ 8

∏ (a2 − b2)3

(a2 + b2)3
.

This inequality is true if

27
∏

(a2 + b2)2 ≥
∏

(a− b)(a+ b)3.

Assume that a = max{a, b, c}. For the nontrivial case a > c > b, we can get this
inequality by multiplying the inequalities

3(a2 + b2)2 ≥ 2(a− b)(a+ b)3,

3(c2 + b2)2 ≥ 2(c − b)(c + b)3,

3(a2 + c2)2 ≥ 2(a− c)(a+ c)3.

These inequalities are true because

3(a2 + b2)2 − 2(a− b)(a+ b)3 = a2(a− 2b)2 + b2(2a2 + 4ab+ 5b2)> 0.

The equality holds for a = b = c.
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P 1.29. Let a, b, c be positive real numbers such that abc = 1. Then,

1
1+ a+ b2

+
1

1+ b+ c2
+

1
1+ c + a2

≤ 1.

(Vasile C., 2005)

Solution. Using the substitution

a = x3, b = y3, c = z3,

we have to show that x yz = 1 involves

1
1+ x3 + y6

+
1

1+ y3 + z6
+

1
1+ z3 + x6

≤ 1.

By the Cauchy-Schwarz inequality, we have

∑ 1
1+ x3 + y6

≤
∑ z4 + x + y−2

(z2 + x2 + y2)2
=

∑

(z4 + x2 yz + x2z2)
(x2 + y2 + z2)2

.

So, it remains to show that

(x2 + y2 + z2)2 ≥
∑

x4 + x yz
∑

x +
∑

x2 y2,

which is equivalent to the known inequality
∑

x2 y2 ≥ x yz
∑

x .

The equality occurs for a = b = c = 1.

Remark. Actually, the following generalization holds:

• Let a, b, c be positive real numbers such that abc = 1. If k ≥ 0, then

1
1+ a+ bk

+
1

1+ b+ ck
+

1
1+ c + ak

≤ 1.

P 1.30. Let a, b, c be positive real numbers such that abc = 1. Then,

a
(a+ 1)(b+ 2)

+
b

(b+ 1)(c + 2)
+

c
(c + 1)(a+ 2)

≥
1
2

.
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Solution. Using the substitution

a =
x
y

, b =
y
z

, c =
z
x

,

where x , y, z are positive real numbers, the inequality can be restated as

zx
(x + y)(y + 2z)

+
x y

(y + z)(z + 2x)
+

yz
(z + x)(x + 2y)

≥
1
2

.

By the Cauchy-Schwarz inequality, we have

∑ zx
(x + y)(y + 2z)

≥

�∑

zx
�2

∑

zx(x + y)(y + 2z)
=

1
2

.

The equality occurs for a = b = c = 1.

P 1.31. If a, b, c are positive real numbers such that ab+ bc + ca = 3, then

(a+ 2b)(b+ 2c)(c + 2a)≥ 27.

(Michael Rozenberg, 2007)

Solution. Write the inequality in the homogeneous form

A+ B ≥ 0,

where

A= (a+ 2b)(b+ 2c)(c + 2a)− 3(a+ b+ c)(ab+ bc + ca)
= (a− b)(b− c)(c − a)

and
B = 3(ab+ bc + ca)[a+ b+ c −

Æ

3(ab+ bc + ca)].

Since

B =
3(ab+ bc + ca)[(a− b)2 + (b− c)2 + (c − a)2]

2(a+ b+ c +
p

3(ab+ bc + ca)]

≥
3(ab+ bc + ca)[(a− b)2 + (b− c)2 + (c − a)2]

4(a+ b+ c)
,

it suffices to show that

4(a+ b+ c)(a− b)(b− c)(c−a)+3(ab+ bc+ ca)[(a− b)2+(b− c)2+(c−a)2]≥ 0.
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Consider c =min{a, b, c}, and use the substitution

a = c + x , b = c + y, x , y ≥ 0.

The inequality becomes

−4x y(x − y)(3c + x + y) + 6(x2 − x y + y2)[3c2 + 2(x + y)c + x y]≥ 0,

which is equivalent to

9(x2 − x y + y2)c2 + 6Cc + D ≥ 0,

where
C = x3 − x2 y + x y2 + y3 ≥ x(x2 − x y + y2),

D = x y(x2 + 5y2 − 3x y)≥ (2
p

5− 3)x2 y2.

Since C ≥ 0 and D ≥ 0, the inequality is obvious. The equality holds for a = b =
c = 1.

P 1.32. If a, b, c are positive real numbers such that ab+ bc + ca = 3, then

a
a+ a3 + b

+
b

b+ b3 + c
+

c
c + c3 + a

≤ 1.

(Andrei Ciupan, 2005)

Solution. Write the inequality as

1
1+ a2 + b/a

+
1

1+ b2 + c/b
+

1
1+ c2 + a/c

≤ 1.

By the Cauchy-Schwarz inequality, we have

∑ 1
1+ a2 + b/a

≤
∑ c2 + 1+ ab
(c + a+ b)2

= 1.

The equality holds for a = b = c = 1.

P 1.33. If a, b, c are positive real numbers such that a ≥ b ≥ c and ab+ bc+ ca = 3,
then

1
a+ 2b

+
1

b+ 2c
+

1
c + 2a

≥ 1.
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Solution. According to the well known inequality

x + y + z ≥
Æ

3(x y + yz + zx),

where x , y, z are positive real numbers, it suffices to prove that

1
(a+ 2b)(b+ 2c)

+
1

(b+ 2c)(c + 2a)
+

1
(c + 2a)(a+ 2b)

≥
1
3

.

This is equivalent to the following inequalities

9(a+ b+ c)≥ (a+ 2b)(b+ 2c)(c + 2a),

3(a+ b+ c)(ab+ bc + ca)≥ (a+ 2b)(b+ 2c)(c + 2a),

a2 b+ b2c + c2a ≥ ab2 + bc2 + ca2,

(a− b)(b− c)(a− c)≥ 0.

The last inequality is clearly true for a ≥ b ≥ c. The equality occurs for a = b =
c = 1.

P 1.34. If a, b, c ∈ [0, 1], then

a
4b2 + 5

+
b

4c2 + 5
+

c
4a2 + 5

≤
1
3

.

Solution. Let

E(a, b, c) =
a

4b2 + 5
+

b
4c2 + 5

+
c

4a2 + 5
.

We have

E(a, b, c)− E(1, b, c) =
a− 1

4b2 + 5
+ c

�

1
4a2 + 5

−
1
9

�

= (1− a)
�

4c(1+ a)
9(4a2 + 5)

−
1

4b2 + 5

�

≤ (1− a)
�

4(1+ a)
9(4a2 + 5)

−
1
9

�

=
−(1− a)(1− 2a)2

9(4a2 + 5)
≤ 0,

and, similarly,

E(a, b, c)− E(a, 1, c)≤ 0, E(a, b, c)− E(a, b, 1)≤ 0.
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Therefore,

E(a, b, c)≤ E(1, b, c)≤ E(1,1, c)≤ E(1,1, 1) =
1
3

.

The equality occurs for a = b = c = 1, and also for a =
1
2

and b = c = 1 (or any

cyclic permutation).

P 1.35. If a, b, c ∈
�

1
3

, 3
�

, then

a
a+ b

+
b

b+ c
+

c
c + a

≥
7
5

.

Solution. Assume that a =max{a, b, c} and show that

E(a, b, c)≥ E(a, b,
p

ab )≥
7
5

,

where

E(a, b, c) =
a

a+ b
+

b
b+ c

+
c

c + a
.

We have

E(a, b, c)− E(a, b,
p

ab ) =
b

b+ c
+

c
c + a

−
2
p

b
p

a+
p

b

=

�p
a−
p

b
� �p

ab− c
�2

(b+ c)(c + a)
�p

a+
p

b
� ≥ 0.

Substituting x =
s

a
b

, the hypothesis a, b, c ∈
�

1
3

,3
�

involves x ∈
�

1
3

,3
�

. Then,

E(a, b,
p

ab)−
7
5
=

a
a+ b

+
2
p

b
p

a+
p

b
−

7
5

=
x2

x2 + 1
+

2
x + 1

−
7
5

=
3− 7x + 8x2 − 2x3

5(x + 1)(x2 + 1)

=
(3− x)[x2 + (1− x)2]

5(x + 1)(x2 + 1)
≥ 0.

The equality holds for a = 3, b =
1
3

and c = 1 (or any cyclic permutation).
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P 1.36. If a, b, c ∈
�

1
p

2
,
p

2
�

, then

3
a+ 2b

+
3

b+ 2c
+

3
c + 2a

≥
2

a+ b
+

2
b+ c

+
2

c + a
.

Solution. Write the inequality as

∑

�

3
a+ 2b

−
2

a+ b
+

1
ka
−

1
kb

�

≥ 0, k > 0,

∑ −(a− b)[a2 − (k− 3)ab+ 2b2]
kab(a+ 2b)(a+ b)

≥ 0.

Choosing k = 6, the inequality becomes

∑ (a− b)2(2b− a)
6ab(a+ 2b)(a+ b)

≥ 0.

Since
2b− a ≥

2
p

2
−
p

2= 0,

the conclusion follows. The equality holds for a = b = c.

P 1.37. If a, b, c are nonnegative real numbers, no two of which are zero, then

4abc
ab2 + bc2 + ca2 + abc

+
a2 + b2 + c2

ab+ bc + ca
≥ 2.

(Vo Quoc Ba Can, 2009)

First Solution. Without loss of generality, assume that b is between a and c; that
is,

b2 + ca ≤ b(c + a).

Then,

ab2 + bc2 + ca2 + abc = a(b2 + ca) + bc2 + abc

≤ ab(c + a) + bc2 + abc

= b(a+ c)2,

and it suffices to prove that

4ac
(a+ c)2

+
a2 + b2 + c2

ab+ bc + ca
≥ 2.
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This inequality is equivalent to

[a2 + c2 − b(a+ c)]2 ≥ 0.

The equality holds for a = b = c, and also for a = 0 and b = c (or any cyclic
permutation).

Second Solution. Let (x , y, z) be a permutation of (a, b, c) such that x ≥ y ≥ z.
As we have shown in the second solution of P 1.1,

ab2 + bc2 + ca2 ≤ y(x2 + xz + z2);

hence
ab2 + bc2 + ca2 + abc ≤ y(x + z)2.

Thus, it suffices to prove that

4x yz
y(x + z)2

+
x2 + y2 + z2

x y + yz + zx
≥ 2,

which is equivalent to
x2 + y2 + z2

x y + yz + zx
≥

2(x2 + z2)
x + z)2

,

(x2 + z2)2 − 2y(x + z)(x2 + z2) + y2(x + z)2 ≥ 0,

(x2 + z2 − x y − yz)2 ≥ 0.

P 1.38. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

1
ab2 + 8

+
1

bc2 + 8
+

1
ca2 + 8

≥
1
3

.

(Vasile C., 2007)

Solution. By expanding, we can write the inequality as

64≥ r3 + 16A+ 5rB,

64≥ r3 + (16− 5r)A+ 5r(A+ B),

where
r = abc, A= ab2 + bc2 + ca2, B = a2 b+ b2c + c2a.

By the AM-GM inequality, we have

r ≤
�

a+ b+ c
3

�3

= 1.
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On the other hand, by the inequality (a) in P 1.9, we get

A≤ 4− r,

and by Schur’s inequality, we have

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca),

which is equivalent to

A+ B ≤
27− 3r

4
.

Therefore, it suffices to prove that

64≥ r3 + (16− 5r)(4− r) +
5r(27− 3r)

4
.

We can write this inequality in the obvious form

r(1− r)(9+ 4r)≥ 0.

The equality holds for a = b = c = 1, and also for a = 0, b = 1, c = 2 (or any cyclic
permutation).

P 1.39. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

ab
bc + 3

+
bc

ca+ 3
+

ca
ab+ 3

≤
3
4

.

(Vasile C., 2008)

Solution. Using the inequality (a) in P 1.9, namely

a2 b+ b2c + c2a ≤ 4− abc,

we have
∑

ab(ca+ 3)(ab+ 3) = abc
∑

a2 b+ 9abc + 3
∑

a2 b2 + 9
∑

ab

≤ 13abc − a2 b2c2 + 3
∑

a2 b2 + 9
∑

ab.

On the other hand,

(ab+ 3)(bc + 3)(ca+ 3) = a2 b2c2 + 9abc + 9
∑

ab+ 27.

Therefore, it suffices to prove that

4
�

13abc − a2 b2c2 + 3
∑

a2 b2 + 9
∑

ab
�

≤ 3
�

a2 b2c2 + 9abc + 9
∑

ab+ 27
�

,
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which is equivalent to

7a2 b2c2 + 81≥ 25abc + 12
∑

a2 b2 + 9
∑

ab,

7r2 + 47r ≥ 3(q+ 3)(4q− 9),

where
q = ab+ bc + ca, r = abc, q ≤ 3, r ≤ 1.

Since
7r2 + 47r ≥ 9r2 + 45r,

it suffices to show that

3r2 + 15r ≥ (q+ 3)(4q− 9).

Consider the non-trivial case
9
4
< q ≤ 3,

and apply the fourth degree Schur’s inequality

r ≥
(p2 − q)(4q− p2)

6p
=
(9− q)(4q− 9)

18
.

It remains to show that

(9− q)2(4q− 9)2

108
+

5(9− q)(4q− 9)
6

≥ (q+ 3)(4q− 9),

which is equivalent to

(4q− 9)(3− q)(69q− 4q2 − 81)≥ 0.

This is true because

69q− 4q2 − 81= (3− q)(4q− 9) + 6(8q− 9)> 0.

The equality holds for a = b = c = 1, and also for a = 0 and b = c =
3
2

(or any

cyclic permutation).

P 1.40. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

(a)
a

b2 + 3
+

b
c2 + 3

+
c

a2 + 3
≥

3
4

;

(b)
a

b3 + 1
+

b
c3 + 1

+
c

a3 + 1
≥

3
2

.

(Vasile Cîrtoaje and Bin Zhao, 2005)
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Solution. (a) By the AM-GM inequality, we have

b2 + 3= b2 + 1+ 1+ 1≥ 4
4
p

b2 · 13 = 4
p

b.

Therefore,
3a

b2 + 3
= a−

ab2

b2 + 3
≥ a−

ab2

4
p

b
= a−

1
4

ab
p

b.

Taking account of this inequality and the similar ones, it suffices to prove that

ab
p

b+ bc
p

c + ca
p

a ≤ 3.

This inequality follows immediately by replacing a, b, c with
p

a,
p

b,
p

c in the in-
equality in P 1.7. The equality holds for a = b = c = 1.

(b) Using the AM-GM Inequality gives

a
b3 + 1

= a−
ab3

b3 + 1
≥ a−

ab3

2b
p

b
= a−

1
2

ab
p

b,

and, similarly,
b

c3 + 1
≥ b−

1
2

bc
p

c,
c

a3 + 1
≥ c −

1
2

ca
p

a.

Thus, it suffices to show that

ab
p

b+ bc
p

c + ca
p

a ≤ 3,

which follows from the inequality in P 1.7. The equality holds for a = b = c = 1.

Conjecture. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. If

0< k ≤ 3+ 2
p

3,

then
a

b2 + k
+

b
c2 + k

+
c

a2 + k
≥

3
1+ k

.

For k = 3+ 2
p

3, the equality occurs when a = b = c = 1, and again when a = 0,
b = 3−

p
3 and c =

p
3 (or any cyclic permutation thereof).

P 1.41. Let a, b, c be positive real numbers, and let

x = a+
1
b
− 1, y = b+

1
c
− 1, z = c +

1
a
− 1.

Prove that
x y + yz + zx ≥ 3.

(Vasile C., 1991)
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First Solution. Among x , y, z, there are two numbers either less than or equal to
1, or greater than or equal to 1. Let y and z be these numbers; that is,

(y − 1)(z − 1)≥ 0.

Since
x y + yz + zx − 3= (y − 1)(z − 1) + (x + 1)(y + z)− 4,

it suffices to show that
(x + 1)(y + z)≥ 4.

Since
y + z = b+

1
a
+ c +

1
c
− 2≥ b+

1
a

,

we have

(x + 1)(y + z)− 4≥ (x + 1)
�

b+
1
a

�

− 4= ab+
1

ab
− 2≥ 0.

The equality holds for a = b = c = 1.

Second Solution. Without loss of generality, assume that x =max{x , y, z}. Then,

x ≥
1
3
(x + y + z) =

1
3

��

a+
1
a

�

+
�

b+
1
b

�

+
�

c +
1
c

�

− 3
�

≥
1
3
(2+ 2+ 2− 3) = 1.

On the other hand, from

(x + 1)(y + 1)(z + 1) = abc +
1

abc
+ a+ b+ c +

1
a
+

1
b
+

1
c

≥ 2+ a+ b+ c +
1
a
+

1
b
+

1
c

= 5+ x + y + z,

we get
x yz + x y + yz + zx ≥ 4.

Since

y + z =
1
a
+ b+

(c − 1)2

c
> 0,

two cases are possible: yz ≤ 0 and y, z > 0.
Case 1: yz ≤ 0. Since x yz ≤ 0, it follows that

x y + yz + zx ≥ 4− x yz ≥ 4> 3.

Case 2: y, z > 0. We need to show that d ≥ 1, where

d =
s

x y + yz + zx
3

.
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By the AM-GM inequality, we have d3 ≥ x yz. Thus, from x yz+ x y + yz+ zx ≥ 4,
we get

d3 + 3d2 ≥ 4,

(d − 1)(d + 2)2 ≥ 0,

hence d ≥ 1.

P 1.42. Let a, b, c be positive real numbers such that abc = 1. Prove that
�

a−
1
b
−
p

2
�2

+
�

b−
1
c
−
p

2
�2

+
�

c −
1
a
−
p

2
�2

≥ 6.

Solution (by Nguyen Van Quy). Using the substitution

a =
y
x

, b =
x
z

, c =
z
y

, x , y, z > 0,

the inequality becomes as follows:

� y − z
x
−
p

2
�2

+
�

z − x
y
−
p

2
�2

+
� x − y

z
−
p

2
�2

≥ 6,

� y − z
x

�2

+
�

z − x
y

�2

+
� x − y

z

�2

− 2
p

2
�

y − z
x
+

z − x
y
+

x − y
z

�

≥ 0,

� y − z
x

�2

+
�

z − x
y

�2

+
� x − y

z

�2

+
2
p

2(y − z)(z − x)(x − y)
x yz

≥ 0.

Assume that x = max{x , y, z}. For x ≥ z ≥ y , the inequality is clearly true. Con-
sider further that x ≥ y ≥ z and write the desired inequality as

u2 + v2 +w2 ≥ 2
p

2 uvw,

where
u=

y − z
x
≥ 0, v =

x − z
y
≥ 0, w=

x − y
z
≥ 0.

In addition, we have

uv =
�

1−
z
y

�

�

1−
z
x

�

< 1 · 1= 1.

According to the AM-GM inequality, we get

u2 + v2 +w2 ≥ 2uv +w2 ≥ 2u2v2 +w2 ≥ 2
p

2 uvw.

This completes the proof. The equality holds for a = b = c.
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P 1.43. Let a, b, c be positive real numbers such that abc = 1. Prove that
�

�

�

�

1+ a−
1
b

�

�

�

�

+

�

�

�

�

1+ b−
1
c

�

�

�

�

+

�

�

�

�

1+ c −
1
a

�

�

�

�

> 2.

Solution. Using the substitution

a =
y
x

, b =
x
z

, c =
z
y

, x , y, z > 0,

the inequality can be restated as
�

�

�1+
y − z

x

�

�

�+
�

�

�1+
x − y

z

�

�

�+

�

�

�

�

1+
z − x

y

�

�

�

�

> 2.

Without loss of generality, assume that x =max{x , y, z}. We have
�

�

�1+
y − z

x

�

�

�+
�

�

�1+
x − y

z

�

�

�+

�

�

�

�

1+
z − x

y

�

�

�

�

− 2≥
�

�

�1+
y − z

x

�

�

�+
�

�

�1+
x − y

z

�

�

�− 2

=
x + y − z

x
+

z + x − y
z

− 2=
y − z

x
+

x − y
z
≥

y − z
x
+

x − y
x
=

x − z
x
≥ 0.

P 1.44. If a, b, c are different positive real numbers, then
�

�

�1+
a

b− c

�

�

�+

�

�

�

�

1+
b

c − a

�

�

�

�

+
�

�

�1+
c

a− b

�

�

�> 2.

(Vasile C., 2012)

Solution. Without loss of generality, assume that a = max{a, b, c}. It suffices to
show that

�

�

�1+
a

b− c

�

�

�+
�

�

�1+
c

a− b

�

�

�> 2,

which is equivalent to
a+ b− c
|b− c|

+
a− b+ c

a− b
> 2.

For b > c, this inequality is true since

a+ b− c
|b− c|

+
a− b+ c

a− b
>

a+ b− c
|b− c|

=
a

b− c
+ 1> 1+ 1= 2.

Also, for b < c, we have

a+ b− c
|b− c|

+
a− b+ c

a− b
=

a+ b− c
c − b

+
a− b+ c

a− b

=
a

c − b
+

c
a− b

>
a

c − b
+

c − b
a− b

≥ 2
s

a
a− b

> 2.
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P 1.45. Let a, b, c be positive real numbers such that abc = 1. Prove that
�

2a−
1
b
−

1
2

�2

+
�

2b−
1
c
−

1
2

�2

+
�

2c −
1
a
−

1
2

�2

≥
3
4

.

(Vasile C., 2012)

Solution. Using the substitution

x = 2a−
1
b

, y = 2b−
1
c

, z = 2c −
1
a

,

we can write the inequality as

x2 + y2 + z2 ≥ x + y + z.

From
x + y + z = 2

∑

a−
∑ 1

a
and

x yz = 7− 4
∑

a+ 2
∑ 1

a
,

it follows that
2(x + y + z) + x yz = 7.

In addition, from

2(|x |+ |y|+ |z|) +
� |x |+ |y|+ |z|

3

�3

≥ 2(|x |+ |y|+ |z|) + |x yz|

≥ 2(x + y + z) + x yz = 7,

we get
|x |+ |y|+ |z| ≥ 3.

Therefore, we have

x2 + y2 + z2 ≥
1
3
(|x |+ |y|+ |z|)2 ≥ |x |+ |y|+ |z| ≥ x + y + z.

The equality holds for a = b = c = 1.

P 1.46. Let
x = a+

1
b
−

5
4

, y = b+
1
c
−

5
4

, z = c +
1
a
−

5
4

,

where a ≥ b ≥ c > 0. Prove that

x y + yz + zx ≥
27
16

.

(Vasile C., 2011)
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Solution. Write the inequality as

∑

�

ab+
1

ab

�

+
∑ b

a
−

5
2

∑

�

a+
1
a

�

+ 6≥ 0.

Since
∑ b

a
−
∑ a

b
=
(a− b)(b− c)(a− c)

abc
≥ 0,

we have

2
∑ b

a
≥
∑ b

a
+
∑ a

b
=
�∑

a
�

�

∑ 1
a

�

− 3.

Thus, it suffices to prove the symmetric inequality

2
∑

�

ab+
1

ab

�

+
�∑

a
�

�

∑ 1
a

�

− 5
∑

�

a+
1
a

�

+ 9≥ 0.

Setting
p = a+ b+ c, q = ab+ bc + ca, r = abc,

we need to show that

(2q− 5p+ 9)r + pq− 5q+ 2p ≥ 0

for all a, b, c > 0. For fixed p and q, the linear function

f (r) = (2q− 5p+ 9)r + pq− 5q+ 2p

is minimal when r is either minimal or maximal. Thus, according to P 3.57 in
Volume 1, it suffices to prove that f (r)≥ 0 for a = 0 and for b = c.

For a = 0, we need to show that

(b+ c)bc − 5bc + 2(b+ c)≥ 0.

Indeed, putting x =
p

bc, we have

(b+ c)bc − 5bc + 2(b+ c)≥ 2x3 − 5x2 + 4x > 0.

For b = c, since

p = a+ 2b, q = 2ab+ b2, r = ab2,

the inequality f (r)≥ 0 becomes

(4ab+ 2b2 − 5a− 10b+ 9)ab2 + (a+ 2b)(2ab+ b2)− 10ab− 5b2 + 2a+ 4b ≥ 0;

that is,
Aa2 + 2Ba+ C ≥ 0,
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where

A= b(4b2−5b+2)> 0, B = b4−5b3+7b2−5b+1, C = b(2b2−5b+4)> 0.

Let
x = b+

1
b

, x ≥ 2.

The inequality B ≥ 0 is equivalent to

b2 +
1
b2
− 5

�

b+
1
b

�

+ 7≥ 0,

x2 − 5x + 5≥ 0,

x ≥
5+
p

5
2

.

Consider two cases.

Case 1: x ≥
5+
p

5
2

. Since A> 0, B ≥ 0, C > 0, we have Aa2 + 2Ba+ C > 0.

Case 2: 2≤ x <
5+
p

5
2

. Since A> 0, B < 0, C > 0 and

Aa2 + 2Ba+ C = (Aa2 + C) + 2Ba ≥ 2a(
p

AC + B),

we need to show that AC ≥ B2, which is equivalent to

8
�

b2 +
1
b2

�

− 30
�

b+
1
b

�

+ 45≥
�

b2 +
1
b2
− 5

�

b+
1
b

�

+ 7
�2

,

8x2 − 30x + 29≥ (x2 − 5x + 5)2,

(x − 2)2(x2 − 6x − 1)≤ 0.

This inequality is true for x ≤ 3 +
p

10, therefore for x < (5 +
p

5)/2. Thus, the
proof is completed. The equality holds for a = b = c = 1.

P 1.47. Let a, b, c be positive real numbers, and let

E =
�

a+
1
a
−
p

3
��

b+
1
b
−
p

3
��

c +
1
c
−
p

3
�

;

F =
�

a+
1
b
−
p

3
��

b+
1
c
−
p

3
��

c +
1
a
−
p

3
�

.

Prove that E ≥ F.
(Vasile C., 2011)
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Solution. By expanding, the inequality becomes
∑

(a2 − bc) +
∑

bc(bc − a2)≥
p

3
∑

ab(b− c).

Since
∑

(a2 − bc) =
∑

a2 −
∑

ab ≥ 0

and
∑

bc(bc − a2) =
∑

a2 b2 − abc
∑

a ≥ 0,

by the AM-GM inequality, we have

∑

(a2 − bc) +
∑

bc(bc − a2)≥ 2
r

�∑

(a2 − bc)
��∑

bc(bc − a2)
�

.

Thus, it suffices to show that

2
r

�∑

(a2 − bc)
��∑

bc(bc − a2)
�

≥
p

3
∑

ab(b− c),

which is equivalent to

2

√

√�∑

(a2 − bc)
�

�

∑

�

1
a2
−

1
bc

��

≥
p

3
�

a
b
+

b
c
+

c
a
− 3

�

,

√

√

√

[(a+ c − 2b)2 + 3(c − a)2]

�

3
�

1
b
−

1
c

�2

+
�

2
a
−

1
b
−

1
c

�2
�

≥

≥ 2
p

3
�

a
b
+

b
c
+

c
a
− 3

�

.

Applying the Cauchy-Schwarz inequality, it suffices to show that

(a+ c − 2b)
�

1
b
−

1
c

�

+ (c − a)
�

2
a
−

1
b
−

1
c

�

≥ 2
�

a
b
+

b
c
+

c
a
− 3

�

,

which is an identity. Thus, the proof is completed. The equality holds when the
following two equations are satisfied:

a2 + b2 + c2 − ab− bc − ca = a2 b2 + b2c2 + c2a2 − abc(a+ b+ c)

and

3+
a
b
+

b
c
+

c
a
= 2

�

b
a
+

c
b
+

a
c

�

.
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P 1.48. If a, b, c are positive real numbers such that
a
b
+

b
c
+

c
a
= 5, then

b
a
+

c
b
+

a
c
≥

17
4

.

(Vasile C., 2007)

Solution. Making the substitution

x =
a
b

, y =
b
c

, z =
c
a

,

we need to show that if x , y, z are positive real numbers satisfying

x yz = 1, x + y + z = 5,

then
1
x
+

1
y
+

1
z
≥

17
4

.

From (y + z)2 ≥ 4yz, we get

(5− x)2 ≥
4
x

;

therefore,

(5− x) + (5− x) +
x
4
≥ 3 3

s

(5− x)2
x
4
≥ 3,

which involves x ≤ 4. We have
1
x
+

1
y
+

1
z
−

17
4
=

1
x
+

y + z
yz
−

17
4
=

1
x
+ x(5− x)−

17
4

=
4− 17x + 20x2 − 4x3

4x
=
(4− x)(1− 2x)2

4x
≥ 4.

The equality holds when one of x , y, z is 4 and the others are
1
2

; that is, when

a = 4b = 2c

(or any cyclic permutation).

P 1.49. If a, b, c are positive real numbers, then

(a) 1+
a
b
+

b
c
+

c
a
≥ 2

√

√

1+
b
a
+

c
b
+

a
c

;

(b) 1+ 2
�

a
b
+

b
c
+

c
a

�

≥
√

√

1+ 16
�

b
a
+

c
b
+

a
c

�

;

(c) 3+
a
b
+

b
c
+

c
a
≥ 2

√

√

(a+ b+ c)
�

1
a
+

1
b
+

1
c

�

.

(Vasile C., 2007)
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Solution. Let

x =
a
b

, y =
b
c

, z =
c
a

and
p = x + y + z, q = x y + yz + zx .

By the AM-GM inequality, we have

p ≥ 3 3px yz = 3.

(a) We need to show that x yz = 1 involves

1+ x + y + z ≥ 2
p

1+ x y + yz + zx ,

which is equivalent to
(1+ p)2 ≥ 4+ 4q

or
p+ 3≥ 2

p

p+ q+ 3.

First Solution. By Schur’s inequality of degree three, we have

p3 + 9≥ 4pq.

Thus,

(1+ p)2 − 4− 4q ≥ 1+ p)2 − 4−
�

p2 +
9
p

�

=
(p− 3)(2p+ 3)

p
≥ 0.

The equality holds for a = b = c.

Second Solution. Without loss of generality, assume that b is between a and c. By
the AM-GM inequality, we have

2
p

p+ q+ 3= 2

√

√

(a+ b+ c)
�

1
a
+

1
b
+

1
c

�

≤
a+ b+ c

b
+ b

�

1
a
+

1
b
+

1
c

�

.

Therefore,

p+ 3− 2
p

p+ q+ 3≥
a
b
+

b
c
+

c
a
+ 3−

a+ b+ c
b

− b
�

1
a
+

1
b
+

1
c

�

=
(a− b)(b− c)

ab
≥ 0.

(b) We have to show that x yz = 1 involves

1+ 2(x + y + z)≥
Æ

1+ 16(x y + yz + zx),

which is equivalent to
p2 + p ≥ 4q.
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By Schur’s inequality of degree three, we have

p3 + 9≥ 4pq.

Thus,

p2 + p− 4q ≥ p2 + p−
�

p2 +
9
p

�

=
(p− 3)(p+ 3)

9
≥ 0.

The equality holds for a = b = c.

(c) Write the inequality as follows:

(3+ x + y + z)2 ≥ 4(3+ x + y + z + x y + yz + zx),

(x + y + z)2 + 2(x + y + z)≥ 3+ 4(x y + yz + zx),

(1+ x + y + z)2 ≥ 4(1+ x y + yz + zx),

1+ x + y + z ≥ 2
p

1+ x y + yz + zx ,

1+
a
b
+

b
c
+

c
a
≥ 2

√

√

1+
b
a
+

c
b
+

a
c

.

Thus, the inequality is equivalent to the inequality in (a).

P 1.50. If a, b, c are positive real numbers, then

a2

b2
+

b2

c2
+

c2

a2
+ 15

�

b
a
+

c
b
+

a
c

�

≥ 16
�

a
b
+

b
c
+

c
a

�

.

Solution. Making the substitution

x =
a
b

, y =
b
c

, z =
c
a

,

we have to show that x yz = 1 involves

x2 + y2 + z2 + 15(x y + yz + zx)≥ 16(x + y + z),

which is equivalent to

(x + y + z)2 − 16(x + y + z) + 13(x y + yz + zx)≥ 0.

According to P 3.58 in Volume 1, for fixed x + y + z and x yz = 1, the expression

x y + yz + zx

is minimal when two of x , y, z are equal. Therefore, due to symmetry, it suffices to
consider that x = y . We need to show that

(2x + z)2 − 16(2x + z) + 13(x2 + 2xz)≥ 0
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for x2z = 1. Write this inequality as

17x6 − 32x5 + 30x3 − 16x2 + 1≥ 0,

or
(x − 1)2 g(x)≥ 0, g(x) = 17x4 + 2x3 − 13x2 + 2x + 1.

Since
g(x) = (2x − 1)4 + x(x3 + 34x2 − 37x + 10),

it suffices to show that
x3 + 34x2 − 37x + 10≥ 0.

There are two cases to consider.

Case 1: x ∈
�

0,
1
2

�

∪
�

10
17

,∞
�

. We have

x3 + 34x2 − 37x + 10> 34x2 − 37x + 10= (2x − 1)(17x − 10)≥ 0.

Case 2: x ∈
�

1
2

,
10
17

�

. We have

2(x3 + 34x2 − 37x + 10)> 2
�

1
2

x2 + 34x2 − 37x + 10
�

= 69x2 − 74x + 20.

Since 69x2−74x+20> 0 for all real x , the proof is completed. The equality holds
for a = b = c.

P 1.51. If a, b, c are positive real numbers such that abc = 1, then

(a)
a
b
+

b
c
+

c
a
≥ a+ b+ c;

(b)
a
b
+

b
c
+

c
a
≥

3
2
(a+ b+ c − 1);

(c)
a
b
+

b
c
+

c
a
+ 2≥

5
3
(a+ b+ c).

Solution. (a) We write the inequality as
�

2
a
b
+

b
c

�

+
�

2
b
c
+

c
a

�

+
�

2
c
a
+

a
b

�

≥ 3(a+ b+ c).

In virtue of the AM-GM inequality, we get

�

2
a
b
+

b
c

�

+
�

2
b
c
+

c
a

�

+
�

2
c
a
+

a
b

�

≥ 3
3

√

√ a2

bc
+ 3

3

√

√ b2

ca
+ 3

3

√

√ c2

ab
= 3(a+ b+ c).
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The equality holds for a = b = c = 1.

(b) Using the substitution

a =
y
x

, b =
z
y

, c =
x
z

,

where x , y, z > 0, the inequality can be restated as

2(x3 + y3 + z3) + 3x yz ≥ 3(x2 y + y2z + z2 x).

First Solution. We get the desired inequality by summing Schur’s inequality of
degree three

x3 + y3 + z3 + 3x yz ≥ (x2 y + y2z + z2 x) + (x y2 + yz2 + zx2)

and
x3 + y3 + z3 + x y2 + yz2 + zx2 ≥ 2(x2 y + y2z + z2 x).

The last inequality is equivalent to

x(x − y)2 + y(y − z)2 + z(z − x)2 ≥ 0.

The equality holds for a = b = c = 1.

Second Solution. Multiplying by x + y + z, the desired inequality in x , y, z turns
into

2
∑

x4 −
∑

x3 y − 3
∑

x2 y2 + 2
∑

x y3 ≥ 0.

Write this inequality as
∑

[(1+ k)x4 − x3 y − 3x2 y2 + 2x y3 + (1− k)y4]≥ 0,

∑

(x − y)[x3 − 3x y2 − y3 + k(x3 + x2 y + x y2 + y3)]≥ 0.

Choosing k =
3
4

, we get the obvious inequality

∑

(x − y)2(7x2 + 10x y + y2)≥ 0.

(c) Making the substitution

a =
y
x

, b =
z
y

, c =
x
z

, x , y, z > 0,

we need to show that

3(x3 + y3 + z3) + 6x yz ≥ 5(x2 y + y2z + z2 x).
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Assuming that x =min{x , y, z} and substituting

y = x + p, z = x + q, p, q ≥ 0,

the inequality turns into

(p2 − pq+ q2)x + 3p3 + 3q3 − 5p2q ≥ 0.

This is true since, by the AM-GM inequality, we get

6p3 + 6q3 = 3p3 + 3p3 + 6q3 ≥ 3 3
p

3p3 · 3p3 · 6q3 = 9
3p

2 p2q ≥ 10p2q.

The equality holds for a = b = c = 1.

P 1.52. If a, b, c are positive real numbers such that a2 + b2 + c2 = 3, then

(a)
a
b
+

b
c
+

c
a
≥ 2+

3
ab+ bc + ca

;

(b)
a
b
+

b
c
+

c
a
≥

9
a+ b+ c

.

Solution. (a) By the Cauchy-Schwarz inequality, we have

a
b
+

b
c
+

c
a
≥
(a+ b+ c)2

ab+ bc + ca
= 2+

3
ab+ bc + ca

.

The equality holds for a = b = c = 1.

(b) Using the inequality in (a), it suffices to show that

2+
3

ab+ bc + ca
≥

9
a+ b+ c

.

Let

t =
a+ b+ c

3
, t ≤ 1.

Since
2(ab+ bc + ca) = (a+ b+ c)2 − (a2 + b2 + c2) = 9t2 − 3,

the inequality becomes

2+
2

3t2 − 1
≥

3
t

,

(t − 1)2(2t + 1)≥ 0.

The equality holds for a = b = c = 1.
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P 1.53. If a, b, c are positive real numbers such that a2 + b2 + c2 = 3, then

6
�

a
b
+

b
c
+

c
a

�

+ 5(ab+ bc + ca)≥ 33.

Solution. Write the inequality in the homogeneous form

a
b
+

b
c
+

c
a
− 3≥

5
2

�

1−
ab+ bc + ca
a2 + b2 + c2

�

.

We will prove the sharper inequality

a
b
+

b
c
+

c
a
− 3≥ m

�

1−
ab+ bc + ca
a2 + b2 + c2

�

,

where
m= 4

p
2− 3>

5
2

.

Write this inequality as follows:
�∑

a2
��∑

ab2
�

+mabc
∑

ab− (m+ 3)abc
∑

a2 ≥ 0,

∑

ab4 +
∑

a3 b2 + (m+ 1)abc
∑

ab− (m+ 3)abc
∑

a2 ≥ 0,
∑

ab4 +
∑

a3 b2 + 2(2
p

2− 1)abc
∑

ab− 4
p

2 abc
∑

a2 ≥ 0,

On the other hand, from
∑

a(a− b)2(b− kc)2 ≥ 0,

we get
∑

ab4 +
∑

a3 b2 + (k2 − 2)
∑

a2 b3 + k(4− k)abc
∑

ab− 4kabc
∑

a2 ≥ 0.

Choosing k =
p

2, we get the desired inequality. The equality holds for a = b =
c = 1.

P 1.54. If a, b, c are positive real numbers such that a+ b+ c = 3, then

(a) 6
�

a
b
+

b
c
+

c
a

�

+ 3≥ 7(a2 + b2 + c2);

(b)
a
b
+

b
c
+

c
a
≥ a2 + b2 + c2.
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Solution. (a) Write the inequality in the homogeneous form

2
�∑

a
�2 �∑

ab2
�

+ abc
�∑

a
�2
≥ 21abc

∑

a2,

which is equivalent to
∑

ab4 +
∑

a3 b2 + 2
∑

a2 b3 + 4abc
∑

ab− 8abc
∑

a2 ≥ 0.

On the other hand, from
∑

a(a− b)2(b− kc)2 ≥ 0,

we get
∑

ab4 +
∑

a3 b2 + (k2 − 2)
∑

a2 b3 + k(4− k)abc
∑

ab− 4kabc
∑

a2 ≥ 0.

Choosing k = 2, we get the desired inequality. The equality holds for a = b = c = 1.

(b) We get the desired inequality by adding the inequality in (a) and the obvi-
ous inequality

a2 + b2 + c2 ≥ 3.

The equality holds for a = b = c = 1.

P 1.55. If a, b, c are positive real numbers, then

a
b
+

b
c
+

c
a
+ 2≥

14(a2 + b2 + c2)
(a+ b+ c)2

.

(Vo Quoc Ba Can, 2010)

Solution. By expanding, the inequality becomes as follows:
�
∑ a

b

�
�∑

a2 + 2
∑

ab
�

+ 4
∑

ab ≥ 12
∑

a2,

∑ a3

b
+
∑ a2 b

c
+ 2

∑ ab2

c
+ 7

∑

ab ≥ 10
∑

a2,

A+ B ≥ 10
∑

a2 − 10
∑

ab,

where

A=
∑ a3

b
+
∑ a2 b

c
− 2

∑ ab2

c
, B = 4

∑ ab2

c
− 3

∑

ab.

Since

A=
∑

�

b3

c
+

a2 b
c
−

2ab2

c

�

=
∑ b(a− b)2

c
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and

B =
∑

�

4ca2

b
− 12ca+ 9bc

�

=
∑ c(2a− 3b)2

b
,

we get

A+ B =
∑

�

b(a− b)2

c
+

c(2a− 3b)2

b

�

≥ 2
∑

(a− b)(2a− 3b) = 10
∑

a2 − 10
∑

ab.

Thus, the proof is completed. For a ≥ b ≥ c, the equality holds for

b(a− b) = c(2a− 3b), c(b− c) = a(2b− 3c), a(c − a) = b(2c − 3a),

which are equivalent to

a
p

7− tan
π

7

=
b

p
7− tan

2π
7

=
c

p
7− tan

4π
7

.

Notice that the equality conditions involve

a2 + b2 + c2 = 2ab+ 2bc + 2ca,

hence p
a =

p

b+
p

c.

Remark. Using the inequality in P 1.55, we can prove the weaker inequality

a
b
+

b
c
+

c
a
+

7(ab+ bc + ca)
a2 + b2 + c2

≥
17
2

,

with equality for the same conditions. It suffices to show that

14(a2 + b2 + c2)
(a+ b+ c)2

− 2≥
17
2
−

7(ab+ bc + ca)
a2 + b2 + c2

which is equivalent to

(a2 + b2 + c2 − 2ab− 2bc − 2ca)2 ≥ 0.

Actually, the following statement is valid.

If a, b, c are positive real numbers, then

a
b
+

b
c
+

c
a
≥

19(a2 + b2 + c2) + 2(ab+ bc + ca)
a2 + b2 + c2 + 6(ab+ bc + ca)

,

with equality for a = b = c, and also for

a
p

7− tan
π

7

=
b

p
7− tan

2π
7

=
c

p
7− tan

4π
7

(or any cyclic permutation).

This inequality is stronger than the inequality in P 1.55.
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P 1.56. Let a, b, c be positive real numbers such that a+ b+ c = 3, and let

x = 3a+
1
b

, y = 3b+
1
c

, z = 3c +
1
a

.

Prove that
x y + yz + zx ≥ 48.

(Vasile C., 2007)

Solution. Write the inequality as follows:

3(ab+ bc + ca) +
1

abc
+
�

b
a
+

c
b
+

a
c

�

≥ 13.

We get this inequality by adding the inequality P 1.54-(a), namely

6
�

b
a
+

c
b
+

a
c

�

+ 3≥ 7(a2 + b2 + c2),

and the inequality

18(ab+ bc + ca) +
6

abc
+ 7(a2 + b2 + c2)≥ 81.

Since
a2 + b2 + c2 = 9− 2(ab+ bc + ca),

the last inequality is equivalent to

2(ab+ bc + ca) +
3

abc
≥ 9.

By the known inequality

(ab+ bc + ca)2 ≥ 3abc(a+ b+ c),

we get
1

abc
≥

9
(ab+ bc + ca)2

.

Thus, it suffices to show that

2q+
27
q2
≥ 9,

where q = ab+ bc + ca. Indeed, by the AM-GM inequality, we have

2q+
27
q2
= q+ q+

27
q2
≥ 3 3

√

√

q · q ·
27
q2
= 9.

The equality holds for a = b = c = 1.
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P 1.57. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a+ 1
b
+

b+ 1
c
+

c + 1
a
≥ 2(a2 + b2 + c2).

Solution. We get the desired inequality by summing the inequality in P 1.54-(a),
namely

6
�

a
b
+

b
c
+

c
a

�

+ 3≥ 7(a2 + b2 + c2),

and the inequality

6
�

1
a
+

1
b
+

1
c

�

≥ 5(a2 + b2 + c2) + 3.

Write the last inequality as F(a, b, c)≥ 0, where

F(a, b, c) = 6
�

1
a
+

1
b
+

1
c

�

− 5(a2 + b2 + c2)− 3,

then assume that
a =max{a, b, c}, b+ c ≤ 2.

and show that

F(a, b, c)≥ F
�

a,
b+ c

2
,

b+ c
2

�

≥ 0.

Indeed, we have

F(a, b, c)− F
�

a,
b+ c

2
,

b+ c
2

�

= 6
�

b+ c
bc
−

4
b+ c

�

− 5
�

b2 + c2 −
1
2
(b+ c)2

�

= (b− c)2
�

6
bc(b+ c)

−
5
2

�

≥ (b− c)2
�

24
(b+ c)3

−
5
2

�

≥ 0.

Also,

F
�

a,
b+ c

2
,

b+ c
2

�

= F
�

a,
3− a

2
,
3− a

2

�

=
3(a− 1)2(12− 15a+ 5a2)

2a(3− a)
≥ 0.

The equality holds for a = b = c = 1.

P 1.58. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a2

b
+

b2

c
+

c2

a
+ 3≥ 2(a2 + b2 + c2).

(Pham Huu Duc, 2007)
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First Solution. Assume that

a =max{a, b, c},

then homogenize the inequality and write it as follows:

a2

b
+

b2

c
+

c2

a
+ a+ b+ c ≥

6(a2 + b2 + c2)
a+ b+ c

,

∑

�

b2

c
− 2b+ c

�

≥ 6
�

a2 + b2 + c2

a+ b+ c
−

a+ b+ c
3

�

,

∑ (b− c)2

c
≥

2
a+ b+ c

∑

(b− c)2,

(b− c)2A+ (c − a)2B + (a− b)2C ≥ 0,

where

A=
a+ b

c
− 1> 0, B =

b+ c
a
− 1, C =

c + a
b
− 1> 0.

By the Cauchy-Schwarz inequality, we have

(b− c)2A+ (a− b)2C ≥
[(b− c) + (a− b)]2

1
A
+

1
C

=
AC

A+ C
(a− c)2.

Therefore, it suffices to show that

AC
A+ C

+ B ≥ 0.

Indeed, by the third degree Schur’s inequality, we get

AB + BC + CA= 3+
a3 + b3 + c3 + 3abc − ab(a+ b)− bc(b+ c)− ca(c + a)

abc
≥ 3.

The equality holds for a = b = c = 1.

Second Solution (by Michael Rozenberg). Write the inequality in the homogeneous
form

�∑

a
��∑

ab3
�

+ abc
�∑

a
�2
≥ 6abc

∑

a2.

By expanding, we get
∑

(ab4 + a2 b3 + 2ab2c2 − 4a3 bc)≥ 0,

which is equivalent to
∑

a(b2 − 2bc + ac)2 ≥ 0.
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P 1.59. If a, b, c are positive real numbers, then

a3

b
+

b3

c
+

c3

a
+ 2(ab+ bc + ca)≥ 3(a2 + b2 + c2).

(Michael Rozenberg, 2010)

Solution. Write the inequality as

∑

�

a3

b
+ ab− 2a2

�

≥ a2 + b2 + c2 − ab− bc − ca,

a(a− b)2

b
+

b(b− c)2

c
+

c(c − a)2

a
≥ a2 + b2 + c2 − ab− bc − ca.

Assume that a =max{a, b, c}.

Case 1: a ≥ b ≥ c. By the Cauchy-Schwarz inequality, we have

a(a− b)2

b
+

b(b− c)2

c
≥
[(a− b) + (b− c)]2

b
a +

c
b

=
ab(a− c)2

b2 + ac
.

On the other hand,

a2 + b2 + c2 − ab− bc − ca = (a− c)2 + (b− a)(b− c)≤ (a− c)2.

Therefore, it suffice to show that

ab(a− c)2

b2 + ac
+

c(a− c)2

a
≥ (a− c)2,

which is true if
ab

b2 + ac
+

c
a
≥ 1.

This inequality is equivalent to

a2 b+ b2c + c2a− ab2 − ca2 ≥ 0,

bc2 − (a− b)(b− c)(c − a)≥ 0.

Case 2: a ≥ c ≥ b. By the Cauchy-Schwarz inequality, we have

b(b− c)2

c
+

c(c − a)2

a
≥
[(b− c) + (c − a)]2

c
b +

a
c

=
bc(a− b)2

c2 + ab
.

On the other hand,

a2 + b2 + c2 − ab− bc − ca = (a− b)2 + (c − a)(c − b)≤ (a− b)2.
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Therefore, it suffice to show that

a(a− b)2

b
+

bc(a− b)2

c2 + ab
≥ (a− b)2,

which is equivalent to

(a− b)2(a2 b+ b2c + c2a− ab2 − bc2)≥ 0,

(a− b)2[ab(a− b) + b2c + c2(a− b)]≥ 0.

The equality holds for a = b = c.

P 1.60. If a, b, c are positive real numbers such that a4 + b4 + c4 = 3, then

(a)
a2

b
+

b2

c
+

c2

a
≥ 3;

(b)
a2

b+ c
+

b2

c + a
+

c2

a+ b
≥

3
2

.

(Alexey Gladkich, 2005)

Solution. (a) By Hölder’s inequality, we have

�

∑ a2

b

��

∑ a2

b

�

�∑

a2 b2
�

≥
�∑

a2
�3

.

Therefore, it suffices to show that

�∑

a2
�3
≥ 9

∑

a2 b2,

which has the homogeneous form

�∑

a2
�3
≥ 3

�∑

a2 b2
�

r

3
∑

a4.

Using the notation
x =

∑

a2, y =
∑

a2 b2,

the inequality can be restated as

x3 ≥ 3y
Æ

3(x2 − 2y).

By squaring, the inequality becomes

x6 − 27x2 y2 + 54y3 ≥ 0,
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which is true because

x6 − 27x2 y2 + 54y3 = (x2 − 3y)2(x2 + 6y)≥ 0.

The equality holds for a = b = c = 1.

(b) By Hölder’s inequality, we have

�

∑ a2

b+ c

��

∑ a2

b+ c

�

�∑

a2(b+ c)2
�

≥
�∑

a2
�3

.

Thus, it suffices to prove that

�∑

a2
�3
≥

9
4

∑

a2(b+ c)2.

Using the inequality from the proof of (a), namely

�∑

a2
�3
≥ 9

∑

a2 b2,

we still have to show that
∑

a2 b2 ≥
1
4

∑

a2(b+ c)2.

This inequality is equivalent to
∑

a2(b− c)2 ≥ 0.

The equality holds for a = b = c = 1.

P 1.61. If a, b, c are positive real numbers, then

a2

b
+

b2

c
+

c2

a
≥

3(a3 + b3 + c3)
a2 + b2 + c2

.

(Vo Quoc Ba Can, 2010)

Solution (by Ta Minh Hoang). Assume that

a =max{a, b, c},

and write the inequality as follows:

a2

b
+

b2

c
+

c2

a
− a− b− c ≥

3(a3 + b3 + c3)
a2 + b2 + c2

− a− b− c,
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∑ (a− b)2

b
≥

1
a2 + b2 + c2

∑

(a+ b)(a− b)2,

(b− c)2A+ (c − a)2B + (a− b)2C ≥ 0,

where

A=
a2 + b2 − bc

c
> 0, B =

b2 + c2 − ca
a

, C =
c2 + a2 − ab

b
> 0.

Consider the nontrivial case B < 0; that is,

ac − b2 − c2 > 0.

From
ac − b2 − c2 = c(a− 2b)− (b− c)2,

it follows that
c(a− 2b)> (b− c)2 ≥ 0,

hence
a > 2b.

By the Cauchy-Schwarz inequality, we have

(b− c)2A+ (a− b)2C ≥
[(b− c) + (a− b)]2

1
A
+

1
C

=
AC

A+ C
(a− c)2.

Therefore, it suffices to show that
AC

A+ C
+ B ≥ 0; that is,

1
A
+

1
B
+

1
C
≤ 0, or

c
a2 + b2 − bc

+
b

c2 + a2 − ab
≤

a
ca− b2 − c2

.

Case 1: a ≥ b ≥ c. Since

a2 + b2 − bc − (ca− b2 − c2)> a2 + b2 − bc − ca
= a(a− c) + b(b− c)≥ 0,

and

c2 + a2 − ab− (ca− b2 − c2)> a2 + b2 − a(b+ c)

≥ a2 + bc − a(b+ c)
= (a− b)(a− c)≥ 0,

it suffices to show that c + b ≤ a. Indeed, we have a > 2b ≥ b+ c.
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Case 2: a ≥ c ≥ b. Replacing b and c by c and b, respectively, we need to show
that a ≥ b ≥ c involves

a2

c
+

c2

b
+

b2

a
≥

3(a3 + b3 + c3)
a2 + b2 + c2

.

According to the preceding case, we have

a2

b
+

b2

c
+

c2

a
≥

3(a3 + b3 + c3)
a2 + b2 + c2

.

Therefore, it suffices to show that

a2

c
+

c2

b
+

b2

a
≥

a2

b
+

b2

c
+

c2

a
.

This inequality is equivalent to

(a+ b+ c)(a− b)(b− c)(a− c)≥ 0,

which is clearly true for a ≥ b ≥ c.
The proof is completed. The equality holds for a = b = c = 1.

P 1.62. If a, b, c are positive real numbers, then

a2

b
+

b2

c
+

c2

a
+ a+ b+ c ≥ 2

√

√

(a2 + b2 + c2)
�

a
b
+

b
c
+

c
a

�

.

(Pham Huu Duc, 2006)

Solution. Without loss of generality, we may assume that b is between a and c;
that is,

(b− a)(b− c)≤ 0.

Since

2

√

√

(a2 + b2 + c2)
�

a
b
+

b
c
+

c
a

�

= 2

√

√a2 + b2 + c2

b

�

a+
b2

c
+

bc
a

�

≤
a2 + b2 + c2

b
+ a+

b2

c
+

bc
a

=
a2

b
+

b2

c
+ a+ b+

bc
a
+

c2

b
,

it suffices to prove that
c2

a
+ c ≥

bc
a
+

c2

b
.



106 Vasile Cîrtoaje

This is true because

c2

a
+ c −

bc
a
−

c2

b
=

c(a− b)(b− c)
ab

≥ 0.

The proof is completed. The equality holds for a = b = c.

P 1.63. If a, b, c are positive real numbers, then

a
b
+

b
c
+

c
a
+ 32

�

a
a+ b

+
b

b+ c
+

c
c + a

�

≥ 51.

(Vasile C., 2009)

Solution. Write the inequality as

a
b
+

b
c
+

c
a
+ 45≥ 32

�

b
a+ b

+
c

b+ c
+

a
c + a

�

.

Using the substitution

x =
a
b

, y =
b
c

, z =
c
a

,

which involves x yz = 1, the inequality becomes

x + y + z + 45− 32
�

1
x + 1

+
1

y + 1
+

1
z + 1

�

≥ 0.

We get this inequality by summing the inequalities

x −
32

x + 1
+ 15≥ 9 ln x ,

y −
32

y + 1
+ 15≥ 9 ln y,

z −
32

z + 1
+ 15≥ 9 ln z.

Let
f (x) = x −

32
x + 1

+ 15− 9 ln x , x > 0.

From the derivative

f ′(x) = 1+
32

(x + 1)2
−

9
x
=
(x − 1)(x − 3)2

x(x + 1)2
,

it follows that f (x) is decreasing for 0< x ≤ 1 and increasing for x ≥ 1. Therefore,
we have f (x)≥ f (1) = 0. The equality holds for a = b = c.
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P 1.64. Find the greatest positive real number K such that the inequalities below hold
for any positive real numbers a, b, c:

(a)
a
b
+

b
c
+

c
a
− 3≥ K

�

a
b+ c

+
b

c + a
+

c
a+ b

−
3
2

�

;

(b)
a
b
+

b
c
+

c
a
− 3+ K

�

a
2a+ b

+
b

2b+ c
+

c
2c + a

− 1
�

≥ 0.

(Vasile C., 2008)

Solution. (a) For
a = x3, b = x , c = 1,

the inequality becomes

x2 + x +
1
x3
− 3≥ K

�

x3

x + 1
+

x
1+ x3

+
1

x3 + x
−

3
2

�

,

(1− K)x3

x + 1
+

x2

x + 1
+ x +

1
x3
− 3− K

�

x
1+ x3

+
1

x3 + x
−

3
2

�

≥ 0.

For x → ∞, we get the necessary condition 1 − K ≥ 0. We will show that the
original inequality is true for K = 1; that is,

a
b
+

b
c
+

c
a
≥

3
2
+

a
b+ c

+
b

c + a
+

c
a+ b

.

Write the inequality as
� c

a
−

c
a+ b

�

+
�a

b
−

a
b+ c

�

+
�

b
c
−

b
c + a

�

≥
3
2

,

bc
a(a+ b)

+
ca

b(b+ c)
+

ab
c(c + a)

≥
3
2

.

By the Cauchy-Schwarz inequality, we have

bc
a(a+ b)

+
ca

b(b+ c)
+

ab
c(c + a)

≥
(bc + ca+ ab)2

abc(a+ b) + abc(b+ c) + abc(c + a)

=
(bc + ca+ ab)2

2abc(a+ b+ c)
≥

3
2

.

The equality holds for a = b = c.

(b) For b = 1 and c = a2, the inequality becomes

2a+
1
a2
− 3+ K

�

2a
2a+ 1

+
1

a2 + 2
− 1

�

≥ 0,

(a− 1)2(2a+ 1)
a2

−
K(a− 1)2

(2a+ 1)(a2 + 2)
≥ 0.
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This inequality holds for any positive a if and only if

2a+ 1
a2

−
K

(2a+ 1)(a2 + 2)
≥ 0.

For a = 1, this inequality involves K ≤ 27. We will show that the original inequality
is true for K = 27. Using the substitution

x =
a
b

, y =
b
c

, z =
c
a

,

which involves x yz = 1, the inequality can be restated as

x + y + z − 3−
27
2

�

1
2x + 1

+
1

2y + 1
+

1
2z + 1

− 1
�

≥ 0.

First Solution. We get the desired inequality by summing the inequalities

x −
27

2(2x + 1)
+

7
2
≥ 4 ln x ,

y −
27

2(2y + 1)
+

7
2
≥ 4 ln y,

z −
27

2(2z + 1)
+

7
2
≥ 4 ln z.

Let
f (x) = x −

27
2(2x + 1)

+
7
2
− 4 ln x , x > 0.

From the derivative

f ′(x) = 1+
27

(2x + 1)2
−

4
x
=

4(x − 1)3

x(2x + 1)2
,

it follows that f (x) is decreasing for 0< x ≤ 1 and increasing for x ≥ 1. Therefore,
we have f (x)≥ f (1) = 0. The equality holds for a = b = c.

Second Solution. Replacing x , y, z by ex , e y , ez, respectively, we need to show that

x + y + z = 0

involves
f (x) + f (y) + f (z)≥ 3 f

� x + y + z
3

�

,

where
f (u) = eu −

27
2(2eu + 1)

.

If f is convex on R, then this inequality is just Jensen’s inequality. Indeed, f is
convex because

e−u f ′′(u) = 1+
27(1− 2eu)
(2eu + 1)3

=
4(eu − 1)2(2eu + 7)

(2eu + 1)3
≥ 0.
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P 1.65. If a, b, c ∈
�

1
2

, 2
�

, then

(a) 8
�

a
b
+

b
c
+

c
a

�

≥ 5
�

b
a
+

c
b
+

a
c

�

+ 9;

(b) 20
�

a
b
+

b
c
+

c
a

�

≥ 17
�

b
a
+

c
b
+

a
c

�

.

(Vasile C., 2008)

Solution. Without loss of generality, assume that

a =max{a, b, c}.

Let

t =
s

a
c

, 1≤ t ≤ 2.

(a) Let

E(a, b, c) = 8
�

a
b
+

b
c
+

c
a

�

− 5
�

b
a
+

c
b
+

a
c

�

− 9.

We will show that
E(a, b, c)≥ E(a,

p
ac, c)≥ 0.

We have

E(a, b, c)− E(a,
p

ac, c) = 8
�

a
b
+

b
c
− 2

s

a
c

�

− 5
�

b
a
+

c
b
− 2

s

c
a

�

=
(b−

p
ac)2(8a− 5c)

abc
≥ 0.

Also,

E(a,
p

ac, c) = 8
�

2
s

a
c
+

c
a
− 3

�

− 5
�

2
s

c
a
+

a
c
− 3

�

= 8
�

2t +
1
t2
− 3

�

− 5
�

2
t
+ t2 − 3

�

=
8
t2
(t − 12(2t + 1)−

5
t
(t − 1)2(t + 2)

=
(t − 1)2(4+ 5t)(2− t)

t2
≥ 0.

The equality holds for a = b = c, and also for a = 2, b = 1 and c =
1
2

(or any cyclic

permutation).

(b) Let

E(a, b, c) = 20
�

a
b
+

b
c
+

c
a

�

− 17
�

b
a
+

c
b
+

a
c

�

.
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We will show that
E(a, b, c)≥ E(a,

p
ac, c)≥ 0.

We have

E(a, b, c)− E(a,
p

ac, c) = 20
�

a
b
+

b
c
− 2

s

a
c

�

− 17
�

b
a
+

c
b
− 2

s

c
a

�

=
(b−

p
ac)2(20a− 17c)

abc
≥ 0.

Also, we have

E(a,
p

ac, c) = 20
�

2
s

a
c
+

c
a

�

− 17
�

2
s

c
a
+

a
c

�

= 20
�

2t +
1
t2

�

− 17
�

2
t
+ t2

�

=
20− 34t + 40t3 − 17t4

t2

=
(2− t)(17t3 − 6t2 − 12t + 10)

t2
.

We need to show that 17t3 − 6t2 − 12t + 10≥ 0 for 1≤ t ≤ 2. Indeed, we have

17t3 − 6t2 − 12t + 10≥ 11t2 − 12t + 10> 4t2 − 12t + 9= (2t − 3)2 ≥ 0.

The equality holds for a = 2, b = 1 and c =
1
2

(or any cyclic permutation).

P 1.66. If a, b, c are positive real numbers such that a ≤ b ≤ c, then

a
b
+

b
c
+

c
a
≥

2a
b+ c

+
2b

c + a
+

2c
a+ b

.

First Solution. Since

a
b
+

b
c
+

c
a
−
�

b
a
+

c
b
+

a
c

�

=
�a

b
− 1

�

�

b
c
− 1

�

� c
a
− 1

�

≥ 0,

it suffices to show that
�

a
b
+

b
c
+

c
a

�

+
�

b
a
+

c
b
+

a
c

�

≥
4a

b+ c
+

4b
c + a

+
4c

a+ b
.

This inequality is equivalent to

a
�

1
b
+

1
c
−

4
b+ c

�

+ b
�

1
c
+

1
a
−

4
c + a

�

+ c
�

1
a
+

1
b
−

4
a+ b

�

≥ 0,
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a2(b− c)2

b+ c
+

b2(c − a)2

c + a
+

c2(a− b)2

a+ b
≥ 0.

The equality holds for a = b = c.

Second Solution. The inequality is equivalent to

a(c − b)
b(b+ c)

−
b(c − a)
c(c + a)

+
c(b− a)
a(a+ b)

≥ 0.

Taking account of
b(c − a) = c(b− a) + a(c − b),

we may rewrite the inequality as

c(b− a)
�

1
a(a+ b)

−
1

c(c + a)

�

+ a(c − b)
�

1
b(b+ c)

−
1

c(c + a)

�

≥ 0.

Since
1

a(a+ b)
−

1
c(c + a)

=
c2 − a2 + a(c − b)
ac(a+ b)(c + a)

≥
c − b

c(a+ b)(c + a)
and

1
b(b+ c)

−
1

c(c + a)
=

c2 − b2 + c(a− b)
bc(b+ c)(c + a)

≥
a− b

b(b+ c)(c + a)
,

it suffices to show that

c(b− a)(c − b)
c(a+ b)(c + a)

+
a(c − b)(a− b)
b(b+ c)(c + a)

≥ 0.

This inequality is true if
1

a+ b
−

a
b(b+ c)

≥ 0.

Indeed,
1

a+ b
−

a
b(b+ c)

≥
1

a+ b
−

1
b+ c

=
c − a

(a+ b)(b+ c)
≥ 0.

P 1.67. Let a, b, c be positive real numbers such that abc = 1.

(a) If a ≤ b ≤ c, then

a
b
+

b
c
+

c
a
≥ a3/2 + b3/2 + c3/2;

(b) If a ≤ 1≤ b ≤ c, then

a
b
+

b
c
+

c
a
≥ a

p
3 + b

p
3 + c

p
3.

(Vasile C., 2008)
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Solution. (a) Since

a
b
+

b
c
+

c
a
−
�

b
a
+

c
b
+

a
c

�

=
�a

b
− 1

�

�

b
c
− 1

�

� c
a
− 1

�

≥ 0,

it suffices to show that
�

a
b
+

b
c
+

c
a

�

+
�

b
a
+

c
b
+

a
c

�

≥ 2(a3/2 + b3/2 + c3/2).

Indeed, by the AM-GM inequality, we have

∑ a
b
+
∑ b

a
=
∑

a
�

1
b
+

1
c

�

≥
∑ 2a
p

bc
= 2

∑

a3/2.

The equality holds for a = b = c = 1.

(b) Let k =
p

3 and

E(a, b, c) =
a
b
+

b
c
+

c
a
− ak − bk − ck.

We will show that
E(a, b, c)≥ E(a,

p

bc,
p

bc)≥ 0;

that is,

E(
1
bc

, b, c)≥ E(
1
bc

,
p

bc,
p

bc)≥ 0.

Substituting
t =

p

bc, t ≥ 1,

we rewrite the right inequality as f (t)≥ 0, where

f (t) =
1
t3
+ 1+ t3 −

1
t2k
− 2tk.

We have the derivative

f ′(t)
t2
= g(t), g(t) =

−3
t6
+ 3+

2k
t2k+3

−
2k
t3−k

.

Since
1
2

t2k+4 g ′(t) = 9t2k−3 − k(2k+ 3) + k(3− k)t3k

≥ 9− k(2k+ 3) + k(3− k) = 9− 3k2 = 0,

g(t) is increasing for t ≥ 1. Therefore, g(t) ≥ g(1) = 0, f ′(t) ≥ 0, f (t) is increas-
ing for t ≥ 1, hence f (t)≥ f (1) = 0.

Substituting b = x2 and c = y2, where 1≤ x ≤ y , the left inequality becomes

E
�

1
x2 y2

, x2, y2
�

≥ E
�

1
x2 y2

, x y, x y
�

,
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or, equivalently,

1
x4 y2

+
x2

y2
+ x2 y4 −

1
x3 y3

− 1− x3 y3 ≥ (yk − x k)2.

We write this inequality as

(y − x)
�

x2 y3 +
1

x4 y3
−

x + y
y2

�

≥ (yk − x k)2,

and then show that

(y − x)
�

x2 y3 +
1

x4 y3
−

x + y
y2

�

≥ (y − x)(y3 − x3)≥ (yk − x k)2. (*)

The left inequality (*) is true if f (x , y)≥ 0, where

f (x , y) = x2 y3 +
1

x4 y3
−

x + y
y2
− y3 + x3.

We will show that
f (x , y)≥ f (1, y)≥ 0.

Since 1≤ x ≤ y , we have

f (x , y)− f (1, y) = x3 − 1+ y3(x2 − 1)−
1
y2
(x − 1)−

1
y3

�

1−
1
x4

�

≥ x3 − 1+ (x2 − 1)− (x − 1)−
�

1−
1
x4

�

= (x2 − 1)
��

x −
1
x2

�

+
�

1−
1
x4

��

≥ 0

and

f (1, y) =
1
y3
−

1+ y
y2
+ 1=

(1+ y)(1− y)2

y3
≥ 0.

In order to prove the right inequality (*), we will prove that

(y − x)(y3 − x3)≥
3
4
(y2 − x2)2 ≥ (yk − x k)2.

We have
4(y − x)(y3 − x3)− 3(y2 − x2)2 = (y − x)4 ≥ 0.

To complete the proof, we only need to show that

k
2
(y2 − x2)≥ yk − x k, k =

p
3.

For fixed y , let

g(x) = x k − yk +
k
2
(y2 − x2), 1≤ x ≤ y.
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Since
g ′(x) = kx(x k−2 − 1)≤ 0,

g(x) is decreasing, hence g(x) ≥ g(y) = 0. The equality in (b) is an equality if
and only if a = b = c = 1.

P 1.68. If k and a, b, c are positive real numbers, then

1
(k+ 1)a+ b

+
1

(k+ 1)b+ c
+

1
(k+ 1)c + a

≥
1

ka+ b+ c
+

1
kb+ c + a

+
1

kc + a+ b
.

(Vasile C., 2011)

First Solution. For k = 1, we need to show that

1
2a+ b

+
1

2b+ c
+

1
2c + a

≥
3

a+ b+ c
.

This follows immediately from the Cauchy-Schwarz inequality, as follows:

1
2a+ b

+
1

2b+ c
+

1
2c + a

≥
9

(2a+ b) + (2b+ c) + (2c + a)

=
3

a+ b+ c
.

Further, consider two cases: k > 1 and 0< k < 1.

Case 1: k > 1. By the Cauchy-Schwarz inequality, we have

k− 1
(k+ 1)a+ b

+
1

kc + a+ b
≥

[(k− 1) + 1]2

(k− 1)[(k+ 1)a+ b] + (kc + a+ b)

=
k

ka+ b+ c
.

Adding this inequality and the similar ones yields the desired inequality.

Case 2: 0< k < 1. By the Cauchy-Schwarz inequality, we have

1− k
(k+ 1)a+ b

+
k

ka+ b+ c
≥

[(1− k) + k]2

(1− k)[(k+ 1)a+ b] + k(ka+ b+ c)

=
1

kc + a+ b
.

Adding this inequality and the similar ones yields the desired inequality.
The equality holds for a = b = c.

Second Solution (by Vo Quoc Ba Can). By the Cauchy-Schwarz inequality, we have

1
(k+ 1)a+ b

+
k

(k+ 1)b+ c
+

k2

(k+ 1)c + a
≥
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≥
(1+ k+ k2)2

[(k+ 1)a+ b] + k[(k+ 1)b+ c] + k2[(k+ 1)c + a]

=
1+ k+ k2

kc + a+ b
.

Therefore, we get in succession

∑ 1
(k+ 1)a+ b

+
∑ k
(k+ 1)b+ c

+
∑ k2

(k+ 1)c + a
≥
∑ 1+ k+ k2

kc + a+ b
,

(1+ k+ k2)
∑ 1
(k+ 1)a+ b

≥ (1+ k+ k2)
∑ 1

ka+ b+ c
,

∑ 1
(k+ 1)a+ b

≥
∑ 1

ka+ b+ c
.

Third Solution. We have

1
(k+ 1)a+ b

−
1

ka+ b+ c
=

c − a
(ka+ a+ b)(ka+ b+ c)

≥
c − a

(kc + a+ b)(ka+ b+ c)
=

1
k− 1

�

1
ka+ b+ c

−
1

kc + a+ b

�

,

hence
∑ 1
(k+ 1)a+ b

−
∑ 1

ka+ b+ c
≥

1
k− 1

�

∑ 1
ka+ b+ c

−
∑ 1

kc + a+ b

�

= 0.

P 1.69. If a, b, c are positive real numbers, then

(a)
a

p
2a+ b

+
b

p
2b+ c

+
c

p
2c + a

≤
p

a+ b+ c;

(b)
a

p
a+ 2b

+
b

p
b+ 2c

+
c

p
c + 2a

≥
p

a+ b+ c.

Solution. (a) By the Cauchy-Schwarz inequality, we have

∑ a
p

2a+ b
=
∑

�p
a ·
s

a
2a+ b

�

≤
s

�∑

a
�
�
∑ a

2a+ b

�

.

Therefore, it suffices to show that
∑ a

2a+ b
≤ 1.
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This inequality is equivalent to

∑ b
2a+ b

≥ 1.

Applying the Cauchy-Schwarz inequality, we get

∑ b
2a+ b

≥

�∑

b
�2

∑

b(2a+ b)
= 1.

The equality holds for a = b = c.

(b) By Hölder’s inequality, we have

�

∑ a
p

a+ 2b

�2

≥

�∑

a
�3

∑

a(a+ 2b)
=
∑

a.

From this, the desired inequality follows. The equality holds for a = b = c.

P 1.70. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

a

√

√a+ 2b
3

+ b

√

√ b+ 2c
3

+ c

√

√ c + 2a
3
≤ 3.

First Solution. By the Cauchy-Schwarz inequality, we have

∑

a

√

√a+ 2b
3

≤

√

√�∑

a
�

�

∑ a(a+ 2b)
3

�

=

√

√

√

�∑

a
�3

3
= 3.

The equality holds for a = b = c = 1, and also for a = 3 and b = c = 0 (or any
cyclic permutation).

Second Solution. Applying Jensen’s inequality to the concave function f (x) =
p

x ,
x ≥ 0, we have

a
p

a+ 2b+ b
p

b+ 2c + c
p

c + 2a ≤

≤ (a+ b+ c)

√

√a(a+ 2b) + b(b+ 2c) + c(c + 2a)
a+ b+ c

= (a+ b+ c)
p

a+ b+ c = 3
p

3.
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P 1.71. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

a
p

1+ b3 + b
p

1+ c3 + c
p

1+ a3 ≤ 5.

(Pham Kim Hung, 2007)

Solution. Using the AM-GM inequality yields

p

1+ b3 =
Æ

(1+ b)(1− b+ b2)≤
(1+ b) + (1− b+ b2)

2
= 1+

b2

2
.

Therefore,

∑

a
p

1+ b3 ≤
∑

a
�

1+
b2

2

�

= 3+
ab2 + bc2 + ca2

2
.

To complete the proof, it remains to show that

ab2 + bc2 + ca2 ≤ 4.

But this is just the inequality in P 1.1. The equality occurs for a = 0, b = 1 and
c = 2 (or any cyclic permutation).

P 1.72. If a, b, c are positive real numbers such that abc = 1, then

(a)
s

a
b+ 3

+

√

√ b
c + 3

+
s

c
a+ 3

≥
3
2

;

(b) 3

s

a
b+ 7

+ 3

√

√ b
c + 7

+ 3

s

c
a+ 7

≥
3
2

.

Solution. (a) Putting

a =
x
y

, b =
z
x

, c =
y
z

,

the inequality can be restated as

x
p

y(3x + z)
+

y
p

z(3y + x)
+

z
p

x(3z + y)
≥

3
2

.

By Hölder’s inequality, we have

�

∑ x
p

y(3x + z)

�2
�∑

x y(3x + z)
�

≥
�∑

x
�3

.
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Therefore, it suffices to show that

4(x + y + z)3 ≥ 27(x2 y + y2z + z2 x + x yz).

This is just the inequality (a) in P 1.9. The equality holds for a = b = c = 1.

(b) Putting

a =
x4

y4
, b =

z4

x4
, c =

y4

z4
,

the inequality becomes
∑

3

√

√ x8

y4(7x4 + z4)
≥

3
2

.

By Hölder’s inequality, we have

�

∑

3

√

√ x8

y4(7x4 + z4)

�3
�∑

(7x4 + z4)
�

≥
�

∑ x2

y

�4

.

Since
∑

(7x4 + z4) = 8
∑

x4, it is enough to show that
�

x2

y
+

y2

z
+

z2

x

�4

≥ 27(x4 + y4 + z4),

which is just the inequality in P 1.60-(a). The equality holds for a = b = c = 1.

P 1.73. If a, b, c are positive real numbers, then
�

1+
4a

a+ b

�2

+
�

1+
4b

b+ c

�2

+
�

1+
4c

c + a

�2

≥ 27.

(Vasile C., 2012)

Solution. Let

x =
a− b
a+ b

, y =
b− c
b+ c

, z =
c − a
c + a

.

We have
−1< x , y, z < 1

and
x + y + z + x yz = 0.

Since
2a

a+ b
= x + 1,

2b
b+ c

= y + 1,
2c

c + a
= z + 1,

we can write the inequality as follows:

(2x + 3)2 + (2y + 3)2 + (2z + 3)2 ≥ 27,
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x2 + y2 + z2 + 3(x + y + z)≥ 0,

x2 + y2 + z2 ≥ 3x yz.

By the AM-GM inequality, we have

x2 + y2 + z2 ≥ 3 3
p

x2 y2z2.

Thus, it suffices to show that |x yz| ≤ 1, which is clearly true. The equality holds
for a = b = c.

P 1.74. If a, b, c are positive real numbers, then
√

√ 2a
a+ b

+

√

√ 2b
b+ c

+

√

√ 2c
c + a

≤ 3.

(Vasile C., 1992)

First Solution. By the Cauchy-Schwarz inequality, we have

∑

√

√ 2a
a+ b

≤
√

√

�

∑ 2a
(a+ b)(a+ c)

�

�∑

(a+ c)
�

.

Thus, it suffices to show that
∑ a
(a+ b)(a+ c)

≤
9

4(a+ b+ c)
,

which is equivalent to

a(b− c)2 + b(c − a)2 + c(a− b)2 ≥ 0.

The equality occurs for a = b = c.

Second Solution. By the Cauchy-Schwarz inequality, we have

∑

√

√ 2a
a+ b

≤
√

√

�

∑ 1
(a+ b)(b+ c)

�

�∑

2a(b+ c)
�

.

Thus, it suffices to show that
∑ 1
(a+ b)(b+ c)

≤
9

4(ab+ bc + ca)
,

which is equivalent to

a(b− c)2 + b(c − a)2 + c(a− b)2 ≥ 0.
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P 1.75. If a, b, c are nonnegative real numbers, then

s

a
4a+ 5b

+

√

√ b
4b+ 5c

+
s

c
4c + 5a

≤ 1.

(Vasile C., 2004)

Solution. If one of a, b, c is zero, then the inequality is clearly true. Otherwise,
using the substitution

u=
b
a

, v =
c
b

, w=
a
c

,

we need to show that uvw= 1 involves

1
p

4+ 5u
+

1
p

4+ 5v
+

1
p

4+ 5w
≤ 1.

Using the contradiction method, it suffices to show that

1
p

4+ 5u
+

1
p

4+ 5v
+

1
p

4+ 5w
> 1

involves uvw< 1. Let

x =
1

p
4+ 5u

, y =
1

p
4+ 5v

, z =
1

p
4+ 5w

,

where x , y, z ∈
�

0,
1
2

�

. Since

u=
1− 4x2

5x2
, v =

1− 4y2

5y2
, w=

1− 4z2

5z2
,

we have to prove that x + y + z > 1 involves

(1− 4x2)(1− 4y2)(1− 4z2)< 125x2 y2z2.

Since
1− 4x2 < (x + y + z)2 − 4x2 = (−x + y + z)(3x + y + z),

it suffices to prove the homogeneous inequality

(3x+ y+z)(3y+z+x)(3z+x+ y)(−x+ y+z)(−y+z+x)(−z+x+ y)≤ 125x2 y2z2.

By the AM-GM inequality, we have

(3x + y + z)(3y + z + x)(3z + x + y)≤ 125
� x + y + z

3

�3

.

Therefore, it is enough to show that
� x + y + z

3

�3

(−x + y + z)(−y + z + x)(−z + x + y)≤ x2 y2z2.
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Using the substitution

a = −x + y + z, b = −y + z + x , c = −z + x + y,

where a, b, c > 0, the inequality can be restated as

64abc(a+ b+ c)3 ≤ 27(b+ c)2(c + a)2(a+ b)2.

The known inequality

9(b+ c)(c + a)(a+ b)≥ 8(a+ b+ c)(ab+ bc + ca),

equivalent to
a(b− c)2 + b(c − a)2 + c(a− b)2 ≥ 0,

involves

81(b+ c)2(c + a)2(a+ b)2 ≥ 64(a+ b+ c)2(ab+ bc + ca)2.

Thus, it suffices to show that

3abc(a+ b+ c)≤ (ab+ bc + ca)2.

which is also a known inequality, equivalent to

a2(b− c)2 + b2(c − a)2 + c2(a− b)2 ≥ 0.

Thus, the proof is completed. The equality occurs for a = b = c.

P 1.76. If a, b, c are positive real numbers, then

a
p

4a2 + ab+ 4b2
+

b
p

4b2 + bc + 4c2
+

c
p

4c2 + ca+ 4a2
≤ 1.

(Bin Zhao, 2006)

Solution. By the AM-GM inequality, we have

ab+ 4b2 ≥ 5
5
p

ab · b8 = 5
5
p

ab9,

a
p

4a2 + ab+ 4b2
≤

a
p

4a2 + 5
5p

ab9
=

√

√ a9/5

4a9/5 + 5b9/5
.

Therefore, it suffices to show that
√

√ a9/5

4a9/5 + 5b9/5
+

√

√ b9/5

4b9/5 + 5c9/5
+

√

√ c9/5

4c9/5 + 5a9/5
≤ 1.

Replacing a9/5, b9/5, c9/5 by a, b, c, respectively, we get the inequality in P 1.75. The
equality holds for a = b = c.
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P 1.77. If a, b, c are positive real numbers, then

s

a
a+ b+ 7c

+

√

√ b
b+ c + 7a

+
s

c
c + a+ 7b

≥ 1.

(Vasile C., 2006)

Solution. Substituting

x =
s

a
a+ b+ 7c

, y =

√

√ b
b+ c + 7a

, z =
s

c
c + a+ 7b

,

we have


















(x2 − 1)a+ x2 b+ 7x2c = 0

(y2 − 1)b+ y2c + 7y2a = 0 ,

(z2 − 1)c + z2a+ 7z2 b = 0

which involves
�

�

�

�

�

�

x2 − 1 x2 7x2

7y2 y2 − 1 y2

z2 7z2 z2 − 1

�

�

�

�

�

�

= 0 ;

that is,
F(x , y, z) = 0,

where
F(x , y, z) = 324x2 y2z2 + 6

∑

x2 y2 +
∑

x2 − 1.

We need to show that F(x , y, z) = 0 involves x + y + z ≥ 1, where x , y, z > 0. To
do this, we use the contradiction method. Assume that x+ y+z < 1 and show that
F(x , y, z) < 0. Since F(x , y, z) is strictly increasing in each of its arguments, it is
enough to prove that x + y + z = 1 involves F(x , y, z)≤ 0. We have

F(x , y, z) = 324x2 y2z2 + 6
�∑

x y
�2
− 12x yz

∑

x +
�∑

x
�2
− 2

∑

x y − 1

= 324x2 y2z2 + 6
�∑

x y
�2
− 12x yz − 2

∑

x y

= 12x yz(27x yz − 1) + 2
�∑

x y
��

3
∑

x y − 1
�

.

Because
27x yz ≤

�∑

x
�3
= 1

and
3
∑

x y ≤
�∑

x
�2
= 1,

the conclusion follows. The equality occurs for a = b = c.
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P 1.78. If a, b, c are nonnegative real numbers, no two of which are zero, then

(a)
s

a
3b+ c

+

√

√ b
3c + a

+
s

c
3a+ b

≥
3
2

;

(b)
s

a
2b+ c

+

√

√ b
2c + a

+
s

c
2a+ b

≥ 4p8.

(Vasile Cîrtoaje and Pham Kim Hung, 2006)

Solution. Consider the inequality

√

√(k+ 1)a
kb+ c

+

√

√(k+ 1)b
kc + a

+

√

√(k+ 1)c
ka+ b

≥ Ak, k > 0,

and use the substitution

x =

√

√(k+ 1)a
kb+ c

, y =

√

√(k+ 1)b
kc + a

, z =

√

√(k+ 1)c
ka+ b

.

From the identity

(kb+ c)(kc+ a)(ka+ b) = (k3+1)abc+ kbc(kb+ c)+ kca(kc+ a)+ kab(ka+ b),

written as

kb+ c
(k+ 1)a

·
kc + a
(k+ 1)b

·
ka+ b
(k+ 1)c

=
k2 − k+ 1
(k+ 1)2

+
k

(k+ 1)2

�

kb+ c
(k+ 1)a

+
kc + a
(k+ 1)b

+
ka+ b
(k+ 1)c

�

,

we get
1

x2 y2z2
=

k2 − k+ 1
(k+ 1)2

+
k

(k+ 1)2

�

1
x2
+

1
y2
+

1
z2

�

,

which is equivalent to F(x , y, z) = 0, where

F(x , y, z) = k(x2 y2 + y2z2 + z2 x2) + (k2 − k+ 1)x2 y2z2 − (k+ 1)2.

So, we need to show that F(x , y, z) = 0 yields x+ y+z ≥ Ak. To do this, we use the
contradiction method. Assume that x + y + z < Ak and show that F(x , y, z) < 0.
Since F(x , y, z) is strictly increasing in each of its variables, it suffices to prove that
x + y + z = Ak involves F(x , y, z)≤ 0. Let

k1 =
49+ 9

p
17

32
≈ 2.691.

(a) We need to show that F(x , y, z) ≤ 0 for x + y + z = Ak = 3 and k = 3.
We will show a more general inequality, namely F(x , y, z) ≤ 0 for k ≥ k1 and
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all nonnegative numbers x , y, z satisfying x + y + z = 3. The AM-GM inequality
x + y + z ≥ 3 3

p
x yz involves x yz ≤ 1. On the other hand, by Schur’s inequality

(x + y + z)3 + 9x yz ≥ 4(x + y + z)(x y + yz + zx)

we get
4(x y + yz + zx)≤ 9+ 3x yz,

hence

(x y + yz + zx)2 − 9≤
(9+ 3x yz)2

16
− 9=

9
16
(x yz − 1)(x yz + 7).

Therefore,

F(x , y, z) = k[(x y + yz + zx)2 − 6x yz] + (k2 − k+ 1)x2 y2z2 − (k+ 1)2

= k[(x y + yz + zx)2 − 9] + (k2 − k+ 1)(x2 y2z2 − 1)− 6k(x yz − 1)

≤
9k
16
(x yz − 1)(x yz + 7) + (k2 − k+ 1)(x2 y2z2 − 1)− 6k(x yz − 1)

=
1

16
(x yz − 1)

�

(16k2 − 7k+ 16)x yz + 16k2 − 49k+ 16
�

≤ 0.

Since x yz−1≤ 0 and 16k2−7k+16> 0, it suffices to show that 16k2−49k+16≥ 0;
indeed, this inequality is true for k ≥ k1.
The equality occurs for a = b = c. In addition, when k = k1, the equality occurs
also for a = 0 and b/c =

p
k (or any cyclic permutation).

(b) We need to show that F(x , y, z)≤ 0 for Ak =
4p72 and k = 2. We will show

a more general inequality, that F(x , y, z) ≤ 0 for 1 ≤ k ≤ k1 and all nonnegative
numbers x , y, z satisfying

x + y + z = Ak = 2
4

√

√(k+ 1)2

k
.

From

F(x , y, z) = k(x2 y2 + y2z2 + z2 x2) + (k2 − k+ 1)x2 y2z2 − (k+ 1)2

= k(x y + yz + zx)2 − 2kAk x yz + (k2 − k+ 1)x2 y2z2 − (k+ 1)2,

it follows that for fixed x yz, F(x , y, z) is maximal when x y + yz + zx is maximal;
that is, according to P 3.58 in Volume 1, when two of x , y, z are equal. Due to
symmetry, we only need to show that F(x , y, z)≤ 0 for y = z. Write the inequality
F(x , y, z)≤ 0 as follows:

k(x2 y2 + y2z2 + z2 x2) + (k2 − k+ 1)x2 y2z2 − k
� x + y + z

2

�4

≤ 0,

k
�

� x + y + z
2

�4

− x2 y2 − y2z2 − z2 x2
�

≥ (k2 − k+ 1)x2 y2z,
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k
p

k (x + y + z)2
�

(x + y + z)4 − 16(x2 y2 + y2z2 + z2 x2
�

≥ 64(k3 + 1)x2 y2z2.

Due to homogeneity, we may only consider the cases y = z = 0 and y = z = 1. In
the non-trivial case y = z = 1, the inequality becomes

k
p

k x(x + 2)2(x3 + 8x2 − 8x + 32)≥ 64(k3 + 1)x2.

This is true because
297k

p

k ≥ 64(k3 + 1)

for 1≤ k ≤ k1, and

x(x + 2)2(x3 + 8x2 − 8x + 32)≥ 297x2.

Notice that

x(x + 2)2(x3 + 8x2 − 8x + 32)− 297x2 = x(x − 1)2(x3 + 14x2 + 55x + 128)≥ 0.

If 1 ≤ k < k1, then the equality occurs only for a = 0 and b/c =
p

k (or any cyclic
permutation). Therefore, if k = 2, then the equality holds for a = 0 and b/c =

p
2

(or any cyclic permutation).

Remark. From the proof above, it follows that the following more general state-
ment holds:

• Let a, b, c be nonnegative real numbers, no two of which are zero. If k > 0, then
s

a
kb+ c

+

√

√ b
kc + a

+
s

c
ka+ b

≥min
§

3
p

k+ 1
,

2
4p

k

ª

.

For k = 1, we get the known inequality
s

a
b+ c

+

√

√ b
c + a

+
s

c
a+ b

≥ 2,

with equality for a = 0 and b = c (or any cyclic permutation). We can get this
inequality by summing the inequalities

s

a
b+ c

≥
2a

a+ b+ c
,

√

√ b
c + a

≥
2b

a+ b+ c
,

s

c
a+ b

≥
2c

a+ b+ c
.

P 1.79. If a, b, c are positive real numbers such that ab+ bc + ca = 3, then

(a)
1

(a+ b)(3a+ b)
+

1
(b+ c)(3b+ c)

+
1

(c + a)(3c + a)
≥

3
8

;

(b)
1

(2a+ b)2
+

1
(2b+ c)2

+
1

(2c + a)2
≥

1
3

.

(Vasile Cîrtoaje and Pham Kim Hung, 2007)
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Solution. (a) Using the Cauchy-Schwarz inequality and the inequality in P 1.78-(a)
gives

∑ 1
(a+ b)(3a+ b)

=
∑ 1
(b+ c)(3b+ c)

≥

�∑Æ

a
3b+c

�2

∑

a(b+ c)

≥
9

8(ab+ bc + ca)
=

3
8

.

The equality holds for a = b = c.

(b) We consider two cases (Vo Quoc Ba Can).

Case 1: 4(ab+ bc + ca ≥ a2 + b2 + c2. By the Cauchy-Schwarz inequality, we get

∑ 1
(2a+ b)2

≥
9
�∑

a
�2

∑

(2a+ b)2(b+ 2c)2
.

Thus, it suffices to show that

9p2q ≥
∑

(2a+ b)2(b+ 2c)2,

where p = a+ b+ c, q = ab+ bc + ca. Since

(2a+ b)(b+ 2c) = pb+ q+ 3ac,

we have
∑

(2a+ b)2(b+ 2c)2 = p2
∑

a2 + 3q2 + 9
∑

a2 b2 + 2p2q+ 18abcp+ 6q2

= p2(p2 − 2q) + 9q2 + 9(q2 − 2abcp) + 2p2q+ 18abcp = p4 + 18q2,

and the inequality becomes
9p2q ≥ p4 + 18q2,

(p2 − 3q)(6q− p2)≥ 0.

The last inequality is true since p2 − 3q ≥ 0 and

6q− p2 = 4(ab+ bc + ca)− a2 − b2 − c2 ≥ 0.

Case 2: 4(ab+ bc + ca < a2 + b2 + c2. Assume that a =max{a, b, c}. From

a2 − 4(b+ c)a+ (b+ c)2 > 6bc > 0,

we get
a > (2+

p
3)(b+ c)> 2(b+ c).
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Since

1
(2a+ b)2

+
1

(2b+ c)2
+

1
(2c + a)2

>
1

(2b+ c)2
+

1
(2c + a)2

≥
2

(2b+ c)(2c + a)
,

it suffices to show that

2
(2b+ c)(2c + a)

≥
1

ab+ bc + ca
.

This is equivalent to the obvious inequality

c(a− 2b− 2c)≥ 0.

The proof is completed. The equality holds for a = b = c.

Conjecture. Let a, b, c be nonnegative real numbers, no two of which are zero. If
k > 0, then

(a)
1

(a+ b)(ka+ b)
+

1
(b+ c)(kb+ c)

+
1

(c + a)(kc + a)
≥

9
2(k+ 1)(ab+ bc + ca)

;

(b)
1

(ka+ b)2
+

1
(kb+ c)2

+
1

(kc + a)2
≥

9
(k+ 1)2(ab+ bc + ca)

.

For k = 1, from (a) and (b), we get the well-known inequality (Iran 96):

1
(a+ b)2

+
1

(b+ c)2
+

1
(c + a)2

≥
9

4(ab+ bc + ca)
.

P 1.80. If a, b, c are nonnegative real numbers, then

a4 + b4 + c4 + 15(a3 b+ b3c + c3a)≥
47
4
(a2 b2 + b2c2 + c2a2).

(Vasile C., 2011)

Solution. Without loss of generality, assume that a = min{a, b, c}. There are two
cases to consider: a ≤ b ≤ c and a ≤ c ≤ b.

Case 1: a ≤ b ≤ c. For a = 0, the inequality is true because is equivalent to

b4 + c4 + 15b3c −
47
4

b2c2 ≥ 0,

�

b−
c
2

�2
(b2 + 16bc + 4c2)≥ 0.
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Based on this result, it suffices to prove that

a4 + 15(a3 b+ c3a)≥
47
4

a2(b2 + c2).

This inequality is true if
a3 b+ c3a ≥ a2(b2 + c2).

Indeed,

a2 b+ c3 − a(b2 + c2) = c2(c − a)− ab(b− a)≥ c2(b− a)− ab(b− a)

= (c2 − ab)(b− a)≥ 0.

Case 2: a ≤ c ≤ b. It suffices to show that

a3 b+ b3c + c3a ≥ a2 b2 + b2c2 + c2a2.

Since

ab3 + bc3 + ca3 − (a3 b+ b3c + c3a) = (a+ b+ c)(a− b)(b− c)(c − a)≤ 0,

we have
∑

a3 b ≥
1
2
(
∑

a3 b+
∑

ab3) =
1
2

∑

ab(a2 + b2)≥
∑

a2 b2.

The equality holds for a = 0 and 2b = c (or any cyclic permutation).

P 1.81. If a, b, c are nonnegative real numbers such that a+ b+ c = 4, then

a3 b+ b3c + c3a ≤ 27.

Solution. Assume that a = max{a, b, c}. There are two possible cases: a ≥ b ≥ c
and a ≥ c ≥ b.
Case 1: a ≥ b ≥ c. Using the AM-GM inequality gives

3(a3 b+ b3c + c3a)≤ 3ab(a2 + ac + c2)≤ 3ab(a+ c)2

= a · 3b · (a+ c) · (a+ c)≤
�

a+ 3b+ (a+ c) + (a+ c)
4

�4

=
�

3a+ 3b+ 2c
4

�4

≤
�

3a+ 3b+ 3c
4

�4

= 81.

Case 2: a ≥ c ≥ b. Since

ab3 + bc3 + ca3 − (a3 b+ b3c + c3a) = (a+ b+ c)(a− b)(b− c)(c − a)≥ 0,
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it suffices to prove that

a3 b+ b3c + c3a+ (ab3 + bc3 + ca3)≤ 54.

Indeed,
∑

a3 b+
∑

ab3 ≤ (a2 + b2 + c2)(ab+ bc + ca)

≤
1
8
[a2 + b2 + c2 + 2(ab+ bc + ca)]2

=
1
8
(a+ b+ c)4 = 32< 54.

The equality holds for a = 3, b = 1 and c = 0 (or any cyclic permutation).

Remark. The following sharper inequality holds (Michael Rozenberg).

• If a, b, c are nonnegative real numbers such that a+ b+ c = 4, then

a3 b+ b3c + c3a+
473
64

abc ≤ 27,

with equality for a = b = c = 4/3, and also for a = 3, b = 1 and c = 0 (or any cyclic
permutation).

Write the inequality in the homogeneous form

27(a+ b+ c)4 ≥ 256(a3 b+ b3c + c3a) + 473abc(a+ b+ c).

Assuming that c =min{a, b, c} and using the substitution

a = c + p, b = c + q, p, q ≥ 0,

this inequality can be restated as

Ac2 + Bc + C ≥ 0,

where
A= 217(p2 − pq+ q2)≥ 0,

B = 68p3 − 269p2q+ 499pq2 + 68q3 ≥ 60p(p2 − 5pq+ 8q2)≥ 0,

C = (p− 3q)2(27p2 + 14pq+ 3q2)≥ 0.

P 1.82. Let a, b, c be nonnegative real numbers such that

a2 + b2 + c2 =
10
3
(ab+ bc + ca).

Prove that
a4 + b4 + c4 ≥

82
27
(a3 b+ b3c + c3a).

(Vasile C., 2011)
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Solution (by Vo Quoc Ba Can). We see that the equality holds for a = 3, b = 1,
c = 0. From

a4 + b4 + c4 + 2(ab+ bc + ca)2 = (a2 + b2 + c2)2 + 4abc(a+ b+ c),

we get

a4 + b4 + c4 ≥ (a2 + b2 + c2)2 − 2(ab+ bc + ca)2

=
82
9
(ab+ bc + ca)2.

Therefore, it suffices to show that

3(ab+ bc + ca)2 ≥ a3 b+ b3c + c3a.

In addition, since

ab+ bc + ca =
3(a2 + b2 + c2) + 6(ab+ bc + ca)

16
= 3

�

a+ b+ c
4

�2

,

it suffices to show that

27
�

a+ b+ c
4

�4

≥ a3 b+ b3c + c3a,

which is the inequality from the preceding P 1.81. The equality holds for a = 3b
and c = 0 (or any cyclic permutation).

P 1.83. If a, b, c are positive real numbers, then

a3

2a2 + b2
+

b3

2b2 + c2
+

c3

2c2 + a2
≥

a+ b+ c
3

.

(Vasile C., 2005)

Solution. We write the inequality as
�

a3

2a2 + b2
−

a
3

�

+
�

b3

2b2 + c2
−

b
3

�

+
�

c3

2c2 + a2
−

c
3

�

≥ 0,

a(a2 − b2)
2a2 + b2

+
b(b2 − c2)
2b2 + c2

+
c(c2 − a2)
2c2 + a2

≥ 0.

Taking into account that

a(a2 − b2)
2a2 + b2

−
b(a2 − b2)
2b2 + a2

=
(a+ b)(a− b)2(a2 − ab+ b2)
(2a2 + b2)(2b2 + a2)

≥ 0,
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it suffices to show that

b(a2 − b2)
2b2 + a2

+
b(b2 − c2)
2b2 + c2

+
c(c2 − a2)
2c2 + a2

≥ 0.

Since
b(a2 − b2)
2b2 + a2

+
b(b2 − c2)
2b2 + c2

=
3b2(a2 − c2)

(2b2 + a2)(2b2 + c2)
,

the last inequality is equivalent to

(c2 − a2)(c − b)[a2(3b2 + bc + c2) + 2b2c(c − 2b)]≥ 0. (*)

Similarly, the desired inequality is true if

(a2 − b2)(a− c)[b2(3c2 + ca+ a2) + 2c2a(a− 2c)]≥ 0. (**)

Without loss of generality, assume that

c =max{a, b, c}.

According to (*), the desired inequality is true if

a2(3b2 + bc + c2) + 2b2c(c − 2b)≥ 0.

We claim that this inequality holds for for a ≥ b, and also for 2ac ≥
p

3 b2. If
a ≥ b, then

a2(3b2 + bc + c2) + 2b2c(c − 2b)≥ b2(3b2 + bc + c2) + 2b2c(c − 2b)

= 3b2[b2 + c(c − b)]> 0;

also, if 2ac ≥
p

3 b2, then

a2(3b2 + bc + c2) + 2b2c(c − 2b)≥
3b4

4c2
(3b2 + bc + c2) + 2b2c(c − 2b)

=
b2

4c2
(8c4 − 16bc3 + 3b2c2 + 3b3c + 9b4)

=
b2

4c2
[2c(c + b)(2c − 3b)2 + 9b2(c − b)2 + 3b3c]> 0.

Consequently, we only need to consider that a < b ≤ c and
p

3 b2 > 2ac. According
to (**), the desired inequality is true if

b2(3c2 + ca+ a2) + 2c2a(a− 2c)≥ 0.

We have

b2(3c2 + ca+ a2) + 2c2a(a− 2c)>
4ac
3
(3c2 + ca+ a2) + 2c2a(a− 2c)

=
2a2c(2a+ 5c)

3
> 0.

This completes the proof. The equality occurs for a = b = c.



132 Vasile Cîrtoaje

P 1.84. If a, b, c are positive real numbers, then

a4

a3 + b3
+

b4

b3 + c3
+

c4

c3 + a3
≥

a+ b+ c
2

.

(Vasile C., 2005)

Solution (by Vo Quoc Ba Can). Multiplying by a3+ b3+ c3, the inequality becomes

∑

a4 +
∑ a4c3

a3 + b3
≥

1
2

�∑

a
��∑

a3
�

.

By the Cauchy-Schwarz inequality, we have

∑ a4c3

a3 + b3
≥

�∑

a2c2
�2

∑

c(a3 + b3)
=

�∑

a2 b2
�2

∑

a(b3 + c3)
.

According to the inequality

x2

y
≥ x −

y
4

, x , y > 0,

we have
(
∑

a2 b2)2
∑

a(b3 + c3)
≥
∑

a2 b2 −
1
4

∑

a(b3 + c3).

Therefore, it suffices to show that
∑

a4 +
∑

a2 b2 −
1
4

∑

a(b3 + c3)≥
1
2

�∑

a
��∑

a3
�

,

which is equivalent to

2
∑

a4 + 4
∑

a2 b2 ≥ 3
∑

ab(a2 + b2),
∑

[a4 + b4 + 4a2 b2 − 3ab(a2 + b2)]≥ 0,
∑

(a− b)2(a2 − ab+ b2)≥ 0.

This completes the proof. The equality occurs for a = b = c.

P 1.85. If a, b, c are positive real numbers such that abc = 1, then

(a) 3
�

a2

b
+

b2

c
+

c2

a

�

+ 4
�

b
a2
+

c
b2
+

a
c2

�

≥ 7(a2 + b2 + c2);

(b) 8
�

a3

b
+

b3

c
+

c3

a

�

+ 5
�

b
a3
+

c
b3
+

a
c3

�

≥ 13(a3 + b3 + c3).

(Vasile C., 1992)
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Solution. (a) We use the AM-GM inequality, as follows:

3
∑ a2

b
+ 4

∑ b
a2
=
∑

�

3
a2

b
+

c
b2
+ 3

a
c2

�

≥ 7
∑

7

√

√

√

�

a2

b

�3

·
c
b2
·
� a

c2

�3

= 7
∑

7

√

√ a9

b5c5
= 7

∑

a2.

The equality holds for a = b = c = 1.

(b) By the AM-GM inequality, we have

8
∑ a3

b
+ 5

∑ b
a3
=
∑

�

8
a3

b
+

c
b3
+ 4

a
c3

�

≥ 13
∑

13

√

√

√

�

a3

b

�8

·
c
b3
·
� a

c3

�4

= 13
∑

13

√

√ a28

b11c11
= 13

∑

a3.

The equality holds for a = b = c = 1.

P 1.86. If a, b, c are positive real numbers, then

ab
b2 + bc + c2

+
bc

c2 + ca+ a2
+

ca
a2 + ab+ b2

≤
a2 + b2 + c2

ab+ bc + ca
.

(Tran Quoc Anh, 2007)

Solution. Write the inequality as follows:
∑

�

a2

ab+ bc + ca
−

ab
b2 + bc + c2

�

≥ 0,

∑ ac(ac − b2)
b2 + bc + c2

≥ 0,

∑

�

ac(ac − b2)
b2 + bc + c2

+ ac
�

≥
∑

ac,

∑ ac2(a+ b+ c)
b2 + bc + c2

≥
∑

ac,

∑ ac2

b2 + bc + c2
≥

ab+ bc + ca
a+ b+ c

.

By the Cauchy-Schwarz inequality, we have

∑ ac2

b2 + bc + c2
≥

�∑

ac
�2

∑

a(b2 + bc + c2)
=

ab+ bc + ca
a+ b+ ca

.

The equality holds for a = b = c.
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P 1.87. If a, b, c are positive real numbers, then

a− b
b(2b+ c)

+
b− c

c(2c + a)
+

c − a
a(2a+ b)

≥ 0.

Solution. Write the inequality as follows:

∑ ac(a− b)
2b+ c

≥ 0,

∑

�

ac(a− b)
2b+ c

+ ac
�

≥ ab+ bc + ca,

∑ ac
2b+ c

≥
ab+ bc + ca

a+ b+ c
.

By the Cauchy-Schwarz inequality, we have

∑ ac
2b+ c

≥

�∑

ac
�2

∑

ac(2b+ c)
=

�∑

ab
�2

6abc +
∑

a2 b
.

Thus, it suffices to prove that

∑

ab

6abc +
∑

a2 b
≥

1
∑

a
,

which is equivalent to
∑

ab2 ≥ 3abc.

Clearly, the last inequality follows immediately from the AM-GM inequality. The
equality holds for a = b = c.

P 1.88. If a, b, c are positive real numbers, then

(a)
a2 + 6bc
ab+ 2bc

+
b2 + 6ca
bc + 2ca

+
c2 + 6ab
ca+ 2ab

≥ 7;

(b)
a2 + 7bc
ab+ bc

+
b2 + 7ca
bc + ca

+
c2 + 7ab
ca+ ab

≥ 12.

(Vasile C., 2012)



Cyclic Inequalities 135

Solution. (a) Write the inequality as follows:
∑

ac(a2 + 6bc)(b+ 2a)(c + 2b)≥ 7abc(a+ 2c)(b+ 2a)(c + 2b),

2
∑

a2 b4 + abc
�

72abc + 4
∑

a3 + 26
∑

a2 b+ 7
∑

ab2
�

≥

≥ 7abc
�

9abc + 4
∑

a2 b+ 2
∑

ab2
�

,

2
�∑

a2 b4 − abc
∑

a2 b
�

+ abc
�

4
∑

a3 + 9abc − 7
∑

ab2
�

≥ 0.

Since
2
�∑

a2 b4 − abc
∑

a2 b
�

=
∑

(ab2 − bc2)2 ≥ 0,

it suffices to show that

4
∑

a3 + 9abc − 7
∑

ab2 ≥ 0.

Assume that a =min{a, b, c}. Using the substitution

b = a+ x , c = a+ y, x , y ≥ 0,

we have

4
∑

a3 + 9abc − 7
∑

ab2 = 5(x2 − x y + y2)a+ 4x3 + 4y3 − 7x y2 ≥ 0,

since

4x3 + 4y3 = 4x3 + 2y3 + 2y3 ≥ 3 3
p

4x3 · 2y3 · 2y3 = 6
3p

2 x y2 ≥ 7x y2.

The equality holds for a = b = c.

(b) Write the inequality as follows:
∑

ac(a2 + 7bc)(b+ a)(c + b)≥ 12abc(a+ c)(b+ a)(c + b),

∑

a2 b4 + abc
�

21abc +
∑

a3 + 15
∑

a2 b+ 8
∑

ab2
�

≥

≥ 12abc
�

2abc +
∑

a2 b+
∑

ab2
�

,
�∑

a2 b4 − abc
∑

a2 b
�

+ abc
�∑

a3 − 3abc + 4
∑

a2 b− 4
∑

ab2
�

≥ 0.

Since
∑

a2 b4 − abc
∑

a2 b =
1
2

∑

(ab2 − bc2)2 ≥ 0,

it suffices to show that
∑

a3 − 3abc + 4
∑

a2 b− 4
∑

ab2 ≥ 0,
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which is equivalent to

1
2
(a+ b+ c)

∑

(a− b)2 − 4(a− b)(b− c)(c − a)≥ 0.

Assume that a =min{a, b, c}. Making the substitution

b = a+ x , c = a+ y, x , y ≥ 0,

we have
1
2
(a+ b+ c)

∑

(a− b)2 − 4(a− b)(b− c)(c − a) =

= (x2 − x y + y2)(3a+ x + y) + 4x y(x − y)

= 3(x2 − x y + y2)a+ x3 + y3 + 4x y(x − y)

= 3(x2 − x y + y2)a+ x3 + y(2x − y)2 ≥ 0.

The equality holds for a = b = c.

P 1.89. If a, b, c are positive real numbers, then

(a)
ab

2b+ c
+

bc
2c + a

+
ca

2a+ b
≤

a2 + b2 + c2

a+ b+ c
;

(b)
ab

b+ c
+

bc
c + a

+
ca

a+ b
≤

3(a2 + b2 + c2)
2(a+ b+ c)

;

(c)
ab

4b+ 5c
+

bc
4c + 5a

+
ca

4a+ 5b
≤

a2 + b2 + c2

3(a+ b+ c)
.

(Vasile C., 2012)

Solution. (a) First Solution. Since

2ab
2b+ c

= a−
ac

2b+ c
,

we can write the inequality as

∑ ac
2b+ c

+
2(a2 + b2 + c2)

a+ b+ c
≥ a+ b+ c.

By the Cauchy-Schwarz inequality,

∑ ac
2b+ c

≥

�∑p
ac
�2

∑

(2b+ c)
=
(
p

ab+
p

bc +
p

ca)2

3(a+ b+ c)
.
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Then, it suffices to show that

(
p

ab+
p

bc +
p

ca)2 + 6(a2 + b2 + c2)
3(a+ b+ c)

≥ a+ b+ c,

which is equivalent to

3(a2 + b2 + c2) + 2
p

abc
�p

a+
p

b+
p

c
�

≥ 5(ab+ bc + ca).

Using the substitution
x =
p

a, y =
p

b, z =
p

c,

the inequality can be restated as

3(x4 + y4 + z4) + 2x yz(x + y + z)≥ 5(x2 y2 + y2z2 + z2 x2).

We can get it by summing Schur’s inequality of degree four

2(x4 + y4 + z4) + 2x yz(x + y + z)≥ 2
∑

x y(x2 + y2)

and
x4 + y4 + z4 + 2

∑

x y(x2 + y2)≥ 5(x2 y2 + y2z2 + z2 x2),

the last being equivalent to the obvious inequality

(x4 + y4 + z4 − x2 y2 − y2z2 − z2 x2) + 2
∑

x y(x − y)2 ≥ 0.

The equality holds for a = b = c.

Second Solution. By the Cauchy-Schwarz inequality, we have

1
2b+ c

=
1

b+ b+ c
≤

a2/b+ b+ c
(a+ b+ c)2

=
a2 + b2 + bc
b(a+ b+ c)2

,

ab
2b+ c

≤
a(a2 + b2 + bc)
(a+ b+ c)2

,

∑ ab
2b+ c

≤
∑

a3 +
∑

ab2 + 3abc
(a+ b+ c)2

.

Since 3abc ≤
∑

a2 b (by the AM-GM inequality), we get

∑ ab
2b+ c

≤
∑

a3 +
∑

ab2 +
∑

a2 b
(a+ b+ c)2

=
a2 + b2 + c2

a+ b+ c
.

Third Solution. Write the inequality as

∑ ab(a+ b+ c)
2b+ c

≤ a2 + b2 + c2.
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Since
2ab(a+ b+ c) = (a2 + 2ab)(2b+ c)− 2ab2 − a2c,

we can write the inequality as

∑ 2ab2

2b+ c
+
∑ a2c

2b+ c
+ p ≥ 2q,

where
p = a2 + b2 + c2, q = ab+ bc + ca, p ≥ q.

By the Cauchy-Schwarz inequality, we have

∑ ab2

2b+ c
≥

�∑

ab
�2

∑

a(2b+ c)
=

q
3

and
∑ a2c

2b+ c
≥

�∑

ac
�2

∑

c(2b+ c)
=

q2

p+ 2q
.

Thus, it suffices to show that

2q
3
+

q2

p+ 2q
+ p ≥ 2q,

which is equivalent to the obvious inequality

(p− q)(3p+ 5q)≥ 0.

(b) Write the inequality as

3
2
(a2 + b2 + c2)≥

∑ ab(a+ b+ c)
b+ c

.

Since
ab(a+ b+ c)

b+ c
=

a2 b
b+ c

+ ab = a2 + ab−
a2c

b+ c
,

the inequality can be written as

∑ a2c
b+ c

+
1
2
(a2 + b2 + c2)≥ ab+ bc + ca.

By the Cauchy-Schwarz inequality,

∑ a2c
b+ c

≥

�∑

ac
�2

∑

c(b+ c)
=

q2

p+ q
,

where
p = a2 + b2 + c2, q = ab+ bc + ca, p ≥ q.
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Therefore, we have

∑ a2c
b+ c

+
1
2
(a2 + b2 + c2)− (ab+ bc + ca)≥

q2

p+ q
+

p
2
− q =

p(p− q)
2(p+ q)

≥ 0.

The equality holds for a = b = c.

(c) Since
4ab

4b+ 5c
= a−

5ac
4b+ 5c

,

we can write the inequality as

5
∑ ac

4b+ 5c
+

4(a2 + b2 + c2)
3(a+ b+ c)

≥ a+ b+ c.

By the Cauchy-Schwarz inequality,

∑ ac
4b+ 5c

≥

�∑

ac
�2

∑

ac(4b+ 5c)
=

(ab+ bc + ca)2

12abc + 5(a2 b+ b2c + c2a)
.

Therefore, it suffices to show that

5(ab+ bc + ca)2

12abc + 5(a2 b+ b2c + c2a)
+

4(a2 + b2 + c2)
3(a+ b+ c)

≥ a+ b+ c.

Due to homogeneity, we may assume that a+ b+ c = 3. Using the notation

q = ab+ bc + ca, q ≤ 3,

this inequality becomes

5q2

5(a2 b+ b2c + c2a+ abc) + 7abc
+

4(9− 2q)
9

≥ 3.

According to the inequality (a) in P 1.9, we have

a2 b+ b2c + c2a+ abc ≤ 4.

On the other hand, from

(ab+ bc + ca)2 ≥ 3abc(a+ b+ c),

we get

abc ≤
q2

9
.

Thus, it suffices to prove that

5q2

20+ 7q2/9
+

4(9− 2q)
9

≥ 3,
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which is equivalent to

(q− 3)(14q2 − 75q+ 135)≤ 0.

This is true since q− 3≤ 0 and

14q2 − 75q+ 135> 3(4q2 − 25q+ 39) = 3(3− q)(13− 4q)≥ 0.

The equality holds for a = b = c.

P 1.90. If a, b, c are positive real numbers, then

(a) a
p

b2 + 8c2 + b
p

c2 + 8a2 + c
p

a2 + 8b2 ≤ (a+ b+ c)2;

(b) a
p

b2 + 3c2 + b
p

c2 + 3a2 + c
p

a2 + 3b2 ≤ a2 + b2 + c2 + ab+ bc + ca.

(Vo Quoc Ba Can, 2007)

Solution. (a) By the AM-GM inequality, we have

p

b2 + 8c2 =

p

(b2 + 8c2)(b+ 2c)2

b+ 2c
≤
(b2 + 8c2) + (b+ 2c)2

2(b+ 2c)

=
b2 + 2bc + 6c2

b+ 2c
= b+ 3c −

3bc
b+ 2c

,

hence

a
p

b2 + 8c2 ≤ ab+ 3ac −
3abc
b+ 2c

,

∑

a
p

b2 + 8c2 ≤ 4
∑

ab− 3abc
∑ 1

b+ 2c
.

Therefore, it suffices to show that

�∑

a
�2
+ 3abc

∑ 1
b+ 2c

≥ 4
∑

ab.

Since
∑ 1

b+ 2c
≥

9
∑

(b+ 2c)
=

3
∑

a
,

it is enough to prove that

�∑

a
�3
+ 9abc ≥ 4

�∑

a
��∑

ab
�

.

This is Shur’s inequality of degree three. The equality holds for a = b = c.
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(b) Similarly, we have

p

b2 + 3c2 =

p

(b2 + 3c2)(b+ c)2

b+ c
≤
(b2 + 3c2) + (b+ c)2

2(b+ c)

=
b2 + bc + 2c2

b+ c
= b+ 2c −

2bc
b+ c

,

hence

a
p

b2 + 3c2 ≤ ab+ 2ac −
2abc
b+ c

,

∑

a
p

b2 + 3c2 ≤ 3
∑

ab− 2abc
∑ 1

b+ c
.

Thus, it suffices to show that
�∑

a
�2
+ 2abc

∑ 1
b+ c

≥ 4
∑

ab.

Since
∑ 1

b+ c
≥

9
∑

(b+ c)
=

9
2
∑

a
,

it is enough to prove that
�∑

a
�3
+ 9abc ≥ 4

�∑

a
��∑

ab
�

,

which is just Shur’s inequality of degree three. The equality holds for a = b = c.

P 1.91. If a, b, c are positive real numbers, then

(a)
1

a
p

a+ 2b
+

1

b
p

b+ 2c
+

1

c
p

c + 2a
≥
s

3
abc

;

(b)
1

a
p

a+ 8b
+

1

b
p

b+ 8c
+

1

c
p

c + 8a
≥
s

1
abc

.

(Vasile C., 2007)

Solution. (a) Write the inequality as

∑

√

√ bc
3a(a+ 2b)

≥ 1.

Replacing a, b, c by
1
x

,
1
y

,
1
z

, respectively, the inequality can be restated as

∑ x
p

3z(2x + y)
≥ 1.
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Since
Æ

3z(2x + y)≤
3z + (2x + y)

2
,

it suffices to show that
∑ x

2x + y + 3z
≥

1
2

.

Indeed, using the Cauchy-Schwarz inequality gives

∑ x
2x + y + 3z

≥
∑ (

∑

x)2
∑

x(2x + y + 3z)
=

1
2

.

The equality holds for a = b = c.

(b) Write the inequality as

∑

√

√ bc
a(a+ 8b)

≥ 1.

Replacing a, b, c by
1
x2

,
1
y2

,
1
z2

, respectively, the inequality becomes

∑ x2

z
p

8x2 + y2
≥ 1.

Applying the Cauchy-Schwarz inequality yields

∑ x2

z
p

8x2 + y2
≥

�∑

x
�2

∑

z
p

8x2 + y2
.

Therefore, it suffices to show that
∑

z
p

8x2 + y2 ≤ (x + y + z)2,

which is just the inequality in P 1.90-(a). The equality holds for a = b = c.

P 1.92. If a, b, c are positive real numbers, then

a
p

5a+ 4b
+

b
p

5b+ 4c
+

c
p

5c + 4a
≤

√

√a+ b+ c
3

.

(Vasile C., 2012)
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Solution. By the Cauchy-Schwarz inequality, we have

�

∑ a
p

5a+ 4b

�2

≤
�
∑ a

4a+ 4b+ c

�

�

∑ a(4a+ 4b+ c)
5a+ 4b

�

.

It suffices to show that
∑ a

4a+ 4b+ c
≤

1
3

and
∑ a(4a+ 4b+ c)

5a+ 4b
≤ a+ b+ c.

The first is just the inequality in P 1.18, while the second is equivalent to

∑

a
�

1−
4a+ 4b+ c

5a+ 4b

�

≥ 0,

∑ a(a− c)
5a+ 4b

≥ 0,
∑

a(a− c)(5b+ 4c)(5c + 4a)≥ 0,
∑

a2 b2 + 4
∑

ab3 ≥ 5abc
∑

a.

The last inequality follows from the well-known inequality
∑

a2 b2 ≥ abc
∑

a

and the known inequality
∑

ab3 ≥ abc
∑

a,

which follows from the Cauchy-Schwarz inequality, as follows:

�∑

c
��∑

ab3
�

≥
�∑p

ab3c
�2
= abc

�∑

b
�2

.

The equality holds for a = b = c.

P 1.93. If a, b, c are positive real numbers, then

(a)
a

p
a+ b

+
b

p
b+ c

+
c

p
c + a

≥
p

a+
p

b+
p

c
p

2
;

(b)
a

p
a+ b

+
b

p
b+ c

+
c

p
c + a

≥ 4

√

√27(ab+ bc + ca)
4

.

(Lev Buchovsky - 1995, Pham Huu Duc - 2007)
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Solution. (a) By squaring, the inequality becomes

∑ a2

a+ b
+ 2

∑ ab
p

(a+ b)(b+ c)
≥

1
2

∑

a+
∑

p

ab.

The sequences
§

1
p

a+ b
,

1
p

b+ c
,

1
p

c + a

ª

and
§

ab
p

a+ b
,

bc
p

b+ c
,

ca
p

c + a

ª

are always reversely ordered; therefore, according to the rearrangement inequality,
we have

1
p

a+ b
·

ab
p

a+ b
+

1
p

b+ c
·

bc
p

b+ c
+

1
p

c + a
·

ca
p

c + a
≤

≤
1

p
a+ b

·
ca
p

c + a
+

1
p

b+ c
·

ab
p

a+ b
+

1
p

c + a
·

bc
p

b+ c
,

∑ ab
a+ b

≤
∑ ab

p

(a+ b)(b+ c)
.

Thus, it suffices to show that

∑ a2

a+ b
+ 2

∑ ab
a+ b

≥
1
2

∑

a+
∑

p

ab.

Since
∑ a2

a+ b
+
∑ ab

a+ b
=
∑

a,

the inequality becomes as follows:

∑

a+
∑ ab

a+ b
≥

1
2

∑

a+
∑

p

ab,

∑ a+ b
2
+
∑ 2ab

a+ b
≥ 2

∑
p

ab,

∑

�√

√a+ b
2
−

√

√ 2ab
a+ b

�2

≥ 0.

The equality holds for a = b = c.

(b) By Hölder’s inequality, we have

�

∑ a
p

a+ b

�2
∑

a(a+ b)≥
�∑

a
�3

.
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Thus, it suffices to show that

�∑

a
�3
≥

3
2

�∑

a2 +
∑

ab
�Æ

3(ab+ bc + ca),

which is equivalent to
2p3 + q3 ≥ 3p2q,

where p = a+ b+ c and q =
p

3(ab+ bc + ca). By the AM-GM inequality, we have

2p3 + q3 ≥ 3 3
Æ

p6q3 = 3p2q.

The equality holds for a = b = c.

P 1.94. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then
p

3a+ b2 +
p

3b+ c2 +
p

3c + a2 ≥ 6.

First Solution. Assume that a = max{a, b, c}. We can get the desired inequality
by summing the inequalities

p

3b+ c2 +
p

3c + a2 ≥
p

3a+ c2 + b+ c

and
p

3a+ b2 +
p

3a+ c2 ≥ 2a+ b+ c.

By squaring two times, the first inequality becomes in succession
Æ

(3b+ c2)(3c + a2)≥ (b+ c)
p

3a+ c2,

[b(a+ b+ c) + c2][c(a+ b+ c) + a2]≥ (b+ c)2[a(a+ b+ c) + c2],

b(a− b)(a− c)(a+ b+ c)≥ 0.

Similarly, the second inequality becomes
Æ

(3a+ b2)(3a+ c2)≥ (a+ b)(a+ c),

[a(a+ b+ c) + b2][a(a+ b+ c) + c2]≥ (a+ b)2(a+ c)2,

a(a+ b+ c)(b− c)2 ≥ 0.

The original inequality becomes an equality when a = b = c, and also when two of
a, b, c are zero.

Second Solution. Write the inequality as
p

X +
p

Y +
p

Z ≤
p

A+
p

B +
p

C ,
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where
X = (b+ c)2, Y = (c + a)2, Z = (a+ b)2,

A= 3a+ b2, B = 3b+ c2, C = 3c + a2.

According to Lemma from the proof of P 2.11 in Volume 2, since

X + Y + Z = A+ B + C ,

it suffices to show that

max{X , Y, Z} ≥max{A, B, C}, min{X , Y, Z} ≤min{A, B, C}.

To show that max{X , Y, Z} ≥max{A, B, C}, we assume that

a =min{a, b, c}, max{X , Y, Z}= X .

From
X − A= (c2 − a2) + b(c − a) + c(b− a)≥ 0,

X − B = b(c − a)≥ 0,

X − C = (b2 − a2) + c(b− a)≥ 0,

the conclusion follows. Similarly, to show that min{X , Y, Z} ≤ min{A, B, C}, we
assume that

a =max{a, b, c}, min{X , Y, Z}= X ,

when
A− X = (a2 − c2) + b(a− c) + c(a− b)≥ 0,

B − X = b(a− c)≥ 0,

C − X = (a2 − b2) + c(a− b)≥ 0.

P 1.95. If a, b, c are nonnegative real numbers, then
p

a2 + b2 + 2bc +
p

b2 + c2 + 2ca+
p

c2 + a2 + 2ab ≥ 2(a+ b+ c).

(Vasile C., 2012)

First Solution (by Nguyen Van Quy). Assume that a = max{a, b, c}. We can get
the desired inequality by summing the inequalities

p

a2 + b2 + 2bc +
p

b2 + c2 + 2ca ≥
p

a2 + b2 + 2ca+ b+ c

and
p

c2 + a2 + 2ab+
p

a2 + b2 + 2ca ≥ 2a+ b+ c.



Cyclic Inequalities 147

By squaring two times, the first inequality becomes

Æ

(a2 + b2 + 2bc)(b2 + c2 + 2ca)≥ (b+ c)
p

a2 + b2 + 2ca,

c(a− b)(a2 − c2)≥ 0.

Similarly, the second inequality becomes

Æ

(c2 + a2 + 2ab)(a2 + b2 + 2ca)≥ (a+ b)(a+ c),

a(b+ c)(b− c)2 ≥ 0.

The original inequality becomes an equality when a = b = c, and also when two of
a, b, c are zero.

Second Solution. Let {x , y, z} be a permutation of {ab, bc, ca}. We will prove that

2(a+ b+ c)≤
p

b2 + c2 + 2x +
p

c2 + a2 + 2y +
p

a2 + b2 + 2z.

Due to symmetry, assume that a ≥ b ≥ c. Using the substitution

X = a2 + b2 + 2ab, Y = c2 + a2 + 2ca, Z = b2 + c2 + 2bc,

A= b2 + c2 + 2x , B = c2 + a2 + 2y, C = a2 + b2 + 2z,

we can write the inequality as
p

X +
p

Y +
p

Z ≤
p

A+
p

B +
p

C .

Since X + Y + Z = A+ B + C , X ≥ Y ≥ Z and

X ≥max{A, B, C}, Z ≤min{A, B, C},

the conclusion follow by Lemma from the proof of P 2.11 in Volume 2.

P 1.96. If a, b, c are nonnegative real numbers, then
p

a2 + b2 + 7bc +
p

b2 + c2 + 7ca+
p

c2 + a2 + 7ab ≥ 3
Æ

3(ab+ bc + ca).

(Vasile C., 2012)

Solution. Assume that a = max{a, b, c}. We can get the desired inequality by
summing the inequalities

p

a2 + b2 + 7bc +
p

b2 + c2 + 7ca ≥
p

a2 + b2 + 7ca+
p

b2 + c2 + 7bc
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and
p

a2 + c2 + 7ab+
p

a2 + b2 + 7ac ≥ 3
Æ

3(ab+ bc + ca)−
p

b2 + c2 + 7bc.

By squaring, the first inequality becomes

(a2 + b2 + 7b)(b2 + c2 + 7ca)≥ (a2 + b2 + 7ca)(b2 + c2 + 7bc),

c(a− b)(a2 − c2)≥ 0.

Similarly, the second inequality becomes

a2 +
p

E + 3
p

3F ≥ 10a(b+ c) + 17bc,

where

E = (a2 + c2 + 7ab)(a2 + b2 + 7ac)

= a4 + 7(b+ c)a3 + (b2 + c2 + 49bc)a2 + 7(b3 + c3)a+ b2c2

and
F = (ab+ bc + ca)(b2 + c2 + 7bc).

Due to homogeneity, we may assume that b + c = 1. Let us denote x = bc. We

need to show that f (x)≥ 0 for 0≤ x ≤
1
4

and a ≥
1
2

, where

f (x) = a2 − 10a− 17x +
Æ

g(x) + 3
Æ

3h(x),

with

g(x) = a4 + 7a3 + (1+ 47x)a2 + 7(1− 3x)a+ x2

= x2 + a(47a− 21)x + a4 + 7a3 + a2 + 7a,

h(x) = (a+ x)(1+ 5x) = 5x2 + (5a+ 1)x + a.

We have the derivatives

f ′(x) = −17+
g ′

2
p

g
+

3
p

3h′

2
p

h

= −17+
2x + a(47a− 21)

2
p

g
+

3
p

3(10x + 5a+ 1)

2
p

h
,

f ′′(x) =
2g ′′g − (g ′)2

4g
p

g
+

3
p

3[2h′′h− (h′)2]
4h
p

h

=
a(28− 45a)(7a− 1)2

4g
p

g
−

3
p

3(5a− 1)2

4h
p

h
.
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We will show that g ≥ 3h. Since 0≤ x ≤
1
4

and a ≥
1
2

, we have

g − 3h= −14x2 + (47a2 − 36a− 3)x + a4 + 7a3 + a2 + 4a

≥ −
7
8
+ (47a2 − 36a− 3)x + a4 + 7a3 + a2 + 4a.

For the non-trivial case 47a2 − 36a− 3< 0, we get

g − 3h≥ −
7
8
+

47a2 − 36a− 3
4

+ a4 + 7a3 + a2 + 4a

=
(2a− 1)(4a3 + 30a2 + 66a+ 13)

8
≥ 0.

We will prove now that f ′′(x) < 0. This is clearly true for a ≥
28
45

. Otherwise, for

1
2
≤ a ≤

28
45

, we have

f ′′(x)≤
a(28− 45a)(7a− 1)2 − 27(5a− 1)2

4g
p

g
< 0,

since

a(28− 45a)(7a− 1)2 − 27(5a− 1)2 <
�

28−
45
2

�

(7a− 1)2 − 27(5a− 1)2

<
27
4
(7a− 1)2 − 27(5a− 1)2 =

27(1− 3a)(17a− 3)
4

< 0.

Since f is concave, it suffices to show that f (0)≥ 0 and f
�

1
4

�

≥ 0.

From

f (0) =
p

a
�

a
p

a− 10
p

a+ 3
p

3+
p

a3 + 7a2 + a+ 7
�

,

it follows that f (0)≥ 0 for all a ≥
1
2

if and only if

p

a3 + 7a2 + a+ 7≥ −a
p

a+ 10
p

a− 3
p

3.

This is true if
a3 + 7a2 + a+ 7≥ (−a

p
a+ 10

p
a− 3

p
3)2,

which is equivalent to

(
p

3a− 2)2(9a+ 10
p

a− 5)≥ 0.

Clearly, this inequality holds for a ≥
1
2

.
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Since

g
�

1
4

�

=
�

4a2 + 14a+ 1
4

�2

and

h
�

1
4

�

=
9(4a+ 1)

16
,

we get

f
�

1
4

�

=
8a2 − 26a− 16+ 9

p

3(4a+ 1)
4

.

Using the substitution

x =

√

√4a+ 1
3

, x ≥ 1,

we find

f
�

1
4

�

=
9x4 − 45x2 + 54x − 18

8
=
(x − 1)2(9x2 + 18x − 18)

8
≥ 0.

Thus, the proof is completed. The equality holds for a = b = c, and also for 3a = 4b
and c = 0 (or any cyclic permutation).

P 1.97. If a, b, c are positive real numbers, then

a2 + 3ab
(b+ c)2

+
b2 + 3bc
(c + a)2

+
c2 + 3ca
(a+ b)2

≥ 3.

Solution. Write the inequality as

∑ a(a+ b)
(b+ c)2

+ 2
∑ ab
(b+ c)2

≥ 3.

The sequences
{bc, ca, ab}

and
§

1
(b+ c)2

,
1

(c + a)2
,

1
(a+ b)2

ª

are reversely ordered. Thus, by the rearrangement inequality, we have

∑ bc
(b+ c)2

≤
∑ ab
(b+ c)2

.

Therefore, it suffices to show that

∑ a(a+ b)
(b+ c)2

+
∑ b(c + a)
(b+ c)2

≥ 3,
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which is equivalent to

∑

a
�

a+ b
(b+ c)2

+
∑ b+ c
(a+ b)2

�

≥ 3.

By the AM-GM inequality, we have

a+ b
(b+ c)2

+
b+ c
(a+ b)2

≥
2

p

(a+ b)(b+ c)
≥

4
(a+ b) + (b+ c)

.

Thus, it is enough to prove that
∑ a

a+ 2b+ c
≥

3
4

.

Indeed, by the Cauchy-Schwarz inequality, we get

∑ a
a+ 2b+ c

≥

�∑

a
�2

∑

a(a+ 2b+ c)
=

∑

a2 + 2
∑

ab
∑

a2 + 3
∑

ab
≥

3
4

.

The equality holds for a = b = c.

P 1.98. If a, b, c are positive real numbers, then

a2 b+ 1
a(b+ 1)

+
b2c + 1
b(c + 1)

+
c2a+ 1
c(a+ 1)

≥ 3.

Solution. By the Cauchy-Schwarz inequality, we have

(a2 b+ 1)
�

1
b
+ 1

�

≥ (a+ 1)2,

hence
a2 b+ 1
a(b+ 1)

≥
b(a+ 1)2

a(b+ 1)2
.

Therefore, it suffices to prove that

∑ b(a+ 1)2

a(b+ 1)2
≥ 3.

This inequality follows immediately from the AM-GM inequality:

∑ b(a+ 1)2

a(b+ 1)2
≥ 3 3

√

√
∏ b(a+ 1)2

a(b+ 1)2
= 3.

The equality holds for a = b = c = 1.
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P 1.99. If a, b, c are positive real numbers such that a+ b+ c = 3, then
p

a3 + 3b+
p

b3 + 3c +
p

c3 + 3a ≥ 6.

Solution. By the Cauchy-Schwarz inequality, we have

(a3 + 3b)(a+ 3b)≥ (a2 + 3b)2.

Thus, it suffices to show that

∑ a2 + 3b
p

a+ 3b
≥ 6.

By Hölder’s inequality, we have

�

∑ a2 + 3b
p

a+ 3b

�2
�∑

(a2 + 3b)(a+ 3b)
�

≥
�∑

(a2 + 3b)
�3
=
�∑

a2 + 9
�3

.

Therefore, it is enough to show that

�∑

a2 + 9
�3
≥ 36

∑

(a2 + 3b)(a+ 3b).

Let
p = a+ b+ c = 3, q = ab+ bc + ca, q ≤ 3.

We have
∑

a2 + 9= p2 − 2q+ 9= 2(9− q),

∑

(a2 + 3b)(a+ 3b) =
∑

a3 + 3
∑

a2 b+ 9
∑

a2 + 3
∑

ab

= (p3 − 3pq+ 3abc) + 3
∑

a2 b+ 9(p2 − 2q) + 3q

= 108− 24q+ 3
�

abc +
∑

a2 b
�

.

Since abc +
∑

a2 b ≤ 4 (see the inequality (a) in P 1.9), we get
∑

(a2 + 3b)(a+ 3b)≤ 24(5− q).

Thus, it suffices to show that

(9− q)3 ≥ 108(5− q),

which is equivalent to
(3− q)2(21− q)≥ 0.

The equality holds for a = b = c = 1.
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P 1.100. If a, b, c are positive real numbers such that abc = 1, then

s

a
a+ 6b+ 2bc

+

√

√ b
b+ 6c + 2ca

+
s

c
c + 6a+ 2ab

≥ 1.

(Nguyen Van Quy and Vasile Cîrtoaje, 2013)

Solution. By Hölder’s inequality, we have

�

∑

s

a
a+ 6b+ 2bc

�2
�∑

a(a+ 6b+ 2bc)
�

≥
�∑

a2/3
�3

.

Therefore, it suffices to show that

�∑

a2/3
�3
≥
∑

a2 + 6
∑

ab+ 6,

which is equivalent to

3
∑

(ab)2/3(a2/3 + b2/3)≥ 6
∑

ab.

Since
a2/3 + b2/3 ≥ 2(ab)1/3,

the desired conclusion follows. The equality holds for a = b = c = 1.

P 1.101. If a, b, c are positive real numbers such that abc = 1, then

�

a+
1
b

�2

+
�

b+
1
c

�2

+
�

c +
1
a

�2

≥ 6(a+ b+ c − 1).

(Marius Stanean, 2014)

Solution (by Michael Rozenberg). By the AM-GM inequality, we have

∑

�

a+
1
b

�2

+ 6=
∑

(a+ ac)2 + 6

=
∑

(a2 + a2c2 + 2a2c) + 6

=
∑

(a2 + a2 b2 + 2a2c + 2)

≥ 6
∑

6
p

a2 · a2 b2 · a2c · a2c · 1 · 1= 6
∑

a.

The equality holds for a = b = c = 1.
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P 1.102. If a, b, c are positive real numbers, then

a
a+ b

+
b

b+ c
+

c
c + a

≥
a+ b+ c

a+ b+ c − 3pabc
.

(Michael Rozenberg, 2014)

Solution. There are two cases to consider.

Case 1: ab + bc + ca ≥ 3pabc (a + b + c). By the Cauchy-Schwarz inequality, we
have

∑ a
a+ b

≥

�∑

a
�2

∑

a(a+ b)
=

(a+ b+ c)2

(a+ b+ c)2 − (ab+ bc + ca)
.

Therefore, it suffices to show that

(a+ b+ c)2

(a+ b+ c)2 − (ab+ bc + ca)
≥

a+ b+ c

a+ b+ c − 3pabc
,

which is equivalent to

ab+ bc + ca−
3
p

abc (a+ b+ c)≥ 0.

Case 2:
3pabc (a + b + c) ≥ ab + bc + ca. By the Cauchy-Schwarz inequality, we

have
∑ a

a+ b
≥

�∑

ac
�2

∑

ac2(a+ b)
=

(ab+ bc + ca)2

(ab+ bc + ca)2 − abc(a+ b+ c)
.

Thus, it suffices to show that

(ab+ bc + ca)2

(ab+ bc + ca)2 − abc(a+ b+ c)
≥

a+ b+ c

a+ b+ c − 3pabc
,

which is equivalent to

�

3
p

abc (a+ b+ c)
�2
≥ (ab+ bc + ca)2,

3
p

abc (a+ b+ c)≥ ab+ bc + ca.

The proof is completed. The equality does not hold.

P 1.103. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a
p

b2 + b+ 1+ b
p

c2 + c + 1+ c
p

a2 + a+ 1≤ 3
p

3.

(Nguyen Van Quy, 2014)
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Solution. From

4(b2 + b+ 1) = 2(b+ 1)2 + 2(b2 + 1)≥ 3(b+ 1)2,

we get
p

b2 + b+ 1≥
p

3
2
(b+ 1),

hence
∑

a
p

b2 + b+ 1=
∑ a(b2 + b+ 1)
p

b2 + b+ 1
≤
∑ 2a(b2 + b+ 1)

p
3(b+ 1)

.

Therefore, it suffices to prove that

∑ a(b2 + b+ 1)
b+ 1

≤
9
2

,

which is equivalent to
∑ ab2

b+ 1
≤

3
2

.

In addition, since b+ 1≥ 2
p

b, it is enough to show that
∑

ab3/2 ≤ 3.

Replacing a, b, c by a2, b2, c2, respectively, we need to show that a2 + b2 + c2 = 3
involves a2 b3 + b2c3 + c2a3 ≤ 3, which is just the inequality in P 1.7. The equality
holds for a = b = c.

P 1.104. If a, b, c are positive real numbers, then

1
b(a+ 2b+ 3c)2

+
1

c(b+ 2c + 3a)2
+

1
a(c + 2a+ 3b)2

≤
1

12abc
.

(Vo Quoc Ba Can, 2012)

Solution. Assume that a =max{a, b, c}, and write the inequality as

ca
(a+ 2b+ 3c)2

+
ab

(b+ 2c + 3a)2
+

bc
(c + 2a+ 3b)2

≤
1

12
.

Case 1: a ≥ b ≥ c. By the AM-GM inequality, we have

(a+ 2b+ 3c)2 ≥ 4(2b+ c)(2c + a);

thus, it suffices to show that
∑ ca
(2b+ c)(2c + a)

≤
1
3

,



156 Vasile Cîrtoaje

which is equivalent to

3
∑

ca(2a+ b)≤ (2a+ b)(2b+ c)(2c + a),

ab2 + bc2 + ca2 ≤ a2 b+ b2c + c2a,

(a− b)(b− c)(c − a)≤ 0.

Clearly, the last inequality is true.

Case 2: a ≥ c ≥ b. Since, by the AM-GM inequality,

(a+ 2b+ 3c)2 ≥ 12c(a+ 2b),

(b+ 2c + 3a)2 ≥ 4(2a+ b)(2c + a),

(c + 2a+ 3b)2 ≥ 4(a+ 2b)(a+ b+ c),

it suffices to show that
a

3(a+ 2b)
+

ab
(2a+ b)(2c + a)

+
bc

(a+ 2b)(a+ b+ c)
≤

1
3

,

which is equivalent to

ab
(2a+ b)(2c + a)

+
bc

(a+ 2b)(a+ b+ c)
≤

2b
3(a+ 2b)

,

a
(2a+ b)(2c + a)

+
c

(a+ 2b)(a+ b+ c)
≤

2
3(a+ 2b)

,

a(a+ 2b)
(2a+ b)(2c + a)

+
c

a+ b+ c
≤

2
3

,

a(a+ 2b)
2a+ b

+
c(2c + a)
a+ b+ c

≤
2(2c + a)

3
,

c(2c + a)
a+ b+ c

−
2(2c + a)

3
≤

3a2

2a+ b
− 2a,

f (c)≤ f (a),

where

f (x) =
x(2x + a)
a+ b+ x

−
2(2x + a)

3
.

We have

f (a)− f (c) =(a− c)
�

3a2 + 4ac + b(3a+ 2c)
(a+ b+ c)(2a+ b)

−
4
3

�

=
(a− c)[a2 − 3ab− 4b2 + 2c(2a+ b)]

3(a+ b+ c)(2a+ b)
≥ 0,

because

a2 − 3ab− 4b2 + 2c(2a+ b)≥ a2 − 3ab− 4b2 + 2b(2a+ b) = (a− b)(a+ 2b)≥ 0.

The equality holds for a = b = c.
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P 1.105. Let a, b, c be positive real numbers such that a+ b+ c = 3. Prove that

(a)
a2 + 9b

b+ c
+

b2 + 9c
c + a

+
c2 + 9a
a+ b

≥ 15;

(b)
a2 + 3b
a+ b

+
b2 + 3c
b+ c

+
c2 + 3a
c + a

≥ 6.

Solution. (a) Write the inequality as follows:

∑ a2 + 3b(a+ b+ c)
b+ c

≥ 5(a+ b+ c),

∑

�

a2 + 3b(a+ b+ c)
b+ c

− 3b
�

≥ 2(a+ b+ c),

∑ a2 + 3ab
b+ c

≥ 2(a+ b+ c),

∑

�

a2 + 3ab
b+ c

− 2a
�

≥ 0,

∑ a(a+ b− 2c)
b+ c

≥ 0,

∑ a(a− c)
b+ c

+
∑ a(b− c)

b+ c
≥ 0,

∑ a(a− c)
b+ c

+
∑ b(c − a)

c + a
≥ 0,

∑

(a− c)
�

a
b+ c

−
b

c + a

�

≥ 0,

(a+ b+ c)
∑ (a− b)(a− c)
(b+ c)(c + a)

≥ 0.

Therefore, we need to show that
∑

(a2 − b2)(a− c)≥ 0,

which is equivalent to the obvious inequality
∑

a(a− c)2 ≥ 0.

The equality holds for a = b = c.

(b) Write the inequality as follows:

∑ a2 + b(a+ b+ c)
a+ b

≥ 2(a+ b+ c),
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∑ a2 + bc
a+ b

≥ a+ b+ c,

∑

�

a2 + bc
a+ b

− a
�

≥ 0,

∑ b(c − a)
a+ b

≥ 0,

∑ bc
a+ b

≥
∑ ab

a+ b
.

Since the sequences
{ab, bc, ca}

and
§

1
a+ b

,
1

b+ c
,

1
c + a

ª

are reversely ordered, the inequality follows from the rearrangement inequality.
The equality holds for a = b = c.

P 1.106. If a, b, c ∈ [0, 1], then

(a)
bc

2ab+ 1
+

ca
2bc + 1

+
ab

2ca+ 1
≤ 1.

(b)
a

ab+ 1
+

b
bc + 1

+
c

ca+ 1
≤

3
2

.

(Vasile C., 2010)

Solution. (a) First Solution. It suffices to prove that

bc
2abc + 1

+
ca

2abc + 1
+

ab
2abc + 1

≤ 1;

that is,
2abc + 1≥ ab+ bc + ca,

1− bc ≥ a(b+ c − 2bc).

Since a ≤ 1 and
b+ c − 2bc = b(1− c) + c(1− b)≥ 0,

it suffices to show that
1− bc ≥ b+ c − 2bc,

which is equivalent to
(1− b)(1− c)≥ 0.
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The equality holds for a = b = c = 1, and for a = 0 and b = c = 1 (or any cyclic
permutation).

Second Solution. Assume that a =max{a, b, c}. It suffices to show that

bc
2bc + 1

+
ca

2bc + 1
+

ab
2bc + 1

≤ 1;

that is,
a(b+ c)≤ 1+ bc.

We have

1+ bc − a(b+ c)≥ 1+ bc − (b+ c) = (1− b)(1− c)≥ 0.

(b) We will show that

E(a, b, c)≤ E(1, b, c)≤ E(1, 1, c) =
3
2

,

where

E(a, b, c) =
a

ab+ 1
+

b
bc + 1

+
c

ca+ 1
.

Write the inequality E(a, b, c)≤ E(1, b, c) as follows:

a
ab+ 1

+
c

ca+ 1
≤

1
b+ 1

+
c

c + 1
,

(1− a)
�

1
(b+ 1)(ab+ 1)

−
c2

(c + 1)(ca+ 1)

�

≥ 0,

(1− a)[(c + 1)(ca+ 1)− (b+ 1)(ab+ 1)c2]≥ 0.

Since 1− a ≥ 0 and c ≤ 1, it suffices to show that

(c + 1)(ca+ 1)− (b+ 1)(ab+ 1)c ≥ 0,

which is true because

(c + 1)(ca+ 1)− (b+ 1)(ab+ 1)c ≥ (c + 1)(ca+ 1)− 2(a+ 1)c
= (1− c)(1− ac)≥ 0.

Setting a = 1 in the similar inequality

E(a, b, c)≤ E(a, 1, c),

it follows that
E(1, b, c)≤ E(1,1, c).

Finally,

E(1,1, c) =
1
2
+

1
c + 1

+
c

c + 1
=

3
2

.

The equality holds for a = b = 1 (or any cyclic permutation).
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P 1.107. If a, b, c are nonnegative real numbers, then

a4 + b4 + c4 + 5(a3 b+ b3c + c3a)≥ 6(a2 b2 + b2c2 + c2a2).

Solution. Assume that a =min{a, b, c} and use the substitution

b = a+ p, c = a+ q, p, q ≥ 0.

The inequality becomes
9Aa2 + 3Ba+ C ≥ 0,

where
A= p2 − pq+ q2, B = 3p3 + p2q− 4pq2 + 3q3,

C = p4 + 5p3q− 6p2q2 + q4.

Since
A≥ 0,

B = 3p(p− q)2 + q(7p2 − 7pq+ 3q2)≥ 0,

C = (p− q)4 + pq(3p− 2q)2 ≥ 0,

the inequality is obviously true. The equality occurs for a = b = c.

P 1.108. If a, b, c are positive real numbers, then

a5 + b5 + c5 − a4 b− b4c − c4a ≥ 2abc(a2 + b2 + c2 − ab− bc − ca).

(Vasile C., 2006)

Solution. Since

5
�∑

a5 −
∑

a4 b
�

=
∑

(4a5+ b5− 5a4 b) =
∑

(a− b)2(4a3+ 3a2 b+ 2ab2+ b3)

and
2
�∑

a2 −
∑

ab
�

=
∑

(a− b)2,

we can write the inequality in the form

A(a− b)2 + B(b− c)2 + C(c − a)2 ≥ 0,

where
A= 4a3 + 3a2 b+ 2ab2 + b3 − 5abc,

B = 4b3 + 3b2c + 2bc2 + c3 − 5abc,

C = 4c3 + 3c2a+ 2ca2 + a3 − 5abc.
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Without loss of generality, assume that a =max{a, b, c}. We have

A> a(4a2 + 3ab− 5bc)> a(4c2 + 3b2 − 5bc)> 0,

C > a(3c2 + 2ca+ a2 − 5bc)> a(3c2 − 3ca+ a2)> 0,

A+ B > 4a3 + 5b3 + c3 + 3a2 b+ 2bc2 − 10abc

≥ 3
3
p

4a3 · 5b3 · c3 + 2
p

3a2 b · 2bc2 − 10abc

= (3
3p

20+ 2
p

6− 10)abc > 0,

B + C > a3 + 4b3 + 5c3 + 3b2c + 2ca2 − 10abc

≥ 3
3
p

a3 · 4b3 · 5c3 + 2
p

3b2c · 2ca2 − 10abc

= (3
3p

20+ 2
p

6− 10)abc > 0.

If a ≥ b ≥ c, then
∑

A(a− b)2 ≥ B(b− c)2 + C(a− c)2 ≥ (B + C)(b− c)2 ≥ 0.

If a ≥ c ≥ b, then
∑

A(a− b)2 ≥ A(a− b)2 + B(c − b)2 ≥ (A+ B)(c − b)2 ≥ 0.

The equality holds for a = b = c.

P 1.109. If a, b, c are positive real numbers such that a2 + b2 + c2 = 3, then

a
1+ b

+
b

1+ c
+

c
1+ a

≥
3
2

.

(Vasile C., 2005)

Solution. Let

p = a+ b+ c, q = ab+ bc + ca, p2 = 3+ 2q.

First Solution. By the Cauchy-Schwarz inequality, we have

∑ a
1+ b

≥

�∑

a
�2

∑

a(1+ b)
=

3+ 2q
p+ q

.

Thus, it suffices to prove that
6+ q ≥ 3p.
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Indeed,
2(6+ q− 3p) = 12+ (p2 − 3)− 6p = (p− 3)2 ≥ 0.

The equality holds for a = b = c = 1.

Second Solution. By the AM-GM inequality, we have

∑ a
1+ b

=
∑ a(a+ c)
(1+ b)(a+ c)

≥
∑ 4a(a+ c)
[(1+ b) + (a+ c)]2

=
4
�∑

a2 +
∑

ac
�

(1+ p)2
=

4(3+ q)
(1+ p)2

=
6+ 2p2

(1+ p)2
.

Therefore, it suffices to show that

6+ 2p2

(1+ p)2
≥

3
2

,

which is equivalent to (p− 3)2 ≥ 0.

Conjecture. If a, b, c are positive real numbers such that a2 + b2 + c2 = 3, then

a
5+ 4b

+
b

5+ 4c
+

c
5+ 4a

≥
1
3

.

P 1.110. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

a
p

a+ b+ b
p

b+ c + c
p

c + a ≥ 3
p

2.

(Hong Ge Chen, 2011)

First Solution. Denote

q =

√

√ab+ bc + ca
3

, q ≤ 1.

By squaring, the inequality turns into
∑

a3 +
∑

a2 b+ 2
∑

ac
p

a2 + 3q2 ≥ 18.

Since
2
p

a2 + 3q2 ≥ a+ 3q,

we have
2
∑

ac
p

a2 + 3q2 ≥
∑

ac(a+ 3q) =
∑

ab2 + 9q3.
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Thus, it suffices to show that
∑

a3 +
∑

ab(a+ b) + 9q3 ≥ 18,

which is equivalent to

(a+ b+ c)(a2 + b2 + c2) + 9q3 ≥ 18,

3(9− 6q2) + 9q3 ≥ 0,

1− 2q2 + q3 ≥ 0,

(1− q2)2 + q3(1− q)≥ 0.

Clearly, the last inequality is true. The equality holds for a = b = c = 1.

Second Solution. Using the substitution
√

√a+ b
2
=

x + y
2

,

√

√ b+ c
2
=

y + z
2

,
s

c + a
2
=

z + x
2

gives

x =

√

√a+ b
2
+
s

a+ c
2
−

√

√ b+ c
2
≥ 0,

a =
� x + y

2

�2

+
� x + z

2

�2

−
� y + z

2

�2

=
x(x + y + z)− yz

2
.

In addition, a+ b+ c = 3 involves

x2 + y2 + z2 + x y + yz + zx = 6,

which is equivalent to
p2 − q = 6,

where
p = x + y + z, q = x y + yz + zx .

From

18− 2p2 = 3(x2 + y2 + z2 + x y + yz + zx)− 2(x + y + z)2

= x2 + y2 + z2 − x y − yz − zx ≥ 0,

it follows that
p ≤ 3.

The desired inequality is equivalent to
∑

(x p− yz)(x + y)≥ 12,

p
∑

(x2 + x y)≥ 3x yz +
∑

y2z + 12,
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6p ≥ 3x yz +
∑

y2z + 12,

6p+
∑

yz2 ≥ pq+ 12.

Since
�∑

yz2
��∑

y
�

≥
�∑

yz
�2

(by the Cauchy-Schwarz inequality), it suffices to show that

6p+
q2

p
≥ pq+ 12.

Indeed,

6p+
q2

p
− pq =

p2(6− q) + q2

p
=
(6+ q)(6− q) + q2

p
=

36
p
≥ 12.

Conjecture. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

a
p

4a+ 5b+ b
p

4b+ 5c + c
p

4c + 5a ≥ 9.

P 1.111. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a
2b2 + c

+
b

2c2 + a
+

c
2a2 + b

≥ 1.

(Vasile Cîrtoaje and Nguyen Van Quy, 2007)

Solution. By the Cauchy-Schwarz inequality, we have

∑ a
2b2 + c

≥

�∑

a
p

a+ c
�2

∑

a(a+ c)(2b2 + c)
.

Since
∑

a
p

a+ c ≥ 3
p

2 (see the preceding P 1.110), it suffices to prove that
∑

a(a+ c)(2b2 + c)≤ 18,

which is equivalent to

2
∑

a2 b2 + 6abc +
∑

ac(a+ c)≤ 18,

2
∑

a2 b2 + 3abc +
�∑

a
��∑

ab
�

≤ 18.



Cyclic Inequalities 165

Denoting
q = ab+ bc + ca,

the inequality becomes
9abc + 18≥ 2q2 + 3q.

This inequality is true for q < 2, because 18 > 2q2 + 3q. Since q ≤ p2/3 = 3,
consider further the case 2≤ q ≤ 3. By Schur’s inequality of degree three, we have

9abc ≥ 4pq− p3 = 12q− 27.

Therefore,

9abc + 18− (2q2 + 3q)≥ (12q− 27) + 18− (2q2 + 3q)

= −2q2 + 9q− 9= (3− q)(2q− 3)≥ 0.

This completes the proof. The equality holds for a = b = c = 1.

P 1.112. If a, b, c are positive real numbers such that a+ b+ c = ab+ bc + ca, then

1
a2 + b+ 1

+
1

b2 + c + 1
+

1
c2 + a+ 1

≤ 1.

Solution. By the Cauchy-Schwarz inequality, we have

1
a2 + b+ 1

≤
1+ b+ c2

(a+ b+ c)2
,

hence

∑ 1
a2 + b+ 1

≤
∑ 1+ b+ c2

(a+ b+ c)2
=

3+ a+ b+ c + a2 + b2 + c2

(a+ b+ c)2
.

It suffices to show that

3+ a+ b+ c ≤ 2(ab+ bc + ca),

which is equivalent to
a+ b+ c ≥ 3.

We can get this inequality from the known inequality

(a+ b+ c)2 ≥ 3(ab+ bc + ca).

The equality holds for a = b = c = 1.
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P 1.113. If a, b, c are positive real numbers, then

1
(a+ 2b+ 3c)2

+
1

(b+ 2c + 3a)2
+

1
(c + 2a+ 3b)2

≤
1

4(ab+ bc + ca)
.

Solution. By the AM-GM inequality, we have

(a+ 2b+ 3c)2 = [(a+ c) + 2(b+ c)]2 = (a+ c)2 + 4(b+ c)2 + 4(a+ c)(b+ c)

≥ 3(b+ c)2 + 6(a+ c)(b+ c) = 3(b+ c)(2a+ b+ 3c).

Thus, it suffices to show that

∑ 1
(b+ c)(2a+ b+ 3c)

≤
3

4(ab+ bc + ca)
.

Write this inequality as follows:

3
4
−
∑ ab+ bc + ca
(b+ c)(2a+ b+ 3c)

≥ 0,

∑

�

1−
2(ab+ bc + ca)
(b+ c)(2a+ b+ 3c)

�

≥
3
2

,

∑ (b+ c)2 + 2c2

(b+ c)(2a+ b+ 3c)
≥

3
2

,

∑ b+ c
2a+ b+ 3c

+
∑ 2c2

(b+ c)(2a+ b+ 3c)
≥

3
2

.

Applying the Cauchy-Schwarz inequality, we get

∑ b+ c
2a+ b+ 3c

≥
[
∑

(b+ c)]2
∑

(b+ c)(2a+ b+ 3c)
=

4
�∑

a
�2

4
�∑

a
�2 = 1

and
∑ c2

(b+ c)(2a+ b+ 3c)
≥

�∑

c
�2

∑

(b+ c)(2a+ b+ 3c)
=

1
4

,

from where the conclusion follows. The equality holds for a = b = c.

P 1.114. If a, b, c are positive real numbers, then

s

a
a+ b+ 2c

+

√

√ b
b+ c + 2a

+
s

c
c + a+ 2b

≤
3
2

.
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Solution. Apply the Cauchy-Schwarz inequality as follows:
�

∑

s

a
a+ b+ 2c

�2

≤
�∑

(b+ c + 2a)
�

�

∑ a
(b+ c + 2a)(a+ b+ 2c)

�

=
4
�∑

a
� �∑

a(c + a+ 2b)
�

(b+ c + 2a)(c + a+ 2b)(a+ b+ 2c)
.

Thus, it suffices to show that

16
�∑

a
��∑

a(c + a+ 2b)
�

≤ 9(b+ c + 2a)(c + a+ 2b)(a+ b+ 2c).

Denoting
p = a+ b+ c, q = ab+ bc + ca,

the inequality becomes

16p(p2 + q)≤ 9(p+ a)(p+ b)(p+ c),

16p(p2 + q)≤ 9(2p3 + pq+ abc),

2p3 − 7pq+ 9abc ≥ 0.

Using Schur’s inequality of degree three

p3 + 9abc ≥ 4pq,

we have

2p3 − 7pq+ 9abc = (p3 + 9abc − 4pq) + p(p2 − 3q)≥ 0.

The equality holds for a = b = c.

P 1.115. If a, b, c are positive real numbers, then
√

√ 5a
a+ b+ 3c

+

√

√ 5b
b+ c + 3a

+

√

√ 5c
c + a+ 3b

≤ 3.

Solution. Substituting

x =

√

√ 5a
a+ b+ 3c

, y =

√

√ 5b
b+ c + 3a

, z =

√

√ 5c
c + a+ 3b

,

we have


















(x2 − 5)a+ x2 b+ 3x2c = 0

3y2a+ (y2 − 5)b+ y2c = 0 ,

z2a+ 3z2 b+ (z2 − 5)c = 0
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which involves
�

�

�

�

�

�

x2 − 5 x2 3x2

3y2 y2 − 5 y2

z2 3z2 z2 − 5

�

�

�

�

�

�

= 0 ;

that is,
F(x , y, z) = 0,

where
F(x , y, z) = 4x2 y2z2 + 2

∑

x2 y2 + 5
∑

x2 − 25.

We need to show that F(x , y, z) = 0 involves x + y + z ≤ 3, where x , y, z > 0.
According to the contradiction method, assume that x + y + z > 3 and show that
F(x , y, z) > 0. Since F(x , y, z) is strictly increasing in each of its arguments, it is
enough to prove that

x + y + z = 3

involves
F(x , y, z)≥ 0.

Denote
q = x y + yz + zx , r = x yz.

Since
∑

x2 y2 = q2 − 6r,
∑

x2 = 9− 2q,

we have

F(x , y, z) = 4r2 + 2(q2 − 6r) + 5(9− 2q)− 25= 2(2r2 − 6r + q2 − 5q+ 10),

1
2

F(x , y, z) = 2(r − 1)2 + q2 − 5q+ 8− 2r.

It suffices to show that
q2 − 5q+ 8≥ 2r.

From the known inequality

(x y + yz + zx)2 ≥ 3x yz(x + y + z),

it follows that q2 ≥ 9r. Therefore, it suffices to prove that

q2 − 5q+ 8≥
2q2

9
,

which is equivalent to
(3− q)(24− 7q)≥ 0.

Since
q ≤

1
3
(x + y + z)2 = 3,

the conclusion follows. The original inequality is an equality for a = b = c.
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P 1.116. If a, b, c ∈ [0, 1], then

ab2 + bc2 + ca2 +
5
4
≥ a+ b+ c.

(Ji Chen, 2007)

Solution. We use the substitution

a = 1− x , b = 1− y, c = 1− z,

where x , y, z ∈ [0, 1]. Since
∑

a(1− b2) =
∑

y(1− x)(2− y) =
∑

y(2− 2x − y + x y)

= 2
∑

x −
�∑

x
�2
+
∑

x y2,

the inequality can be written as

5
4
≥ 2

∑

x −
�∑

x
�2
+
∑

x y2.

According to the known inequality in P 1.1, we have

∑

x y2 ≤
4

27

�∑

x
�3

.

Thus, it suffices to prove the following inequality

5
4
≥ 2t − t2 +

4
27

t3,

where
t = x + y + z ≤ 3.

This inequality is equivalent to

(15− 4t)(3− 2t)2 ≥ 0,

which is obviously true for t ≤ 3. The proof is completed. The equality occurs for

a = 0, b = 1 and c =
1
2

(or any cyclic permutation thereof).

P 1.117. If a, b, c are nonnegative real numbers such that

a+ b+ c = 3, a ≤ b ≤ 1≤ c,

then
a2 b+ b2c + c2a ≤ 3.
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Solution. Since

ab2 + bc2 + ca2 − (a2 b+ b2c + c2) = (a− b)(b− c)(c − a)≥ 0,

it suffices to prove that

a2 b+ b2c + c2 + (ab2 + bc2 + ca2)≤ 6;

that is,
(a+ b+ c)(ab+ bc + ca)− 3abc ≤ 6,

ab+ bc + ca− abc ≤ 2,

1− (a+ b+ c) + ab+ bc + ca− abc ≤ 0,

(1− a)(1− b)(1− c)≤ 0.

The equality occurs for a = b = c = 1.

P 1.118. Let a, b, c be nonnegative real numbers such that

a+ b+ c = 3, a ≤ 1≤ b ≤ c.

Prove that

(a) a2 b+ b2c + c2a ≥ ab+ bc + ca;

(b) a2 b+ b2c + c2a ≥ abc + 2;

(c)
1

abc
+ 2≥

9
a2 b+ b2c + c2a

;

(d) ab2 + bc2 + ca2 ≥ 3.

(Vasile C., 2008)

Solution. (a) We have

a2 b+ b2c + c2a− ab− bc − ca = ab(a− 1) + bc(b− 1) + ca(c − 1)
= −ab[(b− 1) + (c − 1)] + bc(b− 1) + ca(c − 1)
= b(b− 1)(c − a) + a(c − 1)(c − b)≥ 0.

The equality holds for a = b = c = 1, and also for a = 0, b = 1 and c = 2.

(b) Since
a(b− a)(b− c)≤ 0,
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we have

a2 b+ b2c + c2a ≥ a2 b+ b2c + c2a+ a(b− a)(b− c)

= b2(a+ c) + ac(a+ c − b).

Thus, it suffices to prove that

b2(a+ c) + ac(a+ c − b)≥ abc + 2.

This inequality is equivalent to

b2(a+ c)− 2≥ ac(2b− a− c),

b2(3− b)− 2≥ ac(3b− 3).

From (b− a)(b− c)≤ 0, it follows that

ac ≤ b(a+ c − b) = b(3− 2b).

Thus, it suffices to show that

b2(3− b)− 2≥ b(3− 2b)(3b− 3),

which is equivalent to the obvious inequality

(5b− 2)(b− 1)2 ≥ 0.

The equality holds for a = b = c = 1, and also for a = 0, b = 1 and c = 2.

(c) According to the inequality in (a), it suffices to show that

1
abc

+ 2≥
9

abc + 2
,

which is equivalent to
(abc − 1)2 ≥ 0.

The equality holds for a = b = c = 1.

(d) Since

ab2 + bc2 + ca2 − (a2 b+ b2c + c2) = (a− b)(b− c)(c − a)≥ 0,

it suffices to prove that

ab2 + bc2 + ca2 + (a2 b+ b2c + c2)≥ 6;

that is,
(a+ b+ c)(ab+ bc + ca)− 3abc ≥ 6,

ab+ bc + ca− abc ≥ 2,
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1− (a+ b+ c) + ab+ bc + ca− abc ≥ 0,

(1− a)(1− b)(1− c)≥ 0.

The equality holds for a = b = c = 1.

Remark 1. For
a+ b+ c = 3, 0< a ≤ 1≤ b ≤ c,

the following open inequality holds

1
abc

+ 6≥
21

a2 b+ b2c + c2a
,

which is sharper than the inequality in (c).

Remark 2. From the proof of the inequality in (d), the following identity follows
for a+ b+ c = 3:

2(ab2 + bc2 + ca2 − 3) = 3(1− a)(1− b)(1− c) + (a− b)(b− c)(c − a).

P 1.119. If a, b, c are nonnegative real numbers such that

a+ b+ c = 3, a ≤ 1≤ b ≤ c,

then

(a)
5− 2a
1+ b

+
5− 2b
1+ c

+
5− 2c
1+ a

≥
9
2

;

(b)
3− 2b
1+ a

+
3− 2c
1+ b

+
3− 2a
1+ c

≤
3
2

.

(Vasile C., 2008)

Solution. (a) Write the inequality as follows:

2
∑

(5− 2a)(1+ c)(1+ a)≥ 9(1+ a)(1+ b)(1+ c),

2
�

21+ 7
∑

ab− 2
∑

ab2
�

≥ 9
�

4+
∑

ab+ abc
�

,

6+ 5
∑

ab ≥ 9abc + 4
∑

ab2.

By P 1.9-(a), we have
∑

ab2 ≤ 4− abc.

Therefore, it suffices to prove that

6+ 5
∑

ab ≥ 9abc + 4(4− abc),
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which is equivalent to
∑

ab ≥ 2+ abc,

(1− a)(1− b)(1− c)≥ 0.

The equality holds for a = b = c = 1, and also for a = 0, b = 1, c = 2.

(b) Write the inequality as follows:

2
∑

(3− 2b)(1+ b)(1+ c)≤ 3(1+ a)(1+ b)(1+ c),

2
�

3+ 5
∑

ab− 2
∑

a2 b
�

≤ 3
�

4+
∑

ab+ abc
�

,

6+ 3abc + 4
∑

a2 b ≥ 7
∑

ab,

6+ 3abc + 4
∑

ab(a+ b)≥ 7
∑

ab+ 4
∑

ab2,

6+ 3abc + 4
�∑

a
��∑

ab
�

− 12abc ≥ 7
∑

ab+ 4
∑

ab2,

6+ 5
∑

ab ≥ 9abc + 4
∑

ab2.

By P 1.9-(a), we have
∑

ab2 ≤ 4− abc.

Therefore, it suffices to prove that

6+ 5
∑

ab ≥ 9abc + 4(4− abc),

which is equivalent to
∑

ab ≥ 2+ abc,

(1− a)(1− b)(1− c)≥ 0.

The equality holds for a = b = c = 1, and also for a = 0, b = 1, c = 2.

P 1.120. If a, b, c are nonnegative real numbers such that

ab+ bc + ca = 3, a ≤ 1≤ b ≤ c,

then

(a) a2 b+ b2c + c2a ≥ 3;

(b) ab2 + bc2 + ca2 + 3(
p

3− 1)abc ≥ 3
p

3.

(Vasile C., 2008)
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Solution. (a) Since
a(b− a)(b− c)≤ 0,

we have

a2 b+ b2c + c2a ≥ a2 b+ b2c + c2a+ a(b− a)(b− c)

= b2(a+ c) + ac(a+ c − b).

Thus, it suffices to prove that

b2(a+ c) + ac(a+ c − b)≥ 3.

Denote
x = a+ c.

From ab+ bc + ca = 3, we get

ac = 3− bx

and

x =
3− ac

b
≤

3
b
≤ 3.

Thus, we need to show that

b2 x + (3− bx)(x − b)≥ 3,

2b2 x − (x2 + 3)b+ 3x − 3≥ 0.

Since

2b2 x − (x2 + 3)b+ 3x − 3= 2(b2 − 2b+ 1)x + 2(2b− 1)x − (x2 + 3)b+ 3x − 3

= 2(b− 1)2 x + (3− x)(bx − b− 1)
≥ (3− x)(bx − b− 1),

it is enough to prove that
bx − b− 1≥ 0.

From the inequality (b− a)(b− c)≤ 0, we get

bx ≥ b2 + ac = b2 + 3− bx , bx ≥
b2 + 3

2
.

Therefore,

bx − b− 1≥
b2 + 3

2
− b− 1=

(b− 1)2

2
≥ 0.

The proof is completed. The equality holds for a = b = c = 1, and for a = 0, b = 1
and c = 3.
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(b) Since

ab2 + bc2 + ca2 − (a2 b+ b2c + c2) = (a− b)(b− c)(c − a)≥ 0,

it suffices to prove that

ab2 + bc2 + ca2 + (a2 b+ b2c + c2) + 6(
p

3− 1)abc ≥ 6
p

3;

that is,
(a+ b+ c)(ab+ bc + ca) + 3(2

p
3− 3)abc ≥ 6

p
3,

a+ b+ c + (2
p

3− 3)abc ≥ 2
p

3,

a[1+ (2
p

3− 3)bc] + b+ c ≥ 2
p

3,

a[1+ (2
p

3− 3)p] + 2(s−
p

3)≥ 0,

where

s =
b+ c

2
, p = bc, s2 ≥ p ≥ 1.

From ab+ bc + ca = 3, we get

a =
3− p

2s
, p ≤ 3.

Therefore, we need to show that F(s, p)≥ 0, where

F(s, p) = (3− p)[1+ (2
p

3− 3)p] + 4s(s−
p

3).

Since the inequality F(s, p)≥ 0 is true for s−
p

3≥ 0, consider further the case

s ≤
p

3.

We will show that
F(s, p)≥ F(s, s2)≥ 0.

We have

F(s, p)− F(s, s2) = (2
p

3− 3)(s4 − p2)− (6
p

3− 10)(s2 − p)

= (s2 − p)[(2
p

3− 3)(s2 + p)− 6
p

3+ 10].

Since s2 − p ≥ 0 and

(2
p

3− 3)(s2 + p)− 6
p

3+ 10≥ (2
p

3− 3)(1+ 1)− 6
p

3+ 10= 4− 2
p

3> 0,

the left inequality is true. The right inequality is also true because

F(s, s2) = (3− s2)[1+ (2
p

3− 3)s2] + 4s(s−
p

3)

= (
p

3− s)[(
p

3+ s)(1+ (2
p

3− 3)s2)− 4s]

= (
p

3− s)[
p

3(1− s)2(1+ 2s)− 3s(1− s)2]

= (
p

3− s)(1− s)2[
p

3+ (2
p

3− 3)s]≥ 0.

The equality holds for a = b = c = 1, and also for a = 0 and b = c =
p

3.



176 Vasile Cîrtoaje

P 1.121. If a, b, c are nonnegative real numbers such that

a2 + b2 + c2 = 3, a ≤ 1≤ b ≤ c,

then

(a) a2 b+ b2c + c2a ≥ 2abc + 1;

(b) 2(ab2 + bc2 + ca2)≥ 3abc + 3.

(Vasile C., 2008)

Solution. (a) Let
x = a+ c, x ≥ b.

From a2 + b2 + c2 = 3, we get

ac =
b2 + x2 − 3

2
,

and from (b− a)(b− c)≤ 0, we get

bx ≥ b2 + ac,

bx ≥ b2 +
x2 + b2 − 3

2
,

(x − b)2 ≤ 3− 2b2, b ≤

√

√3
2

,

x ≤ b+ d, d =
p

3− 2b2.

Since
a(b− a)(b− c)≤ 0,

we have

a2 b+ b2c + c2a ≥ a2 b+ b2c + c2a+ a(b− a)(b− c)

= b2 x − ac(b− x).

Thus, it suffices to prove that

b2 x − ac(3b− x)≥ 1,

which is equivalent to f (x , b)≥ 0, where

f (x , b) = 2b2 x − (x2 + b2 − 3)(3b− x)− 2

= x3 − 3bx2 + 3(b2 − 1)x − 3b3 + 9b− 2.

We will show that
f (x , b)≥ f (b+ d, b)≥ 0.
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Since x ≤ b+ d and

f (x , b)− f (b+ d, b) = (x − b− d)[x2 + x(b+ d) + (b+ d)2 − 3b(x + b+ d) + 3b2 − 3]

= (x − b− d)[x2 − (2b− d)x − b2 − bd],

we need to show that g(x)≤ 0, where

g(x) = x2 − (2b− d)x − b2 − bd = (x − 2b)(x + d) + b(d − b).

Since d − b ≤ 0, it suffices to show that x − 2b ≤ 0. Indeed, we have

x2 = (a+ c)2 ≤ 2(a2 + c2) = 2(3− b2)≤ 4,

hence
x ≤ 2≤ 2b.

To prove the right inequality f (b+ d, b)≥ 0, we have

f (b+ d, b) = 2b2(b+ d)− 2bd(2b− d)− 2= 2(3b− b3 − 1− b2d).

We need to show that
3b− b3 − 1≥ b2

p

3− 2b2

for

1≤ b ≤

√

√3
2

.

We have

3b− b3 − 1≥ 3b−
3b
2
− 1=

3b− 2
2

≥ 0.

By squaring, the inequality becomes

(3b− b3 − 1)2 ≥ b4(3− 2b2),

3b6 − 9b4 + 2b3 + 9b2 − 6b+ 1≥ 0,

(b− 1)2(3b4 + 6b3 − 4b+ 1)≥ 0.

The original inequality is an equality for a = b = c = 1.

(b) Denote
p = a+ b+ c, q = ab+ bc + ca.

Since

ab2 + bc2 + ca2 − (a2 b+ b2c + c2) = (a− b)(b− c)(c − a)≥ 0,

it suffices to prove that

ab2 + bc2 + ca2 + (a2 b+ b2c + c2)≥ 3abc + 3;
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that is,
pq ≥ 6abc + 3.

From
(a− 1)(b− 1)(c − 1)≥ 0,

we get
abc ≥ 1− p+ q,

therefore

pq− 6abc − 3≥ pq− 6(1− p+ q)− 3

= (p− 6)q+ 6p− 9

=
(p− 6)(p2 − 3)

2
+ 6p− 9

=
p(p− 3)2

2
≥ 0.

The equality holds for a = b = c = 1.

P 1.122. If a, b, c are nonnegative real numbers such that

ab+ bc + ca = 3, a ≤ b ≤ 1≤ c,

then
ab2 + bc2 + ca2 + 3abc ≥ 6.

(Vasile C., 2008)

Solution. Denote
p = a+ b+ c.

Since

ab2 + bc2 + ca2 − (a2 b+ b2c + c2) = (a− b)(b− c)(c − a)≥ 0,

it suffices to prove that

ab2 + bc2 + ca2 + (a2 b+ b2c + c2) + 6abc ≥ 12;

that is,
(a+ b+ c)(ab+ bc + ca) + 3abc ≥ 12,

a+ b+ c + abc ≥ 4,

which is equivalent to
(a− 1)(b− 1)(c − 1)≥ 0.

The equality holds for a = b = c = 1.
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P 1.123. If a, b, c are nonnegative real numbers such that

a2 + b2 + c2 = 3, a ≤ b ≤ 1≤ c,

then
2(a2 b+ b2c + c2a)≤ 3abc + 3.

(Vasile C., 2008)

Solution. Consider two cases.
Case 1: a+ c ≥ 2b. Denote

x = a+ c, x ≥ 2b.

From a2 + b2 + c2 = 3 and (b− a)(b− c)≤ 0, we get in succession

ac =
b2 + x2 − 3

2
,

bx ≥ b2 + ac,

bx ≥ b2 +
x2 + b2 − 3

2
,

(x − b)2 ≤ 3− 2b2,

x ≤ b+ d, d =
p

3− 2b2.

Since

ab2 + bc2 + ca2 − (a2 b+ b2c + c2) = (a− b)(b− c)(c − a)≥ 0,

it suffices to prove that

a2 b+ b2c + c2a+ (ab2 + bc2 + ca2)≤ 3abc + 3;

that is,
(a+ b+ c)(ab+ bc + ca)≤ 6abc + 3,

(x + b)(bx + ac)≤ 6abc + 3,

ac(x − 5b) + bx(x + b)− 3≤ 0.

Thus, we need to show that f (x , b)≤ 0, where

f (x , b) = (x2 + b2 − 3)(x − 5b) + 2bx(x + b)− 6

= x3 − 3bx2 + 3(b2 − 1)x − 5b3 + 15b− 6.

We will show that
f (x , b)≤ f (b+ d, b)≤ 0.
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Since x ≤ b+ d and

f (x , b)− f (b+ d, b) = (x − b− d)[x2 + x(b+ d) + (b+ d)2 − 3b(x + b+ d) + 3b2 − 3]

= (x − b− d)[x2 − (2b− d)x − b2 − bd],

we need to show that g(x)≥ 0, where

g(x) = x2 − (2b− d)x − b2 − bd.

Since x − 2b ≥ 0 and d − b ≥ 0, we have

g(x) = (x − 2b)(x + d) + b(d − b)≥ 0.

To prove the right inequality f (b+ d, b)≤ 0, from

f (b+ d, b) = 2bd(d − 4b) + 2b(b+ d)(2b+ d)− 6= 2(6b− 2b3 − 3− b2d),

it follows that we need to show that

6b− 2b3 − 3≤ b2
p

3− 2b2

for 0≤ b ≤ 1. This inequality is true for b ≤
1
2

because

6b− 2b3 − 3≤ 3(2b− 1)≤ 0.

So, it suffices to prove the inequality for 1/2 < b ≤ 1. By squaring, the inequality
becomes

(6b− 2b3 − 3)2 ≤ b4(3− 2b2),

2b6 − 9b4 + 4b3 + 12b2 − 12b+ 3≤ 0,

(b− 1)3(2b3 + 6b2 + 3b− 3)≤ 0.

We only need to show that

2b3 + 6b2 + 3b− 3≥ 0.

Indeed,

2b3 + 6b2 + 3b− 3> 3(2b2 + b− 1) = 3(2b− 1)(b+ 1)> 0.

Case 2: a+ c ≤ 2b. Consider the nontrivial case a < c, denote

b1 =
a+ c

2
, b2 =

√

√a2 + c2

2
(b1 < b2),

and write the inequality in the homogeneous form E(a, b, c)≤ 0, where

E(a, b, c) = 2(a2 b+ b2c + c2a)− 3abc − 3
�

a2 + b2 + c2

3

�3/2

.
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From a2+ b2+ c2 = 3 and b ≤ 1, it follows that b ≤ b2. For fixed a and c, consider
the function

f (b) = E(a, b, c), b ∈ [b1, b2].

We will show that
f (b)≤ f (b2))≤ 0.

The left inequality is true if f ′(b)≥ 0 for b ∈ [b1, b2]. Since

f ′(b) = 2a2 + 4bc − 3ac − 3b
�

a2 + b2 + c2

3

�1/2

= 2a2 + 4bc − 3ac − 3b = 2a2 − 3ac + b(4c − 3)

≥ 2a2 − 3ac +
(a+ c)(4c − 3)

2

=
(a− c)2 + 3(a2 + c2 − a− c)

2

≥
3(a2 + c2 − a− c)

2
,

it suffices to show that
a2 + c2 ≥ a+ c.

From a2 + b2 + c2 = 3 and b ≤ 1, it follows that a2 + c2 ≥ 2. If a+ c ≤ 2, then

a2 + b2 ≥ 2≥ a+ c.

Also, if a+ c ≥ 2, then

a2 + b2 ≥
1
2
(a+ c)2 ≥ a+ c.

To prove the right inequality f (b2)≤ 0, we see that

f (b2) = 2a2 b2 + (a
2 + c2)c + 2c2a− 3ab2c − 3b2

a2 + c2

2

= c(a+ c)2 −
(3c2 + 6ac − a2)

2
b2

= c(a+ c)2 −
(3c2 + 6ac − a2)

2

√

√a2 + c2

2
.

Thus, we need to show that

c2(c + a)4 ≤
(3c2 + 6ac − a2)2(c2 + a2)

8
,

which is equivalent to

c6 + 4ac5 − 9a2c4 − 8a3c3 + 23a4c2 − 12a5c + a6 ≥ 0,

(c − a)3(c3 + 7c2a+ 9ca2 − a3)≤ 0.

The proof is completed. The equality holds for a = b = c = 1.
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P 1.124. If a, b, c are nonnegative real numbers such that

a2 + b2 + c2 = 3, a ≤ b ≤ 1≤ c,

then
2(a3 b+ b3c + c3a)≤ abc + 5.

(Vasile C., 2008)

Solution. Let
p = a+ b+ c, q = ab+ bc + ca.

Since

ab3 + bc3 + ca3 − (a3 b+ b3c + c3) = (a+ b+ c)(a− b)(b− c)(c − a)≥ 0,

it suffices to prove that

(a3 b+ b3c + c3a) + (ab3 + bc3 + ca3)≤ abc + 5,

which is equivalent to

(a2 + b2 + c2)(ab+ bc + ca)≤ abc(a+ b+ c + 1) + 5,

3q ≤ abc(p+ 1) + 5.

From
(a− 1)(b− 1)(c − 1)≥ 0,

we get
abc ≥ q− p+ 1.

Therefore, it suffices to show that

3q ≤ (q− p+ 1)(p+ 1) + 5,

which is equivalent to
6− p2 ≥ q(2− p),

12− 2p2 ≥ (p2 − 3)(2− p),

p3 − 4p2 − 3p+ 18≥ 0,

(p− 3)2(p+ 2)≥ 0.

The proof is completed. The equality holds for a = b = c = 1.

P 1.125. If a, b, c are real numbers, then

(a2 + b2 + c2)2 ≥ 3(a3 b+ b3c + c3a).

(Vasile C., 1992)
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First Solution. Write the inequality as

E1 − 2E2 ≥ 0,

where
E1 = a3(a− b) + b3(b− c) + c3(c − a),

E2 = a2 b(a− b) + b2c(b− c) + c2a(c − a).

Using the substitution
b = a+ p, c = a+ q,

we have

E1 = a3(a− b) + b3[(b− a) + (a− c)] + c3(c − a)

= (a− b)2(a2 + ab+ b2) + (a− c)(b− c)(b2 + bc + c2)

= p2(a2 + ab+ b2)− q(p− q)(b2 + bc + c2)

= 3(p2 − pq+ q2)a2 + 3(p3 − p2q+ q3)a+ p4 − p3q+ q4

and

E2 = a2 b(a− b) + b2c[(b− a) + (a− c)] + c2a(c − a)

= (a− b)b(a2 − bc) + (a− c)c(b2 − ca)

= pb(bc − a2) + qc(ca− b2)

= (p2 − pq+ q2)a2 + (p3 + p2q− 2pq2 + q3)a+ p3q− p2q2.

Thus, the inequality can be rewritten as

Aa2 + Ba+ C ≥ 0,

where
A= p2 − pq+ q2,

B = p3 − 5p2q+ 4pq2 + q3,

C = p4 − 3p3q+ 2p2q2 + q4.

For the non-trivial case A> 0, it is enough to show that δ ≤ 0, where δ = B2−4AC
is the discriminant of the quadratic function Aa2 + Ba+ C . Indeed, we have

δ = −3(p6 − 2p5q− 3p4q2 + 6p3q3 + 2p2q4 − 4pq5 + q6)

= −3(p3 − p2q− 2pq2 + q3)2 ≤ 0.

The equality holds for a = b = c, and also for

a

sin2 4π
7

=
b

sin2 2π
7

=
c

sin2 π
7
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(or any cyclic permutation).

Second Solution. Let us denote

x = a2 − ab+ bc,

y = b2 − bc + ca,

z = c2 − ca+ ab.

We have
x2 + y2 + z2 =

∑

a4 + 2
∑

a2 b2 − 2
∑

a3 b

and
x y + yz + zx =

∑

a3 b.

From the known inequality

x2 + y2 + z2 ≥ x y + yz + zx ,

the desired inequality follows.

Third Solution. Let us denote

x = a(a− 2b− c),

y = b(b− 2c − a),

z = c(c − 2a− b).

We have

x2 + y2 + z2 =
∑

a4 + 5
∑

a2 b2 + 4abc
∑

a− 4
∑

a3 b− 2
∑

ab3

and
x y + yz + zx = 3

∑

a2 b2 + 4abc
∑

a−
∑

a3 b− 2
∑

ab3.

The known inequality
x2 + y2 + z2 ≥ x y + yz + zx

leads to the desired inequality.

Remark 1. Let
E = (a2 + b2 + c2)2 − 3(a3 b+ b3c + c3a).

Using the notations from the first solution, the formula

4A(Aa2 + Ba+ C) = (2Aa+ B)2 −δ,

leads to the following identity

4E1E = (A1 − 5B1 + 4C1)
2 + 3(A1 − B1 − 2C1 + 2D1)

2,
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where

A1 = a3 + b3 + c3, B1 = a2 b+ b2c + c2a, C1 = ab2 + bc2 + ca2, D1 = 3abc,

E1 = a2 + b2 + c2 − ab− bc − ca.

Remark 2. Let
E = (a2 + b2 + c2)2 − 3(a3 b+ b3c + c3a),

The identity

x2 + y2 + z2 − x y − yz − zx =
1
2

∑

(x − y)2,

where x , y, z are defined in the second or third solution, leads to the identity

2E =
∑

(a2 − b2 − ab+ 2bc − ca)2.

In addition, the following similar identities hold:

6E =
∑

(2a2 − b2 − c2 − 3ab+ 3bc)2,

4E = (2a2 − b2 − c2 − 3ab+ 3bc)2 + 3(b2 − c2 − ab− bc + 2ca)2.

Remark 3. The inequality in P 1.125 is known as Vasc’s inequality, after the author’s
username on the Art of Problem Solving website.

P 1.126. If a, b, c are real numbers, then

a4 + b4 + c4 + ab3 + bc3 + ca3 ≥ 2(a3 b+ b3c + c3a).

(Vasile C., 1992)

First Solution. Making the substitution

b = a+ p, c = a+ q,

the inequality turns into
Aa2 + Ba+ C ≥ 0,

where

A= 3(p2 − pq+ q2), B = 3(p3 − 2p2q+ pq2 + q3), C = p4 − 2p3q+ pq3 + q4.

Since the discriminant of the quadratic trinomial Aa2 + Ba+ C is nonpositive,

δ = B2 − 4AC = −3(p6 − 6p4q+ 2p3q3 + 9p2q4 − 6pq5 + q6)

= −3(p3 − 3pq2 + q3)2 ≤ 0,
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the conclusion follows. The equality holds for a = b = c, and also for

a
sin π

9

=
b

sin 7π
9

=
c

sin 13π
9

(or any cyclic permutation).

Second Solution. Let us denote

x = a(a− b),

y = b(b− c),

z = c(c − a).

We have
x2 + y2 + z2 =

∑

a4 +
∑

a2 b2 − 2
∑

a3 b

and
x y + yz + zx =

∑

a2 b2 −
∑

ab3.

Applying the known inequality

x2 + y2 + z2 ≥ x y + yz + zx ,

the desired inequality follows.

Third Solution. Let
x = a2 + bc + ca,

y = b2 + ca+ ab,

z = c2 + ab+ bc.

We have

x2 + y2 + z2 =
∑

a4 + 2
∑

a2 b2 + 4abc
∑

a+ 2
∑

ab3

and
x y + yz + zx = 2

∑

a2 b2 + 4abc
∑

a+ 2
∑

a3 b+
∑

ab3.

The known inequality
x2 + y2 + z2 ≥ x y + yz + zx

leads to the desired inequality.

Remark 1. The inequality is more interesting in the case abc < 0. If a, b, c are
positive, then the inequality is less sharp than Vasc’s inequality in P 1.125, because
it can be obtained by adding Vasc’s inequality and

ab(a− b)2 + bc(b− c)2 + ca(c − a)2 ≥ 0.
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On the other hand, if a, b, c are positive, then the inequality

3(a4 + b4 + c4) + 4(ab3 + bc3 + ca3)≥ 7(a3 b+ b3c + c3a)

is a refinement of the inequality in P 1.126. To prove this inequality, we write it as

3(a4 + b4 + c4 − a3 b− b3c − c3a) + 4(ab3 + bc3 + ca3 − a3 b− b3c − c3a)≥ 0,

consider a =min{a, b, c} and use the substitution

b = a+ p, c = a+ q, a > 0, p ≥ 0, q ≥ 0.

Since
∑

a4 −
∑

a3 b =
∑

a3(a− b)

= 3(p2 − pq+ q2)a2 + 3(p3 − p2q+ q3)a+ p4 − p3q+ q4

and
∑

ab3 −
∑

a3 b = (a+ b+ c)(a− b)(b− c)(c − a)

= pq(q− p)(3a+ p+ q),

the inequality becomes
Aa2 + Ba+ C ≥ 0,

where
A= 9(p2 − pq+ q2), B = 3(3p3 − 7p2q+ 4pq2 + 3q3),

C = 3p4 − 7p3q+ 4pq3 + 3q4.

The inequality Aa2 + Ba+ C ≥ 0 is true for a > 0 and p, q ≥ 0, because

A≥ 0,

B = p(3p− 4q)2 + q(p− 3q)2 + 2pq(p+ q)≥ 0,

3C = p(p+ q)(3p− 5q)2 + 5q2
�

p−
13q
10

�2

+
11
20

q4 ≥ 0.

Remark 2. Let

E = a4 + b4 + c4 + ab3 + bc3 + ca3 − 2(a3 b+ b3c + c3a).

Using the notations from the first solution, the formula

4A(Aa2 + Ba+ C) = (2Aa+ B)2 −δ

leads to the following identity

4E1E = (A1 − 3C1 + 2D1)
2 + 3(A1 − 2B1 + C1)

2,
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where

A1 = a3 + b3 + c3, B1 = a2 b+ b2c + c2a, C1 = ab2 + bc2 + ca2, D1 = 3abc,

E1 = a2 + b2 + c2 − ab− bc − ca.

Remark 3. Let

E = a4 + b4 + c4 + ab3 + bc3 + ca3 − 2(a3 b+ b3c + c3a).

The identity

x2 + y2 + z2 − x y − yz − zx =
1
2

∑

(x − y)2,

where x , y, z are defined in the second or third solution, leads to the identity

2E =
∑

(a2 − b2 − ab+ bc)2.

In addition, the following similar identities hold:

6E =
∑

(2a2 − b2 − c2 − 2ab+ bc + ca)2,

4E = (2a2 − b2 − c2 − 2ab+ bc + ca)2 + 3(b2 − c2 − bc + ca)2.

Remark 4. The inequalities in P 1.125 and P 1.126 are particular cases of the
following more general statement (Vasile Cîrtoaje, 2007).

• Let

f4(a, b, c) =
∑

a4 + A
∑

a2 b2 + Babc
∑

a+ C
∑

a3 b+ D
∑

ab3,

where A, B, C , D are real constants such that

1+ A+ B + C + D = 0, 3(1+ A)≥ C2 + C D+ D2.

If a, b, c are real numbers, then

f4(a, b, c)≥ 0.

Note that the following identity holds:

4S f4(a, b, c) = [U+V+(C+D)S]2+3
�

U − V +
C − D

3
S
�2

+
4
3
(3+3A−C2−C D−D2)S2,

where
S =

∑

a2 b2 −
∑

a2 bc,

U =
∑

a3 b−
∑

a2 bc,

V =
∑

ab3 −
∑

a2 bc.
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For the main case
3(1+ A) = C2 + C D+ D2,

the inequality f4(a, b, c)≥ 0 is equivalent to each of the following two inequalities
∑

[2a2 − b2 − c2 + Cab− (C + D)bc + Dca]2 ≥ 0,
∑

[3b2 − 3c2 + (C + 2D)ab+ (C − D)bc − (2C + D)ca]2 ≥ 0.

P 1.127. If a, b, c are positive real numbers, then

(a)
a2

ab+ 2c2
+

b2

bc + 2a2
+

c2

ca+ 2b2
≥ 1;

(b)
a3

a2 b+ 2c3
+

b3

b2c + 2a3
+

c3

c2a+ 2b3
≥ 1.

Solution. (a) By the Cauchy-Schwarz inequality, we have

∑ a2

ab+ 2c2
≥

�∑

a2
�2

∑

a2(ab+ 2c2)
=

�∑

a2
�2

∑

a3 b+ 2
∑

a2 b2
.

Therefore, it suffices to show that
�∑

a2
�2
≥ 2

∑

a2 b2 +
∑

a3 b.

We get this inequality by summing the known inequality

2
3

�∑

a2
�2
≥ 2

∑

a2 b2

and Vasc’s inequality
1
3

�∑

a2
�2
≥
∑

a3 b.

The equality holds for a = b = c = 1.

(b) By the Cauchy-Schwarz inequality, we have

∑ a3

a2 b+ 2c3
≥

�∑

a2
�2

∑

a(a2 b+ 2c3)
=

�∑

a2
�2

∑

a3 b+ 2
∑

ac3
=

�∑

a2
�2

3
∑

a3 b
.

Therefore, it suffices to show that
�∑

a2
�2
≥ 3

∑

a3 b,

which is just Vasc’s inequality. The equality holds for a = b = c = 1.
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P 1.128. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a
ab+ 1

+
b

bc + 1
+

c
ca+ 1

≥
3
2

.

Solution. We use the following hint

a
ab+ 1

= a−
a2 b

ab+ 1
,

b
bc + 1

= b−
b2c

bc + 1
,

c
ca+ 1

= c −
c2a

ca+ 1
,

which transforms the desired inequality into

a2 b
ab+ 1

+
b2c

bc + 1
+

c2a
ca+ 1

≤
3
2

.

By the AM-GM inequality, we have

ab+ 1≥ 2
p

ab, bc + 1≥ 2
p

bc, ca+ 1≥ 2
p

ca.

Consequently, it suffices to show that

a2 b

2
p

ab
+

b2c

2
p

bc
+

c2a
2
p

ca
≤

3
2

,

which is equivalent to
a
p

ab+ b
p

bc + c
p

ca ≤ 3,

3(a
p

ab+ b
p

bc + c
p

ca)≤ (a+ b+ c)2.

Replacing
p

a,
p

b,
p

c by a, b, c, respectively, we get Vasc’s inequality in P 1.125.
The equality holds for a = b = c = 1.

P 1.129. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a
3a+ b2

+
b

3b+ c2
+

c
3c + a2

≤
3
2

.

(Vasile C., 2007)

Solution. Since

a
3a+ b2

=
1
3
−

b2

3(3a+ b2)
,

b
3b+ c2

=
1
3
−

c2

3(3b+ c2)
,

c
3c + a2

=
1
3
−

a2

3(3c + a)
,

the desired inequality can be rewritten as

b2

3a+ b2
+

c2

3b+ c2
+

a2

3c + a2
≥

3
2

.
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By the Cauchy-Schwarz inequality, we have

∑ b2

3a+ b2
≥

�∑

b2
�2

∑

b2(3a+ b2)
=

�∑

a2
�2

∑

a4 +
�∑

a
� �∑

ab2
�

=

�∑

a2
�2

∑

a4 +
∑

a2 b2 + abc
∑

a+
∑

ab3
≥

�∑

a2
�2

�∑

a2
�2
+
∑

ab3
.

Thus, it is enough to show that
�∑

a2
�2
≥ 3

∑

ab3,

which is Vasc’s inequality. The equality holds for a = b = c = 1.

P 1.130. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a
b2 + c

+
b

c2 + a
+

c
a2 + b

≥
3
2

.

(Pham Kim Hung, 2007)

Solution. By the Cauchy-Schwarz inequality, we have

∑ a
b2 + c

≥

�∑

a3/2
�2

∑

a2(b2 + c)
=

∑

a3 + 2
∑

a3/2 b3/2

∑

a2 b2 +
∑

ab2
.

Thus, it is enough to show that

2
∑

a3 + 4
∑

a3/2 b3/2 ≥ 3
∑

a2 b2 + 3
∑

ab2,

which is equivalent to the homogeneous inequality

2
�∑

a
��∑

a3
�

+ 4
�∑

a
��∑

a3/2 b3/2
�

≥ 9
∑

a2 b2 + 3
�∑

a
��∑

ab2
�

.

In order to get a symmetric inequality, we use Vasc’s inequality. We have

3
�∑

a
��∑

ab2
�

= 3
∑

a2 b2 + 3abc
∑

a+ 3
∑

ab3

≤ 3
∑

a2 b2 + 3abc
∑

a+
�∑

a2
�2

=
∑

a4 + 5
∑

a2 b2 + 3abc
∑

a.

Therefore, it suffices to prove the symmetric inequality

2
�∑

a
��∑

a3
�

+4
�∑

a
��∑

a3/2 b3/2
�

≥ 9
∑

a2 b2+
∑

a4+5
∑

a2 b2+3abc
∑

a,
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which is equivalent to
∑

a4 + 2
∑

ab(a2 + b2) + 4abc
∑

p

ab+ 4A≥ 14
∑

a2 b2 + 3abc
∑

a,

where
A=

∑

(ab)3/2(a+ b).

Since
A≥ 2

∑

a2 b2,

it suffices to prove that
∑

a4 + 2
∑

ab(a2 + b2) + 4abc
∑

p

ab ≥ 6
∑

a2 b2 + 3abc
∑

a.

According to Schur’s inequality of degree four
∑

a4 ≥
∑

ab(a2 + b2)− abc
∑

a,

it is enough to show that

3
∑

ab(a2 + b2) + 4abc
∑

p

ab ≥ 6
∑

a2 b2 + 4abc
∑

a.

Write this inequality as

3
∑

ab(a− b)2 ≥ 2abc
∑�p

a−
p

b
�2

,

∑

ab
�p

a−
p

b
�2 h

3
�p

a+
p

b
�2
− 2c

i

≥ 0.

We will prove the stronger inequality

∑

ab
�p

a−
p

b
�2 h�p

a+
p

b
�2
− c
i

≥ 0,

which is equivalent to

∑

�p
a−
p

b
p

c

�2
�p

a+
p

b−
p

c
�

≥ 0.

Substituting x =
p

a, y =
p

b, z =
p

c, the inequality becomes

∑
� x − y

z

�2

(x + y − z)≥ 0.

Without loss of generality, assume that x ≥ y ≥ z. It suffices to show that

� y − z
x

�2

(y + z − x) +
�

x − z
y

�2

(z + x − y)≥ 0.
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Since
�

x − z
y

�2

≥
� y − z

x

�2

,

we have
� y − z

x

�2

(y + z − x) +
�

x − z
y

�2

(z + x − y)≥

≥
� y − z

x

�2

(y + z − x) +
� y − z

x

�2

(z + x − y)

= 2z
� y − z

x

�2

≥ 0.

The equality holds for a = b = c = 1.

P 1.131. If a, b, c are positive real numbers such that abc = 1, then

a
b3 + 2

+
b

c3 + 2
+

c
a3 + 2

≥ 1.

Solution. Using the substitution

a =
x
y

, b =
z
x

, c =
y
z

, x , y, z > 0,

the inequality turns into
∑ x4

y(2x3 + z3)
≥ 1.

By the Cauchy-Schwarz inequality, we have

∑ x4

y(2x3 + z3)
≥

�∑

x2
�2

∑

y(2x3 + z3)
=

�∑

x2
�2

2
∑

x3 y +
∑

x y3
.

Thus, it is enough to show that
�∑

x2
�2
≥ 2

∑

x3 y +
∑

x y3.

According to Vasc’s inequality, we have
�∑

x2
�2
≥ 3

∑

x3 y

and
�∑

x2
�2
≥ 3

∑

x y3.

Thus, the conclusion follows. The equality holds for a = b = c = 1.
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P 1.132. Let a, b, c be positive real numbers such that

am + bm + cm = 3,

where m> 0. Prove that

am−1

b
+

bm−1

c
+

cm−1

a
≥ 3.

Solution. Making the substitution

x = a
1
k , y = b

1
k , z = c

1
k ,

where
k =

2
m

, k > 0,

we need to show that x2 + y2 + z2 = 3 yields

x2−k

yk
+

y2−k

zk
+

z2−k

x k
≥ 3,

which is equivalent to
x2

(x y)k
+

y2

(yz)k
+

z2

(zx)k
≥ 3.

Applying Jensen’s inequality to the convex function f (u) =
1
uk

, we get

x2

(x y)k
+

y2

(yz)k
+

z2

(zx)k
≥

x2 + y2 + z2

�

x2 · x y + y2 · yz + z2 · zx
x2 + y2 + z2

�k

=
3k+1

(x3 y + y3z + z3 x)k
.

Thus, it suffices to show that x3 y + y3z + z3 x ≤ 3. This is just Vasc’s inequality in
P 1.125. The equality holds for a = b = c = 1.

P 1.133. If a, b, c are positive real numbers, then

(a)
1

4a
+

1
4b
+

1
4c
+

1
a+ b

+
1

b+ c
+

1
c + a

≥ 3
�

1
3a+ b

+
1

3b+ c
+

1
3c + a

�

;

(b)
1

4a
+

1
4b
+

1
4c
+

1
a+ 3b

+
1

b+ 3c
+

1
c + 3a

≥ 2
�

1
3a+ b

+
1

3b+ c
+

1
3c + a

�

.

(Gabriel Dospinescu and Vasile Cîrtoaje, 2004)
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Solution. We will prove that the following more general inequalities hold for t ≥ 0:

t4a

4a
+

t4b

4b
+

t4c

4c
+

t2a+2b

a+ b
+

t2b+2c

b+ c
+

t2c+2a

c + a
− 3

�

t3a+b

3a+ b
+

t3b+c

3b+ c
+

t3c+a

3c + a

�

≥ 0,

t4a

4a
+

t4b

4b
+

t4c

4c
+

ta+3b

a+ 3b
+

t b+3c

b+ 3c
+

t c+3a

c + 3a
− 2

�

t3a+b

3a+ b
+

t3b+c

3b+ c
+

t3c+a

3c + a

�

≥ 0.

For t = 1, we get the desired inequalities.

(a) Denoting the left hand side of the former inequality by f (t), the inequality
becomes f (t)≥ f (0). This is true if f ′(t)≥ 0 for t > 0. We have the derivative

t f ′(t) = t4a + t4b + t4c + 2(t2a+2b + t2b+2c + t2c+2a)− 3(t3a+b + t3b+c + t3c+a).

Using the substitution x = ta, y = t b, z = t c, the inequality f ′(t)≥ 0 turns into

x4 + y4 + z4 + 2(x2 y2 + y2z2 + z2 x2)≥ 3(x3 y + y3z + z3 x),

which is Vasc’s inequality in P 1.125. The equality holds for a = b = c.

(b) Similarly, we have the derivative

t f ′(t) = t4a + t4b + t4c + ta+3b + t b+3c + t c+3a − 2(t3a+b + t3b+c + t3c+a).

Denoting x = ta, y = t b, z = t c, the inequality f ′(t)≥ 0 turns into

x4 + y4 + z4 + x y3 + yz3 + zx3 ≥ 2(x3 y + y3z + z3 x),

which is the the inequality in P 1.126. The equality holds for a = b = c.

P 1.134. If a, b, c are positive real numbers such that a6 + b6 + c6 = 3, then

a5

b
+

b5

c
+

c5

a
≥ 3.

(Tran Quoc Anh, 2007)

Solution. By Hölder’s inequality, we have
�

a5

b
+

b5

c
+

c5

a

�3

≥
(a6 + b6 + c6)4

a9 b3 + b9c3 + c9a3
=

81
a9 b3 + b9c3 + c9a3

.

Therefore, it suffices to show that

a9 b3 + b9c3 + c9a3 ≤ 3.

This is equivalent to

3(a9 b3 + b9c3 + c9a3)≤ (a6 + b6 + c6)2,

which is Vasc’s inequality (see P 1.125). The equality holds for a = b = c.
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P 1.135. If a, b, c are positive real numbers such that a2 + b2 + c2 = 3, then

a3

a+ b5
+

b3

b+ c5
+

c3

c + a5
≥

3
2

.

(Marin Bancos, 2010)

Solution. Write the inequality as

∑

�

a3

a+ b5
− a2

�

+
3
2
≥ 0,

∑ a2 b5

a+ b5
≤

3
2

.

Since
a+ b5 ≥ 2

p

ab5,

it suffices to show that
∑

ab2
p

ab ≤ 3.

In addition, since 2
p

ab ≤ a+ b, it suffices to prove that
∑

a2 b2 +
∑

ab3 ≤ 6.

This is true since
∑

a2 b2 ≤
1
3
(a2 + b2 + c2)2 = 3,

and, according to Vasc’s inequality,

∑

ab3 ≤
1
3
(a2 + b2 + c2)2 = 3.

The equality holds for a = b = c = 1.

P 1.136. If a, b, c are real numbers such that a2 + b2 + c2 = 3, then

a2 b+ b2c + c2a+ 9≥ 4(a+ b+ c).

(Vasile C., 2007)

First Solution (by Nguyen Van Quy). Since

2a2 b = a2(b2 + 1)− a2(b− 1)2,
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we have

4
∑

a2 b = 2
∑

a2 b2 + 2
∑

a2 − 2
∑

a2(b− 1)2

=
�∑

a2
�2
−
∑

a4 + 2
∑

a2 − 2
∑

c2(a− 1)2

= 15−
∑

a4 − 2
∑

c2(a− 1)2.

Therefore, we can write the desired inequality as follows:
�

15−
∑

a4 − 2
∑

c2(a− 1)2
�

+ 36≥ 16
∑

a,

∑

(17− 16a− a4)≥ 2
∑

c2(a− 1)2,
∑

(17− 16a− a4) + 10
∑

(a2 − 1)≥ 2
∑

c2(a− 1)2,
∑

(7− 16a+ 10a2 − a4)≥ 2
∑

c2(a− 1)2,
∑

(a− 1)2(7− 2a− a2)≥ 2
∑

c2(a− 1)2,
∑

(a− 1)2(7− 2a− a2 − 2c2)≥ 0.

Since

7− 2a− a2 − 2c2 = (a− 1)2 + 2(3− a2 − c2) = (a− 1)2 + 2b2 ≥ 0,

the conclusion follows. The equality holds for a = b = c = 1.

Second Solution. Consider only the case where a, b, c are nonnegative and a+ b+
c > 0. Multiplying both sides by a+ b+ c, the inequality can be restated as

(a+ b+ c)(a2 b+ b2c + c2a) + 9(a+ b+ c)≥ 4(a+ b+ c)2.

Using the known inequality
∑

a2 b2 ≥
1
3

�∑

ab
�2

and Vasc’s inequality
∑

ab3 ≤
1
3

�∑

a2
�2

, we have

�∑

a
��∑

a2 b
�

=
∑

a3 b+
∑

a2 b2 + abc
∑

a

=
�∑

a2
��∑

ab
�

+
∑

a2 b2 −
∑

ab3

≥
�∑

a2
��∑

ab
�

+
1
3

�∑

ab
�2
−

1
3

�∑

a2
�2

= 3
∑

ab+
1
3

�∑

ab
�2
− 3.

Therefore, it suffices to prove the symmetric inequality

3
∑

ab+
1
3

�∑

ab
�2
− 3+ 9

∑

a ≥ 4
�∑

a
�2

.
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Setting
∑

a = p, which involves

∑

ab =
p2 − 3

2
,

the inequality becomes

3(p2 − 3)
2

+
(p2 − 3)2

12
− 3+ 9p ≥ 4p2,

(p− 3)2(p2 + 6p− 9)≥ 0.

The last inequality is true since

p2 + 6p− 9> 6p− 9≥ 6
p

a2 + b2 + c2 − 9= 6
p

3− 9> 0.

P 1.137. If a, b, c are real numbers such that a2 + b2 + c2 = 3, then

a2 b+ b2c + c2a+ 3≥ a+ b+ c + ab+ bc + ca.

(Vasile C., 2007)

Solution. Write the inequality as follows:
∑

(1− ab)−
∑

a(1− ab)≥ 0,

∑

(a2 + b2 + c2 − 3ab)−
∑

a(a2 + b2 + c2 − 3ab)≥ 0,

3
�∑

a2 −
∑

ab
�

−
∑

a(a− b)2 −
∑

a(c2 − ab)≥ 0,

3
2

∑

(a− b)2 −
∑

a(a− b)2 ≥ 0,
∑

(a− b)2(3− 2a)≥ 0.

Assume that
a =max{a, b, c}.

For 3− 2a ≥ 0, the inequality is clearly true. Consider now that 3− 2a < 0. Since

(a− b)2 = [(a− c) + (c − b)]2 ≤ 2[(a− c)2 + (c − b)2],

it suffices to show that

2[(a− c)2 + (c − b)2](3− 2a) + (b− c)2(3− 2b) + (c − a)2(3− 2c)≥ 0,
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which can be rewritten as

(a− c)2(9− 4a− 2c) + (b− c)2(9− 4a− 2b)≥ 0.

This inequality is true because 9 > 4a+ 2c and 9 > 4a+ 2b. For instance, the last
inequality is true if 81> 4(2a+ b)2; indeed, we have

81
4
− (2a+ b)2 > 15− (2a+ b)2 = 5(a2+ b2+ c2)− (2a+ b)2 = (a−2b)2+5c2 ≥ 0.

The equality holds for a = b = c = 1.

Remark. The inequality in P 1.137 is sharper than the inequality in P 1.136, namely

a2 b+ b2c + c2a+ 9≥ 4(a+ b+ c).

This claim is true if

a+ b+ c + ab+ bc + ca− 3≥ 4(a+ b+ c)− 9;

that is,
ab+ bc + ca+ 6≥ 3(a+ b+ c),

which is equivalent to
(a+ b+ c − 3)2 ≥ 0.

P 1.138. If a, b, c are positive real numbers such that a+ b+ c = 3, then

12
a2 b+ b2c + c2a

≤ 3+
1

abc
.

(Vasile Cîrtoaje and ShengLi Chen, 2009)

Solution. Let

p = a+ b+ c = 3, q = ab+ bc + ca, r = abc ≤ 1.

Write the inequality as

2(a2 b+ b2c + c2a)≥
24r

3r + 1
.

From

(a− b)2(b− c)2(c − a)2 = −27r2 + 2(9pq− 2p3)r + p2q2 − 4q3

= −27r2 + 54(q− 2)r + 9q2 − 4q3,
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we get
(a− b)(b− c)(c − a)≤

Æ

−27r2 + 54(q− 2)r + 9q2 − 4q3,

hence

2(a2 b+ b2c + c2a) =
∑

ab(a+ b)− (a− b)(b− c)(c − a)

= pq− 3r − (a− b)(b− c)(c − a)

≥ 3q− 3r −
Æ

−27r2 + 54(q− 2)r + 9q2 − 4q3.

Therefore, it suffices to show that

3q− 3r −
Æ

−27r2 + 54(q− 2)r + 9q2 − 4q3 ≥
24r

3r + 1
.

which is equivalent to

3[(3r + 1)q− 3r2 − 9r]≥ (3r + 1)
Æ

−27r2 + 54(q− 2)r + 9q2 − 4q3.

Before squaring this inequality, we need to show that (3r + 1)q − 3r2 − 9r ≥ 0.
Using the known inequality q2 ≥ 3pr, we have

(3r + 1)q− 3r2 − 9r ≥ 3(3r + 1)
p

r − 3r2 − 9r

= 3
p

r
�

1−
p

r
�3
≥ 0.

By squaring, the desired inequality can be restated as

Aq3 + C ≥ 3Bq,

where

A= 4(3r + 1)2, B = 72r(3r + 1)(r + 1), C = 108r(r + 1)(3r2 + 12r + 1).

By the AM-GM inequality,

Aq3 + C = Aq3 +
C
2
+

C
2
≥ 3

3

√

√

√

Aq3

�

C
2

�2

;

so, it is enough to show that
AC2 ≥ 4B3,

which is equivalent to

(3r2 + 12r + 1)2 ≥ 32r(3r + 1)(r + 1).

Indeed,

(3r2 + 12r + 1)2 − 32r(3r + 1)(r + 1) = (r − 1)2(3r − 1)2 ≥ 0.
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The equality holds for a = b = c = 1, and also for r =
1
3

and q = 3

s

C
2A
= 2; that

is, when a, b, c are the roots of the equation

x3 − 3x2 + 2x −
1
3
= 0

such that a ≤ b ≤ c or b ≤ c ≤ a or c ≤ a ≤ b.

P 1.139. If a, b, c are positive real numbers such that a+ b+ c = 3, then

24
a2 b+ b2c + c2a

+
1

abc
≥ 9.

(Vasile C., 2009)

Solution (by Vo Quoc Ba Can). Let us denote

p = a+ b+ c = 3, q = ab+ bc + ca, r = abc.

Write the inequality as

24r ≥ (9r − 1)(a2 b+ b2c + c2a),

and consider further the nontrivial case

r ≥
1
9

.

From

(a− b)2(b− c)2(c − a)2 = −27r2 + 2(9pq− 2p3)r + p2q2 − 4q3

= −27r2 + 54(q− 2)r + 9q2 − 4q3,

we get
−(a− b)(b− c)(c − a)≤

Æ

−27r2 + 54(q− 2)r + 9q2 − 4q3,

hence

2(a2 b+ b2c + c2a) =
∑

ab(a+ b)− (a− b)(b− c)(c − a)

= pq− 3r − (a− b)(b− c)(c − a)

≤ 3q− 3r +
Æ

−27r2 + 54(q− 2)r + 9q2 − 4q3.

Therefore, it suffices to show that

48r ≥ (9r − 1)
�

3q− 3r +
Æ

−27r2 + 54(q− 2)r + 9q2 − 4q3
�

,
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which is true if

3[9r2 + 15r − (9r − 1)q]≥ (9r − 1)
Æ

−27r2 + 54(q− 2)r + 9q2 − 4q3.

We need first to show that 9r2 + 15r − (9r − 1)q ≥ 0. From Schur’s inequality

p3 + 9r ≥ 4pq,

we get

q ≤
3(r + 3)

4
,

hence

9r2 + 15r − (9r − 1)q ≥ 9r2 + 15r −
3(r + 3)(9r − 1)

4
=

9(r − 1)2

4
≥ 0.

By squaring the desired inequality, we get

Aq3 + C ≥ 3Bq,

where

A= (9r − 1)2, B = 18r(9r − 1)(3r + 1), C = 27r(27r3 + 99r2 + r + 1).

Using the AM-GM inequality, we have

Aq3 + C = Aq3 +
C
2
+

C
2
≥ 3

3

√

√

√

Aq3

�

C
2

�2

;

thus, it is enough to show that
AC2 ≥ 4B3,

which is equivalent to

(27r3 + 99r2 + r + 1)2 ≥ 32r(9r − 1)(3r + 1)3,

729r6 − 2430r5 + 2943r4 − 1476r3 + 199r2 + 34r + 1≥ 0,

(r − 1)2(27r2 − 18r − 1)2 ≥ 0.

The equality holds for a = b = c = 1, and also for r =
3+ 2

p
3

9
and q = 1+

p
3;

that is, when a, b, c are the roots of the equation

x3 − 3x2 + (1+
p

3)x −
3+ 2

p
3

9
= 0

such that a ≥ b ≥ c or b ≥ c ≥ a or c ≥ a ≥ b.
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P 1.140. Let a, b, c be nonnegative real numbers such that

2(a2 + b2 + c2) = 5(ab+ bc + ca).

Prove that

(a) 8(a4 + b4 + c4)≥ 17(a3 b+ b3c + c3a);

(b) 16(a4 + b4 + c4)≥ 34(a3 b+ b3c + c3a) + 81abc(a+ b+ c).

(Vasile C., 2011)

Solution. (a) Let

x = a2 + b2 + c2, y = ab+ bc + ca, 2x = 5y.

Since the equality holds for a = 2, b = 1, c = 0 (when abc = 0), we will use the
inequality

a2 b2 + b2c2 + c2a2 ≤ y2

to get
a4 + b4 + c4 = x2 − 2(a2 b2 + b2c2 + c2a2)≥ x2 − 2y2,

hence
a4 + b4 + c4 ≥ x2 − 2y2 =

17
144
(2x + y)2.

Therefore, it suffices to prove that

(2x + y)2 ≥ 18(a3 b+ b3c + c3a).

We will show that this inequality holds for all nonnegative real numbers a, b, c.
Assume that a = max{a, b, c}. There are two possible cases: a ≥ b ≥ c and a ≥
c ≥ b.
Case 1: a ≥ b ≥ c. Using the AM-GM inequality gives

2(a3 b+ b3c + c3a)≤ 2ab(a2 + bc + c2)≤
�

2ab+ (a2 + bc + c2)
2

�2

.

Therefore, it suffices to show that

2x + y ≥
3
2
(2ab+ a2 + bc + c2),

which is equivalent to the obvious inequality

(a− 2b)2 + c(2a− b+ c)≥ 0.

Case 2: a ≥ c ≥ b. Since

ab3 + bc3 + ca3 − (a3 b+ b3c + c3a) = (a+ b+ c)(a− b)(b− c)(c − a)≥ 0,
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we have

2(a3 b+ b3c + c3a)≤ (a3 b+ b3c + c3a) + (ab3 + bc3 + ca3)≤ x y.

Thus, it suffices to prove that

(2x + y)2 ≥ 9x y.

Since x ≥ y , we get

(2x + y)2 − 9x y = (x − y)(4x − y)≥ 0.

Thus, the proof is completed. The equality holds for a = 2b and c = 0 (or any
cyclic permutation).

(b) For a = b = c = 0, the inequality is trivial. Otherwise, let us denote

p = a+ b+ c, q = ab+ bc + ca, r = abc,

and write the inequality as

16
∑

a4 ≥ 17
∑

ab(a2 + b2) + 17
�∑

a3 b−
∑

ab3
�

+ 81abc
∑

a.

Due to homogeneity, we may assume that p = 3, which involves q = 2. Since

abc
∑

a = 3r,

∑

a4 =
�∑

a2
�2
− 2

∑

a2 b2

= (p2 − 2q)2 − 2q2 + 4pr = 17+ 12r,
∑

ab(a2 + b2) =
�∑

ab
��∑

a2
�

− abc
∑

a

= q(p2 − 2q)− pr = 10− 3r,
∑

a3 b−
∑

ab3 = −p(a− b)(b− c)(c − a)

≤ p
Æ

(a− b)2(b− c)2(c − a)2

= p
Æ

p2q2 − 4q3 + 2p(9q− 2p2)r − 27r2

= 3
p

4− 27r2,

it suffices to prove that

16(17+ 12r)≥ 17(10− 3r) + 51
p

4− 27r2 + 243r,

which is equivalent to the obvious inequality

2≥
p

4− 27r2.

The equality holds for a = 2b and c = 0 (or any cyclic permutation).
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P 1.141. Let a, b, c be nonnegative real numbers such that

2(a2 + b2 + c2) = 5(ab+ bc + ca).

Prove that

(a) 2(a3 b+ b3c + c3a)≥ a2 b2 + b2c2 + c2a2 + abc(a+ b+ c);

(b) 11(a4 + b4 + c4)≥ 17(a3 b+ b3c + c3a) + 129abc(a+ b+ c);

(c) a3 b+ b3c + c3a ≤
14+

p
102

8
(a2 b2 + b2c2 + c2a2).

Solution. For a = b = c = 0, the inequalities are trivial. Otherwise, let us denote

p = a+ b+ c, q = ab+ bc + ca, r = abc.

Due to homogeneity, we may assume that p = 3, which involves q = 2. From
�

�

�

∑

a3 b−
∑

ab3
�

�

�= | − p(a− b)(b− c)(c − a)|

= p
Æ

(a− b)2(b− c)2(c − a)2

= p
Æ

p2q2 − 4q3 + 2p(9q− 2p2)r − 27r2

= 3
p

4− 27r2,

it follows that

−3
p

4− 27r2 ≤
∑

a3 b−
∑

ab3 ≤ 3
p

4− 27r2.

In addition, we have
abc

∑

a = 3r,
∑

a2 b2 = q2 − 2pr = 4− 6r,
∑

ab(a2 + b2) = q(p2 − 2q)− pr = 10− 3r,
∑

a4 = p4 − 4p2q+ 2q2 + 4pr = 17+ 12r.

(a) Write the inequality as
∑

ab(a2 + b2) +
�∑

a3 b−
∑

ab3
�

≥
∑

a2 b2 + abc
∑

a.

It suffices to prove that

10− 3r − 3
p

4− 27r2 ≥ 4− 6r + 3r,
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which is equivalent to the obvious inequality

2≥
p

4− 27r2.

The equality holds for a = 0 and 2b = c (or any cyclic permutation).

(b) Write the inequality as

22
∑

a4 ≥ 17
∑

ab(a2 + b2) + 17
�∑

a3 b−
∑

ab3
�

+ 258abc
∑

a.

It suffices to prove that

22(17+ 12r)≥ 17(10− 3r) + 51
p

4− 27r2 + 774r

for 0≤ r ≤
2

3
p

3
. Write this inequality as

4− 9r ≥
p

4− 27r2.

We have 4− 9r ≥ 4− 2
p

3> 0. By squaring, the inequality becomes

(4− 9r)2 ≥ 4− 27r2,

(3r − 1)2 ≥ 0.

For p = 3, the equality holds when q = 2, r =
1
3

and (a − b)(b − c)(c − a) ≤ 0. In

general, the equality holds when a, b, c are proportional to the roots of the equation

3x3 − 9x2 + 6x − 1= 0

and satisfy
(a− b)(b− c)(c − a)≤ 0.

This occurs when (Wolfgang Berndt)

a sin2 π

9
= b sin2 2π

9
= c sin2 4π

9
.

(c) Write the inequality as
∑

ab(a2 + b2) +
�∑

a3 b−
∑

ab3
�

≤ k(a2 b2 + b2c2 + c2a2),

where

k =
14+

p
102

4
.

It suffices to prove that

10− 3r + 3
p

4− 27r2 ≤ k(4− 6r),
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where r ≤
2

3
p

3
. Write this inequality as

3
p

4− 27r2 ≤ 4k− 10− 3(2k− 1)r.

We have

4k− 10− 3(2k− 1)r ≥ 4k− 10−
2(2k− 1)
p

3
= 4

�

1−
1
p

3

�

k− 10+
2
p

3
> 0.

By squaring, the inequality becomes

9(4− 27r2)≤ [4k− 10− 3(2k− 1)r]2,

which is equivalent to
(r − k1)

2 ≥ 0,

where

k1 =
2

129

√

√787+ 72
p

102
3

≈ 0.3483.

For p = 3, the equality holds when q = 2, r = k1 and (a− b)(b− c)(c − a) ≤ 0. In
general, the equality holds when a, b, c are proportional to the roots of the equation

x3 − 3x2 + 2x − k1 = 0

and satisfy
(a− b)(b− c)(c − a)≤ 0.

P 1.142. If a, b, c are real numbers such that

a3 b+ b3c + c3a ≤ 0,

then
a2 + b2 + c2 ≥ k(ab+ bc + ca),

where

k =
1+

p

21+ 8
p

7
2

≈ 3.7468.

(Vasile C., 2012)

Solution. Let us denote

p = a+ b+ c, q = ab+ bc + ca, r = abc.

If p = 0, then
3(ab+ bc + ca)≤ (a+ b+ c)2 = 0,
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hence
a2 + b2 + c2 ≥ 0≥ k(ab+ bc + ca).

Consider now that p 6= 0 and use the contradiction method. It suffices to prove that

a2 + b2 + c2 < k(ab+ bc + ca)

involves
a3 b+ b3c + c3a > 0.

Since the statement remains unchanged by replacing a, b, c with −a,−b,−c, re-
spectively, we may consider that p > 0. In addition, due to homogeneity, we may
assume that p = 1. From the hypothesis a2 + b2 + c2 < k(ab+ bc + ca), we get

q >
1

k+ 2
.

Write the desired inequality as
∑

ab(a2 + b2) +
∑

a3 b−
∑

ab3 > 0.

Since
∑

ab(a2 + b2) = q(p2 − 2q)− pr = q− 2q2 − r

and
∑

a3 b−
∑

ab3 = −p(a− b)(b− c)(c − a)≥ −p
Æ

(a− b)2(b− c)2(c − a)2

= −p
Æ

p2q2 − 4q3 + 2p(9q− 2p2)r − 27r2 = −
Æ

q2 − 4q3 + 2(9q− 2)r − 27r2,

it suffices to prove that

q− 2q2 − r >
Æ

q2 − 4q3 + 2(9q− 2)r − 27r2.

From p2 ≥ 3q, we get
1

k+ 2
< q ≤

1
3

,

and from q2 ≥ 3pr, we get r ≤ q2/3; therefore,

q− 2q2 − r ≥ q− 2q2 −
q2

3
= q

�

1−
7q
3

�

> 0.

By squaring, the desired inequality can be restated as

(q− 2q2 − r)2 > q2 − 4q3 + 2(9q− 2)r − 27r2,

7r2 + (1− 5q+ q2)r + q4 > 0.

This is true if the discriminant

D = (1− 5q+ q2)2 − 28q4 = [1− 5q+ (1+ 2
p

7)q2][1− 5q+ (1− 2
p

7)q2]
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is negative. Since

1− 5q+ (1+ 2
p

7)q2 =
�

1−
5q
2

�2

+
8
p

7− 21
4

q2 > 0,

we only need to show that f (q)> 0, where

f (q) = (2
p

7− 1)q2 + 5q− 1.

Since q >
1

k+ 2
, we have

f (q)>
2
p

7− 1
(k+ 2)2

+
5

k+ 2
− 1= 0.

For p = 1, the equality holds when (a− b)(b− c)(c − a)> 0 and

q =
1

k+ 2
, r =

−q2

p
7
= −

1
p

7(k+ 2)2
.

In general, the equality holds when a, b, c are proportional to the roots of the equa-
tion

w3 −w2 +
1

k+ 2
w+

1
p

7(k+ 2)2
= 0

and satisfy (a− b)(b− c)(c − a)> 0.

P 1.143. If a, b, c are real numbers such that

a3 b+ b3c + c3a ≥ 0,

then
a2 + b2 + c2 + k(ab+ bc + ca)≥ 0,

where

k =
−1+

p

21+ 8
p

7
2

≈ 2.7468.

(Vasile C., 2012)

Solution. Let us denote

p = a+ b+ c, q = ab+ bc + ca, r = abc.

At least two of a, b, c have the same sign; let b and c be these numbers. If p = 0,
then the hypothesis a3 b+ b3c + c3a ≥ 0 can be written as

−(b+ c)3 b+ b3c − c3(b+ c)≥ 0.
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Clearly, this inequality is satisfied only for a = b = c = 0, when the desired in-
equality is trivial. Consider further that p 6= 0 and use the contradiction method.
It suffices to prove that

a2 + b2 + c2 + k(ab+ bc + ca)< 0

involves
a3 b+ b3c + c3a < 0.

Since the statement remains unchanged by replacing a, b, c with−a,−b,−c, respec-
tively, we may consider p > 0. In addition, due to homogeneity, we may assume
p = 1. From the hypothesis a2 + b2 + c2 + k(ab+ bc + ca)< 0, we get

q <
−1

k− 2
≈ −1.339.

Write the desired inequality as
∑

ab(a2 + b2) +
∑

a3 b−
∑

ab3 < 0,

Since
∑

ab(a2 + b2) = q(p2 − 2q)− pr = q− 2q2 − r

and
∑

a3 b−
∑

ab3 = −p(a− b)(b− c)(c − a)≤ p
Æ

(a− b)2(b− c)2(c − a)2

= p
Æ

p2q2 − 4q3 + 2p(9q− 2p2)r − 27r2 =
Æ

q2 − 4q3 + 2(9q− 2)r − 27r2,

it suffices to prove that

Æ

q2 − 4q3 + 2(9q− 2)r − 27r2 < r + 2q2 − q.

Since q < −1, we have
1− 2q

3
> 1,

hence

r2 = a2 b2c2 ≤
�

a2 + b2 + c2

3

�3

=
�

1− 2q
3

�3

<

�

1− 2q
3

�4

,

which implies

r > −
�

1− 2q
3

�2

.

Therefore,

r + 2q2 − q > −
�

1− 2q
3

�2

+ 2q2 − q =
(2q− 1)(7q+ 1)

9
> 0.
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By squaring, the desired inequality becomes

q2 − 4q3 + 2(9q− 2)r − 27r2 < (r + 2q2 − q)2,

7r2 + (1− 5q+ q2)r + q4 > 0.

This is true if the discriminant

D = (1− 5q+ q2)2 − 28q4 = [1− 5q+ (1+ 2
p

7)q2][1− 5q+ (1− 2
p

7)q2]

is negative. Since
1− 5q+ (1+ 2

p
7)q2 > 0,

we only need to show that f (q)> 0, where

f (q) = (2
p

7− 1)q2 + 5q− 1.

Since the derivative

f ′(q) = 2(2
p

7− 1)q+ 5< 2(2
p

7− 1)(−1) + 5= 7− 4
p

7< 0,

f (q) is strictly decreasing, hence

f (q)> f
�

−1
k− 2

�

= 0.

For p = 1, the equality holds when (a− b)(b− c)(c − a)< 0 and

q =
−1

k− 2
, r =

−q2

p
7
=

−1
p

7(k− 2)2
.

In general, the equality holds when a, b, c are proportional to the roots of the equa-
tion

w3 −w2 −
1

k− 2
w+

1
p

7(k− 2)2
= 0

and satisfy (a− b)(b− c)(c − a)< 0.

P 1.144. If a, b, c are real numbers such that

k(a2 + b2 + c2) = ab+ bc + ca, k ∈
�

−1
2

, 1
�

,

then

αk ≤
a3 b+ b3c + c3

(a2 + b2 + c2)2
≤ βk,
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where

27αk = 1+ 13k− 5k2 − 2(1− k)(1+ 2k)

√

√7(1− k)
1+ 2k

,

27βk = 1+ 13k− 5k2 + 2(1− k)(1+ 2k)

√

√7(1− k)
1+ 2k

.

(Vasile C., 2012)

Solution. Let us denote

p = a+ b+ c, q = ab+ bc + ca, r = abc.

The case p = 0 is not possible, because p = 0 and k(a2 + b2 + c2) = ab + bc + ca
lead to

ab+ bc + ca = 0,

a(b+ c) + bc = 0,

−(b+ c)2 + bc = 0,

b2 + bc + c2 = 0,

which involves a = b = c = 0. Consider further that p 6= 0. Since the statement
remains unchanged by replacing a, b, c with −a,−b,−c, respectively, it suffices to
consider the case p > 0. In addition, due to homogeneity, we may assume p = 1,
which implies

q =
k

1+ 2k
.

(a) Write the desired left inequality as

2αk(a
2 + b2 + c2)2 ≤

∑

ab(a2 + b2) +
�∑

a3 b−
∑

ab3
�

.

Since
∑

a2 = p2 − 2q = 1− 2q,
∑

ab(a2 + b2) = q(p2 − 2q)− pr = q− 2q2 − r,
∑

a3 b−
∑

ab3 = −p(a− b)(b− c)(c − a)≥ −p
Æ

(a− b)2(b− c)2(c − a)2

= −p

√

√4(p2 − 3q)3 − (2p3 − 9pq+ 27r)2

27
= −

√

√4(1− 3q)3 − (2− 9q+ 27r)2

27
,

it suffices to prove that

2αk(1− 2q)2 ≤ q− 2q2 − r −

√

√4(1− 3q)3 − (2− 9q+ 27r)2

27
.



Cyclic Inequalities 213

Applying Lemma below for

α=
1
p

27
, β =

−1
27

, x = 2(1− 3q)
p

1− 3q, y = 2− 9q+ 27r,

we get
√

√4(1− 3q)3 − (2− 9q+ 27r)2

27
+ r +

2− 9q
27

≤
4(1− 3q)

p

7(1− 3q)
27

,

with equality for

(1− 3q)

√

√1− 3q
7
− 2+ 9q− 27r = 0.

Thus, it suffices to show that

2αk(1− 2q)2 ≤ q− 2q2 +
2− 9q

27
−

4(1− 3q)
p

7(1− 3q)
27

,

which is equivalent to

27αk ≤ 1+ 13k− 5k2 − 2(1− k)(1+ 2k)

√

√7(1− k)
1+ 2k

.

For p = 1, the equality holds when (a− b)(b− c)(c − a)≥ 0, q = k/(1+ 2k) and

27r = (1− 3q)

√

√1− 3q
7
− 2+ 9q =

r1

1+ 2k
,

where

r1 = 5k− 2+ (1− k)

√

√ 1− k
7(1+ 2k)

.

Therefore, the equality holds when a, b, c are proportional to the roots of the equa-
tion

w3 −w2 +
k

1+ 2k
w−

r1

27(1+ 2k)
= 0

and satisfy (a− b)(b− c)(c − a)≥ 0.

(b) Write the desired right inequality as

2βk(a
2 + b2 + c2)2 ≥

∑

ab(a2 + b2) +
�∑

a3 b−
∑

ab3
�

.

Since
∑

a2 = p2 − 2q = 1− 2q,
∑

ab(a2 + b2) = q(p2 − 2q)− pr = q− 2q2 − r,
∑

a3 b−
∑

ab3 = −p(a− b)(b− c)(c − a)≤ p
Æ

(a− b)2(b− c)2(c − a)2
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= p

√

√4(p2 − 3q)3 − (2p3 − 9pq+ 27r)2

27
=

√

√4(1− 3q)3 − (2− 9q+ 27r)2

27
,

it suffices to prove that

2βk(1− 2q)2 ≥ q− 2q2 − r +

√

√4(1− 3q)3 − (2− 9q+ 27r)2

27
.

Applying Lemma below for

α=
1
p

27
, β =

1
27

, x = 2(1− 3q)
p

1− 3q, y = 2− 9q+ 27r,

we get
√

√4(1− 3q)3 − (2− 9q+ 27r)2

27
− r −

2− 9q
27

≤
4(1− 3q)

p

7(1− 3q)
27

,

with equality for

(1− 3q)

√

√1− 3q
7

+ 2− 9q+ 27r = 0.

Thus, it suffices to show that

2βk(1− 2q)2 ≥ q− 2q2 +
2− 9q

27
+

4(1− 3q)
p

7(1− 3q)
27

,

which is equivalent to

27βk ≥ 1+ 13k− 5k2 + 2(1− k)(1+ 2k)

√

√7(1− k)
1+ 2k

.

For p = 1, the equality holds when (a− b)(b− c)(c − a)≤ 0, q = k/(1+ 2k) and

27r = 9q− 2− (1− 3q)

√

√1− 3q
7

=
r0

1+ 2k
,

where

r0 = 5k− 2− (1− k)

√

√ 1− k
7(1+ 2k)

.

Therefore, the equality holds when a, b, c are proportional to the roots of the equa-
tion

w3 −w2 +
k

1+ 2k
w−

r0

27(1+ 2k)
= 0

and satisfy (a− b)(b− c)(c − a)≤ 0.

Lemma. If α,β , x , y are real numbers such that

α≥ 0, x ≥ 0, x2 ≥ y2,
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then
α
p

x2 − y2 ≤ x
Æ

α2 + β2 + β y,

with equality if and only if

β x + y
Æ

α2 + β2 = 0.

Proof. Since
x
Æ

α2 + β2 + β y ≥ |β |x + β y ≥ |β ||y|+ β y ≥ 0,

we can write the inequality as

α2(x2 − y2)≤
�

x
Æ

α2 + β2 + β y
�2

,

which is equivalent to
�

β x + y
Æ

α2 + β2
�2
≥ 0.

P 1.145. If a, b, c are positive real numbers such that a+ b+ c = 3, then

a2

4a+ b2
+

b2

4b+ c2
+

c2

4c + a2
≥

3
5

.

(Michael Rozenberg, 2008)

Solution. By the Cauchy-Schwarz inequality, we have

∑ a2

4a+ b2
≥

�∑

a(2a+ c)
�2

∑

(4a+ b2)(2a+ c)2
=

�

2
∑

a2 +
∑

ab
�2

∑

(4a+ b2)(2a+ c)2
.

Therefore, it suffices to show that

5
�

2
∑

a2 +
∑

ab
�2
≥ 3

∑

(4a+ b2)(2a+ c)2,

which is equivalent to the homogeneous inequalities

5
�

2
∑

a2 +
∑

ab
�2
≥
∑

[4a(a+ b+ c) + 3b2](2a+ c)2,

5
�

2
∑

a2 +
∑

ab
�2
≥
∑

(4a2 + 3b2 + 4ab+ 4ac)(4a2 + c2 + 4ac),

2
∑

a4 + 5
∑

a2 b2 ≥ abc
∑

a+ 6
∑

ab3.

Using Vasc’s inequality

3
∑

ab3 ≤
�∑

a2
�2

,
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it is enough to prove the symmetric inequality

2
∑

a4 + 5
∑

a2 b2 ≥ abc
∑

a+ 2
�∑

a2
�2

,

which is equivalent to the well-known inequality
∑

a2 b2 ≥ abc
∑

a.

The equality holds for a = b = c = 1.

P 1.146. If a, b, c are positive real numbers, then

a2 + bc
a+ b

+
b2 + ca
b+ c

+
c2 + ab
c + a

≤
(a+ b+ c)3

3(ab+ bc + ca)
.

(Michael Rozenberg, 2013)

Solution (by Manlio Marangelli). Write the inequality as

∑

�

a2 + bc
a+ b

− a
�

≤
(a+ b+ c)3

3(ab+ bc + ca)
− (a+ b+ c),

∑ b(c − a)
a+ b

≤
(a+ b+ c)3

3(ab+ bc + ca)
− (a+ b+ c),

∑

b(c2 − a2)(b+ c)
(a+ b)(b+ c)(c + a)

≤
(a+ b+ c)3

3(ab+ bc + ca)
− (a+ b+ c),

3
∑

ab3 − 3abc
∑

a
(a+ b)(b+ c)(c + a)

≤
(a+ b+ c)3

ab+ bc + ca
− 3(a+ b+ c).

By the known Vasc’s inequality

3
∑

ab3 ≤
�∑

a2
�2

,

it suffices to prove the symmetric inequality

�∑

a2
�2
− 3abc

∑

a

(a+ b)(b+ c)(c + a)
≤
(a+ b+ c)3

ab+ bc + ca
− 3(a+ b+ c).

Using the notation

p = a+ b+ c, q = ab+ bc + ca, r = abc,



Cyclic Inequalities 217

this inequality can be written as

(p2 − 2q)2 − 3pr
pq− r

≤
p3

q
− 3p,

which is equivalent to

q2(p2 − 4q)− (p2 − 6q)pr ≥ 0.

Case 1: p2 − 6q ≥ 0. Since 3pr ≤ q2, we have

q2(p2 − 4q)− (p2 − 6q)pr ≥ q2(p2 − 4q)−
q2(p2 − 6q)

3
=

2q2(p2 − 3q)
3

≥ 0.

Case 2: p2 − 6q ≤ 0. Using Schur’s inequality of fourth degree

6pr ≥ (p2 − q)(4q− p2),

we get

q2(p2 − 4q)− (p2 − 6q)pr ≥ q2(p2 − 4q)−
(p2 − 6q)(p2 − q)(4q− p2)

6

=
(p2 − 3q)(p2 − 4q)2

6
≥ 0.

The equality holds for a = b = c = 1.

P 1.147. If a, b, c are positive real numbers such that a+ b+ c = 3, then
p

ab2 + bc2 +
p

bc2 + ca2 +
p

ca2 + ab2 ≤ 3
p

2.

(Nguyen Van Quy, 2013)

Solution (by Michael Rozenberg). By the Cauchy-Schwarz inequality, we have

�∑p

ab2 + bc2
�2
≤
∑ ab+ c2

a+ c
·
∑

b(a+ c).

Therefore, it suffices to show that
∑ ab+ c2

a+ c
≤

9
ab+ bc + ca

,

which is equivalent to the homogeneous inequality

∑ ab+ c2

a+ c
≤

(a+ b+ c)3

3(ab+ bc + ca)
,

which is the inequality from the preceding P 1.146. The equality holds for a = b =
c = 1.
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P 1.148. If a, b, c are positive real numbers such that a5 + b5 + c5 = 3, then

a2

b
+

b2

c
+

c2

a
≥ 3.

Solution. We will prove the inequality under the more general condition am+ bm+
cm = 3, where 0< m≤ 21/4. First, write the inequality in the homogeneous form

a2

b
+

b2

c
+

c2

a
≥ 3

�

am + bm + cm

3

�1/m

.

By the Power Mean inequality, we have

�

am + bm + cm

3

�1/m

≤
�

a21/4 + b21/4 + c21/4

3

�4/21

.

Thus, it suffices to show that

a2

b
+

b2

c
+

c2

a
≥ 3

�

a21/4 + b21/4 + c21/4

3

�4/21

.

By the known Vasc’s inequality in P 1.125, namely

(x2 + y2 + z2)2 ≥ 3(x3 y + y3z + z3 x), x , y, z ∈ R,

we have
�

a2

b
+

b2

c
+

c2

a

�2

≥ 3
�

a3

p
bc
+

b3

p
ca
+

c3

p
ab

�

.

Therefore, it suffices to prove the symmetric inequality

a3

p
bc
+

b3

p
ca
+

c3

p
ab
≥ 3

�

a21/4 + b21/4 + c21/4

3

�8/21

,

which is equivalent to









a3

p
bc
+

b3

p
ca
+

c3

p
ab

3









21/4

≥ 3

�

a21/4 + b21/4 + c21/4

3

�2

,

Setting
a = x2/7, b = y2/7, c = z2/7, x , y, z > 0,

the inequality becomes

� x + y + z
3

�21/4

≥ 3(x yz)3/4
�

x3/2 + y3/2 + z3/2

3

�2

.
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By the Cauchy-Schwarz inequality, we have

(x + y + z)(x2 + y2 + z2)≥ (x3/2 + y3/2 + z3/2)2.

Thus, it is enough to prove that

� x + y + z
3

�17/4

≥
1
3
(x yz)3/4(x2 + y2 + z2).

Due to homogeneity, we may assume that x + y + z = 3, when the inequality
becomes

(x yz)3/4(x2 + y2 + z2)≤ 3.

Since
3
4
>

1
p

2
,

this inequality follows from the inequality in P 2.89 from Volume 2:

(x yz)k(x2 + y2 + z2)≤ 3, k ≥
1
p

2

The proof is completed. The equality holds for a = b = c = 1.

P 1.149. Let P(a, b, c) be a cyclic homogeneous polynomial of degree three. The in-
equality

P(a, b, c)≥ 0

holds for all a, b, c ≥ 0 if and only if the following two conditions are fulfilled:

(a) P(1, 1,1)≥ 0;

(b) P(0, b, c)≥ 0 for all b, c ≥ 0.
(Pham Kim Hung, 2007)

Solution. The conditions (a) and (b) are clearly necessary. Therefore, we will
prove further that these conditions are also sufficient to have P(a, b, c) ≥ 0. The
polynomial P(a, b, c) has the general form

P(a, b, c) = A(a3 + b3 + c3) + B(a2 b+ b2c + c2a) + C(ab2 + bc2 + ca2) + 3Dabc.

Since

P(1, 1,1) = 3(A+ B + C + D), P(0, 1,1) = 2A+ B + C , P(0, 0,1) = A,

the conditions (a) and (b) involves

A+ B + C + D ≥ 0, 2A+ B + C ≥ 0, A≥ 0.
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Assume that a =min{a, b, c}, and denote

b = a+ p, c = a+ q, p, q ≥ 0.

For fixed p and q, define the function

f (a) = P(a, a+ p, a+ q), a ≥ 0.

Since
a′ = b′ = c′ = 1,

we have the derivative

f ′(a) = 3A(a2 + b2 + c2) + (B + C)(a+ b+ c)2 + 3D(ab+ bc + ca)

= (3A+ B + C)(a2 + b2 + c2) + (2B + 2C + 3D)(ab+ bc + ca)

= (3A+ B + C)(a2 + b2 + c2 − ab− bc − ca) + 3(A+ B + C + D)(ab+ bc + ca).

Because f ′(a)≥ 0, f is increasing, hence f (a)≥ f (0), which is equivalent to

P(a, b, c)≥ P(0, p, q) = P(0, b, c).

According to the condition (b), we have P(0, b, c)≥ 0, hence P(a, b, c)≥ 0.

Remark 1. From the proof of P 1.149, the following statement follows:

• Let P(a, b, c) be a cyclic homogeneous polynomial of degree three. The inequality

P(a, b, c)≥ 0

holds for all nonnegative real numbers a, b, c satisfying

a ≤ b ≤ c

if and only if P(1, 1,1)≥ 0 and P(0, b, c)≥ 0 for all 0≤ b ≤ c.

Remark 2. From P 1.149, using the substitution

a = y + z, b = z + x , c = x + y, x , y, z ≥ 0,

we get the following statement:

• Let P(a, b, c) be a cyclic homogeneous polynomial of degree three, where a, b, c
are the lengths of the sides of a triangle. The inequality

P(a, b, c)≥ 0

holds if and only if P(1,1, 1)≥ 0 and P(b+ c, b, c)≥ 0 for all b, c ≥ 0.
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P 1.150. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

8(a2 b+ b2c + c2a) + 9≥ 11(ab+ bc + ca).

Solution. Write the inequality in the homogeneous form P(a, b, c)≥ 0, where

P(a, b, c) = 24(a2 b+ b2c + c2a) + (a+ b+ c)3 − 11(a+ b+ c)(ab+ bc + ca).

According to P 1.149, it suffices to show that P(1, 1,1) ≥ 0 and P(0, b, c) ≥ 0 for
all b, c ≥ 0. We have

P(1,1, 1) = 0

and

P(0, b, c) = 24b2c + (b+ c)3 − 11bc(b+ c)

= b3 + 16b2c − 8bc2 + c3

≥ 16b2c − 8bc2 + c3 = c(4b− c)2 ≥ 0.

The equality holds for a = b = c = 1.

P 1.151. If a, b, c are nonnegative real numbers such that a+ b+ c = 6, then

a3 + b3 + c3 + 8(a2 b+ b2c + c2a)≥ 166.

(Vasile C., 2010)

Solution. Write the inequality in the homogeneous form P(a, b, c)≥ 0, where

P(a, b, c) = a3 + b3 + c3 + 8(a2 b+ b2c + c2a)− 166
�

a+ b+ c
6

�3

.

According to P 1.149, it suffices to show that P(1, 1,1) ≥ 0 and P(0, b, c) ≥ 0 for
all b, c ≥ 0. We have

P(1, 1,1) = 27−
83
4
=

25
4
> 0

and

P(0, b, c) = b3 + c3 + 8b2c −
83
108
(b+ c)3

=
1

108
(25b3 + 615b2c − 249bc2 + 25c3)

=
1

108
(5b− c)2(b+ 25c)≥ 0.

The equality holds for a = 0, b = 1, c = 5 (or any cyclic permutation).
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P 1.152. If a, b, c are nonnegative real numbers, then

a3 + b3 + c3 − 3abc ≥
Æ

9+ 6
p

3 (a− b)(b− c)(c − a).

First Solution. Write the inequality as P(a, b, c) ≥ 0. According to P 1.149, it
suffices to show that P(1,1, 1) ≥ 0 and P(0, b, c) ≥ 0 for all b, c ≥ 0. We have
P(1,1, 1) = 0 and

P(0, b, c) = b3 + c3 +
Æ

9+ 6
p

3 bc(b− c).

The inequality P(0, b, c)≥ 0 is true if

(b3 + c3)2 ≥ (9+ 6
p

3 )b2c2(b− c)2,

which is equivalent to

(b+ c)2(b2 − bc + c2)2 ≥ (9+ 6
p

3 )b2c2(b− c)2.

For the non-trivial case bc 6= 0, denoting

x =
b
c
+

c
b
− 1,

we can write this inequality as

(x + 3)x2 ≥ (9+ 6
p

3 )(x − 1),

(x −
p

3 )2(x + 3+ 2
p

3 )≥ 0.

The equality holds for a = b = c, and also for a = 0 and b/c+ c/b = 1+
p

3, b < c
(or any cyclic permutation).

Second Solution. Assume that a =min{a, b, c}. Since the case a ≤ c ≤ b is trivial,
consider further that a ≤ b ≤ c. Write the inequality as

(a+ b+ c)[(a− b)2 + (b− c)2 + (c − a)2]≥ 2
Æ

9+ 6
p

3 (a− b)(b− c)(c − a).

Using the substitution b = a+p, c = a+q, where q ≥ p ≥ 0, the inequality becomes

(3a+ p+ q)(p2 − pq+ q2)≥
Æ

9+ 6
p

3 pq(q− p).

Since p2−pq+q2 ≥ 0, it suffices to consider the case a = 0 (as in the first solution).



Cyclic Inequalities 223

P 1.153. If a, b, c are nonnegative real numbers, no two of which are zero, then

a
b+ c

+
b

c + a
+

c
a+ b

+ 7≥
17
3

�

a
a+ b

+
b

b+ c
+

c
c + a

�

.

(Vasile C., 2007)

Solution. Write the inequality as P(a, b, c)≥ 0, where

P(a, b, c) =
∑

(3a− 17b)(a+ b)(a+ c) + 21(a+ b)(b+ c)(c + a)

= 3(a3 + b3 + c3)− 10(a2 b+ b2c + c2a) + 7(ab2 + bc2 + ca2).

According to P 1.149, it suffices to show that P(1, 1,1) ≥ 0 and P(0, b, c) ≥ 0 for
all b, c ≥ 0. We have P(1,1, 1) = 0 and

P(0, b, c) = 3(b3 + c3)− 10b2c + 7bc2.

Consider the nontrivial case b, c > 0. Setting c = 1, we need to show that f (b)≥ 0,
where

f (b) = 3b3 − 10b2 + 7b+ 3.

Case 1: b ≥ 3. We have

f (b)> 3b3 − 10b2 + 7b = (b− 1)(3b− 7)> 0.

Case 2: 2≤ b ≤ 3. We have

f (b)≥ 3b3 − 10b2 + 8b = b(b− 2)(3b− 4)≥ 0.

Case 3: 0< b ≤ 2. We have

f (b)≥ 3b3 − 10b2 + 7b+ 1.5b = b(3b2 − 10b+ 8.5)> 3b(b− 5/3)2 ≥ 0.

The equality holds for a = b = c.

P 1.154. Let a, b, c be nonnegative real numbers, no two of which are zero. If 0 ≤
k ≤ 5, then

ka+ b
a+ c

+
kb+ c
b+ a

+
kc + a
c + b

≥
3
2
(k+ 1).

(Vasile C., 2007)

First Solution. Write the inequality as

b
a+ c

+
c

b+ a
+

a
c + b

−
3
2
+ k

�

a
a+ c

+
b

b+ a
+

c
c + b

−
3
2

�

≥ 0.
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Since
b

a+ c
+

c
b+ a

+
a

c + b
−

3
2
≥ 0,

it suffices to consider the case k = 5, when the inequality can be written as follows:
∑

(5a+ b)(b+ a)(c + b)≥ 9(a+ c)(b+ a)(c + b),

2
∑

ab2 +
∑

a3 ≥ 3
∑

a2 b,

2
∑

ab2 +
4
3

∑

a3 −
1
3

∑

b3 ≥ 3
∑

a2 b,
∑

(6ab2 + 4a3 − b3 − 9a2 b)≥ 0,

(a− b)2(4a− b) + (b− c)2(4b− c) + (c − a)2(4c − a)≥ 0.

Assume that a =min{a, b, c}, and use the substitution

b = a+ p, c = a+ q, p, q ≥ 0.

The inequality becomes

p2(3a− p) + (p− q)2(3a+ 4p− q) + q2(3a+ 4q)≥ 0,

2Aa+ B ≥ 0,

where
A= p2 − pq+ q2, B = p3 − 3p2q+ 2pq2 + q3.

Since A ≥ 0, we only need to show that B ≥ 0. For q = 0, we have B = p3 ≥ 0,
while for q > 0, the inequality B ≥ 0 is equivalent to

1≥ x(x − 1)(2− x),

where x = p/q ≥ 0. For the non-trivial case x ∈ [1,2], we get this inequality by
multiplying the obvious inequalities

1≥ x − 1

and
1≥ x(2− x).

The proof is completed. The equality holds for a = b = c.

Second Solution. We can write the inequality in the form P(a, b, c) ≥ 0, where
P(a, b, c) is a cyclic homogeneous polynomial of degree three. According to P
1.149, it suffices to show that the desired inequality holds for a = b = c, and
also for a = 0. If a = 0, then the inequality becomes

x + k+
1
x
+

k
1+ x

≥
3
2
(k+ 1),
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2(x − 1)2 + x ≥
kx(x − 1)

x + 1
,

where

x =
b
c
> 0.

For 0< x ≤ 1, we have

2(x − 1)2 + x > 0≥
kx(x − 1)

x + 1
.

For 1≤ x ≤ 5, it suffices to consider the case k = 5, when the inequality is equiva-
lent to

2(x − 1)2 + x ≥
5x(x − 1)

x + 1
,

x3 − 3x2 + 2x + 1≥ 0,

x(x − 2)2 + (x − 1)2 ≥ 0.

Remark. As in the second solution, we can prove that the inequality in P 1.154
holds for

0≤ k ≤ k0, k0 =
Æ

13+ 16
p

2≈ 5.969.

For a = 0 and k = k0, the inequality becomes

2(x − 1)2 + x ≥
kx(x − 1)

x + 1
, x =

b
c
> 0,

2x3 − (k0 + 1)x2 + (k0 − 1)x + 2≥ 0,

(x − x0)
2

�

x +
1
x2

0

�

≥ 0,

where

x0 =
1+
p

2+
p

2
p

2− 1
2

≈ 1.883.

If k = k0, then the equality holds for a = b = c, and also for a = 0 and
b
c
+

c
b
=

1+
p

2 (or any cyclic permutation).

P 1.155. Let a, b, c be nonnegative real numbers. Prove that

(a) if k ≤ 1−
2

5
p

5
, then

ka+ b
2a+ b+ c

+
kb+ c

a+ 2b+ c
+

kc + a
a+ b+ 2c

≥
3
4
(k+ 1).
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(b) if k ≥ 1+
2

5
p

5
, then

ka+ b
2a+ b+ c

+
kb+ c

a+ 2b+ c
+

kc + a
a+ b+ 2c

≤
3
4
(k+ 1).

(Vasile C., 2007)

Solution. (a) Write the inequality in the form P(a, b, c) ≥ 0, where P(a, b, c) is a
cyclic homogeneous polynomial of degree three. According to P 1.149, it suffices
to show that the desired inequality holds for a = b = c, and also for a = 0. For
a = 0, the inequality becomes

x
x + 1

+
kx + 1
2x + 1

+
k

x + 2
≥

3
4
(k+ 1),

(x + 2)(2x2 − x + 1)≥ k(x + 1)(2x2 − x + 2),

where

x =
b
c
≥ 0.

It suffices to consider the case k = 1−
2

5
p

5
, when the inequality is equivalent to

(x − x0)
2

�

x +
2

5
p

5 x2
0

�

≥ 0,

where

x0 =
3−
p

5
2

.

The equality holds for a = b = c. If k = 1−
2

5
p

5
, then the equality holds also for

a = 0 and
b
c
+

c
b
= 3 (or any cyclic permutation).

(b) According to P 1.149, it suffices to show that the desired inequality holds
for a = b = c, and also for a = 0. If a = 0, then the inequality becomes

x
x + 1

+
kx + 1
2x + 1

+
k

x + 2
≤

3
4
(k+ 1),

(x + 2)(2x2 − x + 1)≤ k(x + 1)(2x2 − x + 2),

where

x =
b
c
≥ 0.

It suffices to consider the case k = 1+
2

5
p

5
, when the inequality is equivalent to

(x − x1)
2

�

x +
2

5
p

5 x2
1

�

≥ 0,
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where

x1 =
3+
p

5
2

.

The equality holds for a = b = c. If k = 1+
2

5
p

5
, then the equality holds also for

a = 0 and
b
c
+

c
b
= 3 (or any cyclic permutation).

P 1.156. Let a, b, c be nonnegative real numbers, no two of which are zero. If k ≤
23
8

,

then
ka+ b
2a+ c

+
kb+ c
2b+ a

+
kc + a
2c + b

≥ k+ 1.

(Vasile C., 2007)

Solution. We can write the inequality in the form P(a, b, c)≥ 0, where P(a, b, c) is
a cyclic homogeneous polynomial of degree three. According to P 1.149, it suffices
to show that the desired inequality holds for a = b = c, and also for a = 0. For
a = 0, the inequality becomes

x +
k
2
+

1
2x
+

k
2+ x

≥ k+ 1,

x2 + (x − 1)2 ≥
kx2

x + 2
,

where

x =
b
c
> 0.

It suffices to consider that k = 23/8, when the inequality is equivalent to

2x2 − 2x + 1≥
23x2

8(x + 2)
,

16x3 − 7x2 − 24x + 16≥ 0,

16x(x − 1)2 + (5x − 4)2 ≥ 0.

The equality holds for a = b = c.

Remark. For k = 2, we get the inequality in P 1.21.

P 1.157. If a, b, c are positive real numbers such that a ≤ b ≤ c, then

a
b
+

b
c
+

c
a
+ 3≥ 2

�

a+ b
b+ c

+
b+ c
c + a

+
c + a
a+ b

�

.
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Solution. Write the inequality as follows:

∑
�a

b
− 1

�

≥ 2
∑

�

b+ c
c + a

− 1
�

,

∑

(a− b)
�

1
b
+

2
c + a

�

≥ 0,

(a− b)
�

1
b
+

2
c + a

�

+ (b− c)
�

1
c
+

2
a+ b

�

+ [(c − b) + (b− a)]
�

1
a
+

2
b+ c

�

≥ 0,

(b− a)
�

1
a
+

2
b+ c

−
1
b
−

2
c + a

�

+ (c − b)
�

1
a
+

2
b+ c

−
1
c
−

2
a+ b

�

≥ 0,

(b− a)2
�

1
ab
−

2
(b+ c)(c + a)

�

+ (c − b)(c − a)
�

1
ac
−

2
(b+ c)(a+ b)

�

≥ 0.

The inequality is true since

1
ab
−

2
(b+ c)(c + a)

=
c(a+ b+ c)− ab
(b+ c)(c + a)

>
a(c − b)

(b+ c)(c + a)
≥ 0

and
1
ac
−

2
(b+ c)(a+ b)

=
b(a+ b+ c)− ac
(b+ c)(a+ b)

>
c(b− a))

(b+ c)(a+ b)
≥ 0.

The equality holds for a = b = c.

P 1.158. If a ≥ b ≥ c ≥ 0, then

3a+ b
2a+ c

+
3b+ c
2b+ a

+
3c + a
2c + b

≥ 4.

(Vasile C., 2007)

First Solution. Write the inequality as follows:
∑

(3a+ b)(2b+ a)(2c + b)≥ 4(2a+ c)(2b+ a)(2c + b),

2
∑

a3 + 13
∑

ab2 + 7
∑

a2 b+ 42abc ≥ 4(4
∑

ab2 + 2
∑

a2 b+ 9abc),

2
∑

a3 + 6abc ≥ 3
∑

ab2 +
∑

a2 b,

2E(a, b, c)≥ F(a, b, c),

where
E(a, b, c) =

∑

a3 + 3abc −
∑

ab2 −
∑

a2 b,

F(a, b, c) =
∑

ab2 −
∑

a2 b.
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The inequality is true since E(a, b, c) ≥ 0 (by Schur’s inequality of degree three)
and

F(a, b, c) = (a− b)(b− c)(c − a)≤ 0.

The equality holds for a = b = c, and also for a = b and c = 0.

Second Solution. Denote

x = a− b ≥ 0, y = b− c ≥ 0,

and write the inequality as follows

∑

�

3a+ b
2a+ c

−
4
3

�

≥ 0,

∑ a+ 3b− 4c
2a+ c

≥ 0,

a+ 3b− 4c
2a+ c

+
b+ 3c − 4a

2b+ a
+

c + 3a− 4b
2c + b

≥ 0,

x + 4y
2a+ c

−
4x + 3y
2b+ a

+
3x − y
2c + b

≥ 0,

xA+ yB ≥ 0,

where

A=
1

2a+ c
−

4
2b+ a

+
3

2c + b

=
�

1
2a+ c

−
1

2b+ a

�

+ 3
�

1
2c + b

−
1

2b+ a

�

=
−x + y

(2a+ c)(2b+ a)
+

3(x + 2y)
(2b+ a)(2c + b)

and

B =
4

2a+ c
−

3
2b+ a

−
1

2c + b

= 3
�

1
2a+ c

−
1

2b+ a

�

+
�

1
2a+ c

−
1

2c + b

�

=
3(−x + y)

(2a+ c)(2b+ a)
−

2x + y
(2a+ c)(2c + b)

.

Thus, the inequality is equivalent to

x[(−x+ y)(2c+b)+3(x+2y)(2a+c)+ y[3(−x+ y)(2c+b)−(2x+ y)(2b+a)]≥ 0,

x2(6a− b+ c) + x y(10a− 6b+ 2c)− y2(a− b− 6c)≥ 0,
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It suffices to show that

x y(10a− 6b+ 2c)− y2(a− b− 6c)≥ 0,

which is true is
x(10a− 6b+ 2c)− y(a− b− 6c)≥ 0.

We have

x(10a− 6b+ 2c)− y(a− b− 6c) = x(10x + 4y + 6c)− y(x − 6c)

= 10x2 + 3x y + 6c(x + y)≥ 0.

Third Solution. According to Remark 1 from P 1.149, it suffices to prove that the
inequality holds for c = 0 and a ≥ b; that is, to show that

3
2
+

1
2x
+

3
2+ x

+ x ≥ 4,

where
x =

a
b
≥ 1.

The inequality is equivalent to

2x3 − x2 − 3x + 2≥ 0,

(x − 1)(2x2 + x − 2)≥ 0.

P 1.159. Let a, b, c be nonnegative real numbers such that

a ≥ b ≥ 1≥ c, a+ b+ c = 3.

Prove that
1

a2 + 3
+

1
b2 + 3

+
1

c2 + 3
≤

3
4

.

(Vasile C., 2005)

First Solution. Let
r = abc, q = ab+ bc + ca.

From
(a− 1)(b− 1)(c − 1)≤ 0,

we get
r ≤ q− 2.

The desired inequality is equivalent to

3a2 b2c2 + 5(a2 b2 + b2c2 + c2a2) + 3(a2 + b2 + c2)− 27≥ 0,
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3r2 − 30r + 5q2 − 6q ≥ 0,

3(5− r)2 + 5q2 − 6q− 75≥ 0.

Since
3q ≤ (a+ b+ c)2 = 9

and
5− r ≥ 5− (q− 2) = 7− q > 0,

it suffices to show that

3(7− q)2 + 5q2 − 6q− 75≥ 0.

This is equivalent to the obvious inequality

(q− 3)2 ≥ 0.

The proof is completed. The equality holds for a = b = c = 1.

Second Solution (by Nguyen Van Quy). Write the inequality as follows:
�

1
a2 + 3

−
3− a

8

�

+
�

1
b2 + 3

−
3− b

8

�

+
�

1
c2 + 3

−
3− c

8

�

≤ 0,

(a− 1)3

a2 + 3
+
(b− 1)3

b2 + 3
≤
(1− c)3

c2 + 3
.

Indeed, we have

(1− c)3

c2 + 3
=
(a− 1+ b− 1)3

c2 + 3
≥
(a− 1)3 + (b− 1)3

c2 + 3
≥
(a− 1)3

a2 + 3
+
(b− 1)3

b2 + 3
.

Third Solution. Denoting
d = 2− c,

we have
a+ b = 1+ d, d ≥ a ≥ b ≥ 1.

We claim that
1

c2 + 3
+

1
d2 + 3

≤
1
2

.

Indeed,
1
2
−

1
c2 + 3

−
1

d2 + 3
=

(cd − 1)2

2(c2 + 3)(d2 + 3)
≥ 0.

Thus, it suffices to show that

1
a2 + 3

+
1

b2 + 3
≤

1
d2 + 3

+
1
4

.
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Since
1

a2 + 3
−

1
d2 + 3

=
(d − a)(d + a)
(a2 + 3)(d2 + 3)

=
(b− 1)(d + a)
(a2 + 3)(d2 + 3)

,

1
4
−

1
b2 + 3

=
(b− 1)(b+ 1)

4(b2 + 3)
,

we need to prove that

d + a
(a2 + 3)(d2 + 3)

≤
b+ 1

4(b2 + 3)
.

We can get this inequality by multiplying the inequalities

d + a
d2 + 3

≤
a+ 1

4
,

a+ 1
a2 + 3

≤
b+ 1
b2 + 3

.

We have
a+ 1

4
−

d + a
d2 + 3

=
(d − 1)(ad + a+ d − 3)

4(d2 + 3)
≥ 0,

b+ 1
b2 + 3

−
a+ 1
a2 + 3

=
(a− b)(ab+ a+ b− 3)
(a2 + 3)(b2 + 3)

≥ 0.

P 1.160. Let a, b, c be nonnegative real numbers such that

a ≥ 1≥ b ≥ c, a+ b+ c = 3.

Prove that
1

a2 + 2
+

1
b2 + 2

+
1

c2 + 2
≥ 1.

(Vasile C., 2005)

First Solution. Let
r = abc, q = ab+ bc + ca.

From
(a− 1)(b− 1)(c − 1)≥ 0,

we get
r ≥ q− 2.

Also, we have

r ≤
(a+ b+ c)3

27
= 1.
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q ≤
1
3
(a+ b+ c)3 = 3.

The desired inequality is equivalent to

3≥ a2 b2c2 + a2 b2 + b2c2 + c2a2,

4≥ r2 − 6r + q2,

(3− r)2 + q2 ≤ 13.

Consider further two cases: q ≤ 2 and 2≤ q ≤ 3.

Case 1: q ≤ 2. We have

(3− r)2 + q2 ≤ 32 + 22 = 13.

Case 2: 2≤ q ≤ 3. From r ≤ q− 2, we get

(3− r)2 + q2 ≤ (5− q)2 + q2 = 2(q− 3)(q− 2)≤ 0.

The proof is completed. The equality holds for a = b = c = 1, as well as for a = 2,
b = 1 and c = 0.

Second Solution. First, we can check that the desired inequality becomes an equal-
ity for a = b = c = 1, and also for a = 2, b = 1, c = 0. Consider then the inequality
f (x)≥ 0, where

f (x) =
1

x2 + 2
− A− Bx .

We have the derivative
f ′(x) =

−2x
(x2 + 2)2

− B.

From the conditions f (1) = 0 and f ′(1) = 0, we get A= 5/9 and B = −2/9. Also,
from the conditions f (2) = 0 and f ′(2) = 0, we get A= 7/18 and B = −1/9. Using
these values of A and B, we obtain the relations

1
x2 + 2

−
5− 2x

9
=
(x − 1)2(2x − 1)

9(x2 + 2)
,

1
x2 + 2

−
7− 2x

18
=
(x − 2)2(2x + 1)

18(x2 + 2)
,

which involve
1

x2 + 2
≥

5− 2x
9

, x ≥
1
2

,

1
x2 + 2

≥
7− 2x

18
, x ≥ 0.

Consider further two cases: c ≥ 1/2 and c ≤ 1/2.
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Case 1: c ≥
1
2

. By summing the inequalities

1
a2 + 2

≥
5− 2a

9
,

1
b2 + 2

≥
5− 2b

9
,

1
c2 + 2

≥
5− 2c

9
,

we get
1

a2 + 2
+

1
b2 + 2

+
1

c2 + 2
≥

15− 2(a+ b+ c)
9

= 1.

Case 2: c ≤
1
2

. We have

1
a2 + 2

≥
7− 2a

18
.

Consider now the similar inequalities

1
b2 + 2

≥
B − 2b

18
,

1
c2 + 2

≥
C − 2c

18
,

which are satisfied as equalities for b = 1 and c = 0 if B = 8 and C = 9:

1
b2 + 2

≥
8− 2b

18
,

1
c2 + 2

≥
9− 2c

18
Since

1
b2 + 2

−
8− 2b

18
=
(1− b)(1+ 3b− b2)

9(b2 + 2)
and

1
c2 + 2

−
9− 2c

18
=

c(1− 2c)(4− c)
18(c2 + 2)

,

these inequalities holds for 0≤ b ≤ 1 and 0≤ c ≤ 1/2. Therefore, we have

1
a2 + 2

+
1

b2 + 2
+

1
c2 + 2

≥
7− 2a

18
+

8− 2b
18

+
9− 2c

18
= 1.

P 1.161. Let a, b, c be real numbers such that

a ≥ b ≥ 1≥ c ≥ −5, a+ b+ c = 3.

Prove that
6

a3 + b3 + c3
+ 1≥

8
a2 + b2 + c2

.

(Vasile C., 2015)
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Solution. First, we will show that

a3 + b3 + c3 > 0.

Indeed, for the nontrivial case −5≤ c ≤ −2, we have

4(a3 + b3 + c3)≥ (a+ b)3 + 4c3 = (3− c)3 + 4c3

= 3c3 + 9c2 − 27c + 27≥ −15c2 + 9c2 − 27c + 27

= 3(−2c2 − 9c + 9)> 3(−2c2 − 9c + 5) = 3(c + 5)(1− 2c)> 0.

From
(a− 1)(b− 1)(c − 1)≤ 0,

we get
r ≤ q− 2,

where q = ab+ bc + ca and r = abc. Write the desired inequality as follows:

2
r + 9− 3q

+ 1≥
8

9− 2q
.

Since
r + 9− 3q ≤ (q− 2) + 9− 3q = 7− 2q,

it suffices to show that
2

7− 2q
+ 1≥

8
9− 2q

.

This is equivalent to the obvious inequality

(2q− 5)2 ≥ 0.

The equality holds for a = 1+
1
p

2
, b = 1, c = 1−

1
p

2
.

P 1.162. If a ≥ 1≥ b ≥ c > −3 such that ab+ bc + ca = 3, then

1
a2 + ab+ b2

+
1

b2 + bc + c2
+

1
c2 + ca+ a2

≥ 1.

(Vasile C., 2015)

Solution. We will show first that c > −1 and p > 0, where p = a+ b+ c. We have

p ≥ 1+ c + c = 1+ 2c,

hence
p− c ≥ c + 1.
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On the other hand, from
(a− 1)(b− 1)≤ 0,

we find
ab− (a+ b) + 1≤ 0,

3− c(a+ b)− (a+ b) + 1≤ 0,

4≤ (c + 1)(a+ b),

4≤ (c + 1)(p− c),

hence
p(c + 1)≥ c2 + c + 4> 0.

From p(c + 1) > 0, it follows that c > −1 involves p > 0. To show that c >
−1, we use the contradiction method. The case c = −1 contradicts the inequality
(c + 1)(p− c)≥ 4, and the case c < −1 leads to

p− c ≤
4

c + 1
,

c + 1≤
4

c + 1
,

(c + 1)2 ≥ 4,

hence c ≤ −3, which is false. Therefore, we have c > −1 and p > 0. According
Lemma below, we can write the inequality as

p3abc − 27+ (p2 − 9)2 ≥ 0.

From (a− 1)(b− 1)(c − 1)≥ 0, we get

abc ≥ 4− p.

Thus,

p3abc − 27+ (p2 − 9)2 ≥ p3(4− p)− 27+ (p2 − 9)2 = 2(2p+ 3)(p− 3)2 ≥ 0.

The equality holds for a = b = c = 1.

Lemma. Let a, b, c be real numbers, p = a + b + c and q = ab + bc + ca. If q > 0,
then the inequality

1
a2 + ab+ b2

+
1

b2 + bc + c2
+

1
c2 + ca+ a2

≥
3

ab+ bc + ca

is equivalent to
3(p3abc − q3) + q(p2 − 3q)2 ≥ 0.
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Proof. Write the inequality as

q
∑

(x + ab− c2)(x + ac − b2)≥ 3
∏

(x + bc − a2),

where
x = a2 + b2 + c2 = p2 − 2q.

From
∑

(ab− c2)(ac − b2) = q2 − xq,
∑

(x + ab− c2)(x + ac − b2) = x2 + xq+ q2

and
∏

(bc − a2) = q3 − p3abc,
∏

(x + bc − a2) = xq2 + q3 − p3abc,

the conclusion follows.

P 1.163. If a ≥ b ≥ 1≥ c ≥ 0 such that a+ b+ c = 3, then

1
a2 + ab+ b2

+
1

b2 + bc + c2
+

1
c2 + ca+ a2

≤
3

ab+ bc + ca
.

(Vasile C., 2015)

Solution. By Lemma from the preceding P 1.162, we need to show that

3(p3abc − q3) + q(p2 − 3q)2 ≤ 0,

where p = 3 and q = ab+ bc + ca; that is

27abc − q3 + 3q(3− q)2 ≤ 0.

From p2 ≥ 3q, we get q ≤ 3, and from (a− 1)(b− 1)(c − 1)≤ 0, we get

abc ≤ q− 2, q ≥ 2.

Thus,

27abc − q3 + 3q(3− q)2 ≤ 27(q− 2)− q3 + 3q(3− q)2 = 2(q− 3)3 ≤ 0.

Thus, the proof is completed. The equality holds for a = b = c = 1.

Remark. Actually, the inequality holds for

a ≥ b ≥ 1≥ c ≥ 1−
p

3.

To prove this, it suffices to show that ab+ bc + ca ≥ 0. Indeed, we have

ab+ bc + ca = (a− 1)(b− 1)− 1+ a+ b+ c(a+ b)≥ −1+ (1+ c)(a+ b)
= −1+ (1+ c)(3− c)≥ 0.
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P 1.164. If a, b, c are positive real numbers such that

a ≥ 1≥ b ≥ c, abc = 1,

then
1− a
3+ a2

+
1− b
3+ b2

+
1− c
3+ c2

≥ 0.

(Vasile C., 2009)

First Solution. Denote the left side of the inequality by E(a, b, c). We will show
that

E(a, b, c)≥ E(ab, 1, c)≥ 0.

Let
a+ b = s, ab = p.

We have
p ≥ abc = 1, s ≥ 2

p
p ≥ 2.

Therefore,

E(a, b, c)− E(ab, 1, c) =
1− a
3+ a2

+
1− b
3+ b2

+
ab− 1

3+ a2 b2

=
s2 − (3+ p)s+ 2(3− p)

3s2 + (p− 3)2
+

p− 1
3+ p2

=
(3+ p)(s− p− 1)(ps+ p− 3)
(3+ p2)[3s2 + (p− 3)2]

.

Since
s− p− 1= (a− 1)(1− b)≥ 0, ps+ p− 3≥ 2p+ p− 3≥ 0,

it follows that
E(a, b, c)− E(ab, 1, c)≥ 0.

Also, we have

E(ab, 1, c) = E(1/c, 1, c) =
(1− c)4

(3c2 + 1)(3+ c2)
≥ 0.

The equality holds for a = b = c = 1.

Second Solution. Let p = a+ b+ c and q = ab+ bc + ca. From

(a− 1)(b− 1)(c − 1)≥ 0,

we get
p ≥ q.

The desired inequality is true because it is equivalent to
∑

(1− a)(9+ 3b2 + 3c2 + b2c2)≥ 0,
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27+ 6
∑

a2 +
∑

b2c2 − 9p− 3pq+ 9− q ≥ 0,

27+ 6(p2 − 2q) + (q2 − 2p)− 9p− 3pq+ 9− q ≥ 0,

6p2 + q2 − 3pq− 11p− 13q+ 36≥ 0,

(p+ q− 6)2 + 5p2 − 5pq+ p− q ≥ 0,

(p+ q− 6)2 + (5p+ 1)(p− q)≥ 0.

P 1.165. If a, b, c are positive real numbers such that

a ≥ 1≥ b ≥ c, abc = 1,

then
1

p
3a+ 1

+
1

p
3b+ 1

+
1

p
3c + 1

≥
3
2

.

(Vasile C., 2007)

Solution. Let
b1 = 1/b, b1 ≥ 1.

We claim that
1

p
3b+ 1

+
1

p

3b1 + 1
≥

1
2

.

This inequality is equivalent to

1
p

3b+ 1
+

√

√ b
b+ 3

≥
1
2

.

Making the substitution

1
p

3b+ 1
= t,

1
2
≤ t < 1,

the inequality becomes
√

√ 1− t2

1+ 8t2
≥ 1− t.

By squaring, we get
t(1− t)(1− 2t)2 ≥ 0,

which is clearly true. Similarly, we have

1
p

3c + 1
+

1
p

3c1 + 1
≥

1
2

,
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where
c1 = 1/c, c1 ≥ 1.

Using these inequalities, it suffices to show that

1
p

3a+ 1
+

1
2
≥

1
p

3b1 + 1
+

1
p

3c1 + 1
,

which is equivalent to

1
p

3b1c1 + 1
+

1
2
≥

1
p

3b1 + 1
+

1
p

3c1 + 1
.

According to P 2.88 in Volume 2, the conclusion follows. The equality holds for
a = b = c = 1.

P 1.166. If a, b, c are positive real numbers such that

a ≥ 1≥ b ≥ c, abc = 1,

then
1

a2 + 4ab+ b2
+

1
b2 + 4bc + c2

+
1

c2 + 4ca+ a2
≥

1
2

.

(Vasile C., 2015)

Solution. Write the inequality as

2E ≥ F,

where

E =
∑

(a2 + 4ab+ b2)(a2 + 4ac + c2), F =
∏

(b2 + 4bc + c2).

Using Lemma below for k = 4 and r = 1, we get

E = 18pr + p4 − 3q2 = 18p+ p4 − 3q2,

F = 27r2 + 2p3r + p2q2 + 2q3 = 27+ 2p3 + p2q2 + 2q3,

hence
2E − F = 2p4 − 2p3 + 36p− 27− (p2 + 6)q2 − 2q3.

From (a− 1)(b− 1)(c − 1)≥ 0, we get

p ≥ q.
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Thus,

2E − F ≥ 2p4 − 2p3 + 36p− 27− (p2 + 6)p2 − 2p3

= p4 − 4p3 − 6p2 + 36p− 27= (p− 1)(p− 3)2(p+ 3)≥ 0.

Thus, the proof is completed. The equality holds for a = b = c = 1.

Lemma. If a, b, c are real numbers,

p = a+ b+ c, q = ab+ bc + ca, r = abc

and
E =

∑

(a2 + kab+ b2)(a2 + kac + c2), F =
∏

(b2 + kbc + c2),

then
E = (k− 1)(k+ 2)pr + p4 + (k− 4)p2q+ (5− 2k)q2,

F = (k− 1)3r2 + [(k− 2)p2 + (k− 1)(k− 4)q]pr + p2q2 + (k− 2)q3.

Proof. Let
x = a2 + b2 + c2 = p2 − 2q.

Since

E =
∑

(x + kab− c2)(x + kac − b2)

= x2 + kxq+ (k− 1)(k+ 2)pr + q2

and

F =
∏

(x + kbc − a2)

= x[(k− 1)(k+ 2)pr + q2] + (k− 1)3r2 − k[kp2 − 3(k− 1)q]pr + kq3,

the conclusion follows.

P 1.167. Let a ≥ 1≥ b ≥ c ≥ 0 such that

a+ b+ c = 3, ab+ bc + ca = q,

where q ∈ [0,3] is a fixed number. Prove that the product r = abc is maximal for
b = c, and minimal for b = 1 or c = 0.

(Vasile C., 2015)
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Solution. For q = 3, from (a+ b+ c)2 = 3(ab+ bc + ca), which is equivalent to

(a− b)2 + (b− c)2 + (c − a)2 = 0,

we get a = b = c = 1. Consider further that q ∈ [0,3), when a > 1 ≥ b ≥ c ≥ 0.
We will show first that c ∈ [c1, c2], where

c1 =







1−
p

3− q, 2≤ q < 3

0, 0≤ q ≤ 2

and

c2 = 1−
s

1−
q
3

.

From
(a− 1)(b− 1)≤ 0,

which is equivalent to

ab− (a+ b) + 1≤ 0, q− (a+ b)(c + 1) + 1≤ 0, q− (3− c)(c + 1) + 1≤ 0,

we get
c2 − 2c + q− 2≤ 0,

hence c ≥ 1−
p

3− q. In the case 2 ≤ q < 3, when 1−
p

3− q ≥ 0, the equality
c = 1−

p

3− q is possible because it implies

b = 1, a = 1+
p

3− q ≥ 1.

In the case 0 ≤ q ≤ 2, the equality c = 0 is possible because it implies a + b = 3
and ab = q, hence

a =
3+

p

9− 4q

2
≥ 1, b =

3−
p

9− 4q

2
∈ [0,1].

In conclusion, we have c ≥ c1 in all cases, with equality for b = 1 or c = 0. Also,
from

(b− c)(a− c) = c2 − 2c(a+ b) + q = c2 − 2c(3− c) + q = 3c2 − 6c + q ≥ 0,

we get c ≤ c2, with equality for b = c. On the other hand, from

abc = c[q− (a+ b)c] = c[q− (3− c)c],

we get
r(c) = c3 − 3c2 + qc.

Since

r ′(c) = 3c2 − 6c + q = 3c2 − 2(a+ b+ c)c + q = (c − a)(c − b)≥ 0,

r(c) is strictly increasing on [c1, c2], and hence r(c) is minimal for c = c1, when
b = 1 or c = 0, and is maximal for c = c2, when b = c.
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P 1.168. Let p and q be fixed real numbers such that there exist three real numbers
a, b, c satisfying

a ≥ 1≥ b ≥ c ≥ 0, a+ b+ c = p, ab+ bc + ca = q.

Prove that

(a) the product r = abc is maximal for b = c;

(b) the product r = abc is minimal for a = 1 or b = 1 or c = 0.

(Vasile C., 2015)

Solution. (a) According to P 3.57 in Volume 1, under the weaker condition a ≥
b ≥ c ≥ 0 instead of a ≥ 1 ≥ b ≥ c ≥ 0, the product r = abc is maximal for b = c,
when

a =
p+ 2

p

p2 − 3q
3

, b = c =
p−

p

p2 − 3q
3

.

Thus, it suffices to show that

p+ 2
p

p2 − 3q
3

≥ 1≥
p−

p

p2 − 3q
3

.

The left inequality is true if

4(p2 − 3q)≥ (3− p)2,

which is equivalent to
(p+ 1)2 ≥ 4(q+ 1);

indeed,

(p+ 1)2 − 4(q+ 1) = (b− c)2 + (a− 1)(a+ 3− 2b− 2c)≥ 0.

The right inequality is equivalent to
p

p2 − 3q ≥ p− 3.

This is true if p2 − 3q ≥ (p− 3)2 for p ≥ 3; indeed,

p2 − 3q− (p− 3)2

3
= 2p− q− 3

= (a− 1)(1− b) + (1− c)(a+ b− 2)
= (a− 1)(1− b) + (1− c)[(1− c) + (p− 3)]≥ 0.

(b) We will show that abc is minimal for a = 1 or b = 1 if p ≤ q + 1, and for
c = 0 if p ≥ q+ 1.

Case 1: p ≤ q+ 1. From

(a− 1)(b− 1)(c − 1)≥ 0,
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we get
abc ≥ ab+ bc + ca− a− b− c + 1= q− p+ 1≥ 0,

with equality for a = 1 or b = 1. If one of a, b is 1, then the other two of a, b, c are

x =
p− 1+

p
D

2
, c =

p− 1−
p

D
2

,

where

D = (p+ 1)2 − 4(q+ 1)

= (b− c)2 + (a− 1)(a+ 3− 2b− 2c)≥ 0.

We only need to show that c ≥ 0, which is equivalent to

p− 1≥
p

D,

p ≤ q+ 1.

Case 2: p ≥ q+ 1. We will show that abc is minimal for c = 0. For this, we only
need to prove that there exist two real numbers a and b such that

a ≥ 1≥ b ≥ 0, a+ b = p, ab = q.

Since

a =
p+

p

p2 − 4q
2

, b =
p−

p

p2 − 4q
2

,

where
p2 − 4q ≥ (q+ 1)2 − 4q = (q− 1)2 ≥ 0,

the inequality a ≥ 1 is equivalent to

p

p2 − 4q ≥ 2− p,

while the inequality b ≤ 1 is equivalent to

p

p2 − 4q ≥ p− 2.

These inequalities are true if

p2 − 4q ≥ (p− 2)2,

which reduces to p ≥ q+ 1.
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P 1.169. Let p and q be fixed real numbers such that there exist three real numbers
a, b, c satisfying

a ≥ b ≥ c ≥ 1, a+ b+ c = p, ab+ bc + ca = q.

Prove that

(a) the product r = abc is maximal for b = c;

(b) the product r = abc is minimal for a = b or c = 1.

(Vasile C., 2015)

Solution. From a ≥ b ≥ c ≥ 1, it follows that

p = a+ b+ c ≥ 3.

(a) According to P 3.57 in Volume 1, under the weaker condition a ≥ b ≥ c ≥ 0
instead of a ≥ b ≥ c ≥ 1, the product r = abc is maximal for b = c, when

a =
p+ 2

p

p2 − 3q
3

, b = c =
p−

p

p2 − 3q
3

.

Thus, it suffices to show that

p−
p

p2 − 3q
3

≥ 1,

which is equivalent to
p− 3≥

p

p2 − 3q,

(p− 3)2 ≥ p2 − 3q,

q+ 3≥ 2p.

We have

q+ 3− 2p = (a− 1)(b− 1) + (b− 1)(c − 1) + (c − 1)(a− 1)≥ 1.

(b) We will show that abc is minimal for a = b if p + 1 ≤ 2
p

q+ 1, and for
c = 1 if p+ 1≥ 2

p

q+ 1.

Case 1: p + 1 ≤ 2
p

q+ 1. According to P 2.53 in Volume 1, under the weaker
condition a ≥ b ≥ c instead of a ≥ b ≥ c ≥ 1, the product r = abc is minimal for
a = b, when

a = b =
p+

p

p2 − 3q
3

, c =
p− 2

p

p2 − 3q
3

.

Thus, it suffices to show that

p− 2
p

p2 − 3q
3

≥ 1,
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which is equivalent to
p− 3≥ 2

p

p2 − 3q,

(p− 3)2 ≥ 4(p2 − 3q),

(p+ 1)2 ≤ 4(q+ 1),

p+ 1≤ 2
p

q+ 1.

Case 2: p+ 1≥ 2
p

q+ 1. From

(a− 1)(b− 1)(c − 1)≥ 0,

we get
abc ≥ ab+ bc + ca− a− b− c + 1= q− p+ 1≥ 0,

with equality for c = 1. In addition, c = 1 involves

a =
p− 1+

p
D

2
, b =

p− 1−
p

D
2

,

where
D = (p+ 1)2 − 4(q+ 1)≥ 0.

To end the proof, it suffices to show that

p− 1−
p

D
2

≥ 1,

which is equivalent to
p− 3≥

p
D,

(p− 3)2 ≥ (p+ 1)2 − 4(q+ 1)),

q+ 3≥ 2p,

(a− 1)(b− 1) + (b− 1)(c − 1) + (c − 1)(a− 1)≥ 0.

P 1.170. Let a ≥ b ≥ 1≥ c ≥ 0 such that

a+ b+ c = 3, ab+ bc + ca = q,

where q ∈ [0,3] is a fixed number. Prove that the product r = abc is maximal for
b = 1, and minimal for a = b or c = 0.

(Vasile C., 2015)
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Solution. From

ab+ bc + ca ≤
1
3
(a+ b+ c)2 = 3

and

q− 3= ab+ (a+ b)c − a− b− c = (a− 1)(b− 1) + (a+ b− 1)c − 1≥ −1,

it follows that 2≤ q ≤ 3. Since q = 2 involves b = 1 and c = 0, and q = 3 involves
a = b = c = 1, we consider further that q ∈ (2, 3), when a ≥ b ≥ 1 > c ≥ 0. We
will show first that c ∈ [c1, c2], where

c1 =







1− 2
p

1− q/3, 9/4≤ q < 3

0, 2< q ≤ 9/4

and
c2 = 1−

p

3− q.

From

(a− b)2 = (a+ b)2 − 4ab = (a+ b)2 + 4c(a+ b)− 4q

= (3− c)2 + 4c(3− c)− 4q = −3c2 + 6c + 9− 4q,

it follows that
3c2 − 6c + 4q− 9≤ 0,

hence c ≥ 1− 2
p

1− q/3. In the case 9/4 ≤ q < 3, when 1− 2
p

1− q/3 ≥ 0, the
equality c = 1− 2

p

1− q/3 is possible because it implies

a = b = 1+
Æ

1− q/3≥ 1.

In the case 2 < q ≤ 9/4, the equality c = 0 is possible because it implies a+ b = 3
and ab = q, hence

a =
3+

p

9− 4q

2
, b =

3−
p

9− 4q

2
> 1.

In conclusion, we have c ≥ c1 in all cases, with equality for a = b or c = 0. Also,
from

(a− 1)(b− 1)≥ 0,

which is equivalent to

ab− (a+ b) + 1≥ 0, q− (a+ b)(c + 1) + 1≥ 0, q− (3− c)(c + 1) + 1≥ 0,

we get
c2 − 2c + q− 2≥ 0,
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hence c ≤ c2, with equality for b = 1. On the other hand, from

abc = c[q− (a+ b)c] = c[q− (3− c)c],

we get
r(c) = c3 − 3c2 + qc.

Since

r ′(c) = 3c2 − 6c + q = 3c2 − 2(a+ b+ c)c + q = (c − a)(c − b)≥ 0,

r(c) is strictly increasing on [c1, c2], and hence r(c) is minimal for c = c1, when
a = b or c = 0, and is maximal for c = c2, when b = 1.

P 1.171. Let p and q be fixed real numbers such that there exist three real numbers
a, b, c satisfying

a ≥ b ≥ 1≥ c ≥ 0, a+ b+ c = p, ab+ bc + ca = q.

Prove that

(a) the product r = abc is maximal for b = 1 or c = 1;

(b) the product r = abc is minimal for a = b or c = 0.

(Vasile C., 2015)

Solution. (a) From
(a− 1)(b− 1)(c − 1)≤ 0,

we get
abc ≤ q− p+ 1,

with equality for b = 1 or c = 1. If one of b, c is 1, then the other two of a, b, c are

a = x =
p− 1+

p
D

2
, y =

p− 1−
p

D
2

,

where
D = (p+ 1)2 − 4(q+ 1).

Notice that

D = (a− b)2 + (1− c)(2a+ 2b− c − 3)≥ 0,

x ≥ 1,

x y = q− p+ 1= (a− 1)(b− 1) + c(a+ b− 1)≥ 0, y ≥ 0.
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The inequality x ≥ 1 is equivalent to
p

D ≥ 3− p, which is true if p ≤ 3 involves

D ≥ (3− p)2.

Indeed,

D− (3− p)2

4
= 2p− q− 3

= (b− 1)(1− c) + (a− 1)(2− b− c)
= (b− 1)(1− c) + (a− 1)[(a− 1) + (3− p)]≥ 0.

Also, we have y ≤ 1 for p ≤ 3 or p ≥ (q + 3)/2, and y ≥ 1 for 3 ≤ p ≤ (q + 3)/2.
Therefore, there is a unique point (a, b, c) such that the product r = abc is maximal:

(a, b, c) =

�

p− 1+
p

D
2

,1,
p− 1−

p
D

2

�

for 2≤ p ≤ 3 or p ≥
q+ 3

2
;

(a, b, c) =

�

p− 1+
p

D
2

,
p− 1−

p
D

2
,1

�

for 3≤ p ≤
q+ 3

2
.

(b) According to P 3.57 in Volume 1, under the weaker condition a ≥ b ≥ c ≥ 0
instead of a ≥ b ≥ 1≥ c ≥ 0, the product r = abc is minimal for a = b (if p2 ≤ 4q)
or c = 0 (if p2 ≥ 4q).

For a = b, we have

a = b =
p+

p

p2 − 3q
3

, c =
p− 2

p

p2 − 3q
3

.

Thus, it suffices to show that

p+
p

p2 − 3q
3

≥ 1,

p− 2
p

p2 − 3q
3

≤ 1.

The first inequality holds if p ≤ 3 involves

(p2 − 3q)≥ (3− p)2,

that is
2p− q− 3≥ 0.
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We have

2p− q− 3= 2(a+ b)− ab− 3− (a+ b− 2)c

≥ 2(a+ b)−
1
4
(a+ b)2 − 3− (a+ b− 2)c

=
(a+ b− 2)(6− a− b)− 4(a+ b− 2)c

4

=
(a+ b− 2)(6− a− b− 4c)

4

=
(a+ b− 2)[(3− p) + 3(1− c)]

4
≥ 0.

The second inequalities holds if p ≥ 3 implies

4(p2 − 3q)≥ (p− 3)2,

which is equivalent to the obvious inequality

(a− b)2 + (1− c)(2a+ 2b− c − 3)≥ 0.

For c = 0, we have

a =
p+

p

p2 − 4q
2

, b =
p−

p

p2 − 4q
2

, c = 0.

Thus, it suffices to show that

p−
p

p2 − 4q
2

≥ 1,

that is
p− 2≥

p

p2 − 4q.

Since p− 2= (a− 1) + (b− 1) + c ≥ 0, we only need to show that

(p− 2)2 ≥ p2 − 4q,

which is equivalent to
q+ 1− p ≥ 0,

(a− 1)(b− 1) + (a+ b− 1)c ≥ 0.
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P 1.172. Let p and q be fixed real numbers such that there exist three real numbers
a, b, c satisfying

1≥ a ≥ b ≥ c ≥ 0, a+ b+ c = p, ab+ bc + ca = q.

Prove that

(a) the product r = abc is maximal for b = c or a = 1;

(b) the product r = abc is minimal for a = b or c = 0.

(Vasile C., 2015)

Solution. We have p ≤ 3 because

p− 3= (a− 1) + (b− 1) + (c − 1)≤ 0.

(a) We will show that abc is maximal for b = c if p + 1 ≤ 2
p

q+ 1, and for
a = 1 if p+ 1≥ 2

p

q+ 1.

Case 1: p + 1 ≤ 2
p

q+ 1. According to P 3.57 in Volume 1, under the weaker
condition a ≥ b ≥ c ≥ 0 instead of 1 ≥ a ≥ b ≥ c ≥ 0, the product r = abc is
maximal for b = c, when

a =
p+ 2

p

p2 − 3q
3

, b = c =
p−

p

p2 − 3q
3

.

Thus, it suffices to show that

p−
p

p2 − 3q
3

≥ 0

and
p+ 2

p

p2 − 3q
3

≤ 1.

The first inequality is clearly true, and the second inequality is equivalent to

3− p ≥ 2
p

p2 − 3q,

(3− p)2 ≥ 4(p2 − 3q),

(p+ 1)2 ≤ 4(q+ 1),

p+ 1≤ 2
p

q+ 1.

Case 2: p+ 1≥ 2
p

q+ 1. From

(a− 1)(b− 1)(c − 1)≥ 0,

we get
abc ≥ ab+ bc + ca− a− b− c + 1= q− p+ 1≥ 0,
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with equality for a = 1. In addition, a = 1 involves

b =
p− 1+

p
D

2
, c =

p− 1−
p

D
2

,

where
D = (p+ 1)2 − 4(q+ 1)≥ 0.

To end the proof, it suffices to show that

p− 1−
p

D
2

≥ 0

and
p− 1+

p
D

2
≤ 1.

Write the first inequality as
p− 1≥

p
D.

Since
p ≥ −1+ 2

p

q+ 1≥ −1+ 2= 1,

the inequality is equivalent to
(p− 1)2 ≥ D,

1− p+ q ≥ 0,

(1− a)(1− b)(1− c) + abc ≥ 0.

Write the second inequality as
3− p ≥

p
D,

(3− p)2 ≥ D,

q+ 3≥ 2p,

(1− a)(1− b) + (1− b)(1− c) + (1− c)(1− a)≥ 0.

(b) We will show that abc is minimal for a = b if p2 ≤ 4q, and for c = 0 if
p2 ≥ 4q.

Case 1: p2 ≤ 4q. According to P 2.53 in Volume 1, under the weaker condition
a ≥ b ≥ c instead of 1 ≥ a ≥ b ≥ c ≥ 0, the product r = abc is minimal for a = b,
when

a = b =
p+

p

p2 − 3q
3

, c =
p− 2

p

p2 − 3q
3

.

Thus, it suffices to show that

p− 2
p

p2 − 3q
3

≥ 0
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and
p+

p

p2 − 3q
3

≤ 1.

Write the first inequality as
p ≥ 2

p

p2 − 3q,

p2 ≥ 4(p2 − 3q),

p2 ≤ 4q.

Write now the second inequality as

3− p ≥
p

p2 − 3q,

(3− p)2 ≥ p2 − 3q,

q+ 3≥ 2p,

(1− a)(1− b) + (1− b)(1− c) + (1− c)(1− a)≥ 0.

Case 1: p2 ≥ 4q. From

0≤ p2 − 4q = (a− b)2 − c(a+ b− c)≤ (a− b)2 − c2 = (a− b− c)(a− b+ c),

we get a ≥ b+ c, hence
p = a+ b+ c ≤ 2a ≤ 2.

For c = 0, we have

a =
p+

p

p2 − 4q
2

, b =
p−

p

p2 − 4q
2

, c = 0.

Since p−
p

p2 − 4q ≥ 0, we only need to show that

p+
p

p2 − 4q
2

≤ 1,

which is equivalent to
2− p ≥

p

p2 − 4q,

(2− p)2 ≥ p2 − 4q,

1− p+ q ≥ 0,

(1− a)(1− b)(1− c) + abc ≥ 0.
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P 1.173. If a ≥ 1≥ b ≥ c ≥ 0 such that a+ b+ c = 3, then

abc +
9

ab+ bc + ca
≥ 4.

(Vasile C., 2015)

Solution. Let
q = ab+ bc + ca.

First Solution. According to P 1.167, for fixed q, the product abc is minimal when
b = 1 or c = 0. Therefore, it suffices to consider these cases. If b = 1, then a+c = 2,
and the inequality becomes

ac +
9

2+ ac
≥ 4,

(ac − 1)2 ≥ 0.

For c = 0, we need to show that a+ b = 3 involves 4ab ≤ 9. Indeed,

4ab < (a+ b)2 = 9.

The equality holds for a = b = c = 1.

Second Solution. From (a− 1)(b− 1)(c − 1)≥ 0, we get

abc ≥ q− 2.

Therefore,

abc +
9

ab+ bc + ca
− 4≥ q− 2+

9
q
− 4=

(q− 3)2

q
≥ 0.

P 1.174. If a ≥ 1≥ b ≥ c ≥ 0 such that a+ b+ c = 3, then

abc +
2

ab+ bc + ca
≥

5
a2 + b2 + c2

.

(Vasile C., 2015)

Solution. Let
q = ab+ bc + ca, q ≤ 3.

First Solution. According to P 1.167, for fixed q, the product abc is minimal when
b = 1 or c = 0. Therefore, it suffices to consider these cases. For b = 1, when
a+ c = 2, the inequality becomes

ac +
2

2+ ac
≥

5
5− 2ac

,
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ac(1− ac)(1+ 2ac)≥ 0.

The last inequality is true since

4= (a+ c)2 ≥ 4ac.

For c = 0, we need to show that a+ b = 3 involves

2
ab
≥

5
9− 2ab

,

that is ab ≤ 2. Indeed,

ab− 2= ab− a− b+ 1= (a− 1)(b− 1)≤ 0.

The equality holds for a = b = c = 1, and also for a = 2, b = 1 and c = 0.

Second Solution. Write the inequality as

abc +
2
q
≥

5
9− 2q

.

Case 1: q ≤ 2. We have

abc +
2
q
−

5
9− 2q

≥
2
q
−

5
9− 2q

=
9(q− 2)
q(9− 2q)

≥ 0.

Case 2: 2≤ q ≤ 3. From (a− 1)(b− 1)(c − 1)≥ 0, we get

abc ≥ q− 2,

hence

abc +
2
q
−

5
9− 2q

≥ q− 2+
2
q
−

5
9− 2q

=
(3− q)(q− 2)(2q− 3)

q(9− 2q)
≥ 0.

P 1.175. If a ≥ b ≥ 1≥ c > 0 such that a+ b+ c = 3, then

1
abc

+ 2≥
9

ab+ bc + ca
.

(Vasile C., 2015)
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Solution. Let
q = ab+ bc + ca.

First Solution. According to P 1.170, for fixed q, the product abc is maximal for
b = 1. Therefore, it suffices to consider the case b = 1, when a + c = 2, and the
inequality becomes

1
ac
+ 2≥

9
2+ ac

,

(ac − 1)2 ≥ 0.

The equality holds for a = b = c = 1.

Second Solution. From (a− 1)(b− 1)(c − 1)≤ 0, we get

abc ≤ q− 2, q > 2.

Thus, it suffices to show that
1

q− 2
+ 2≥

9
q

,

which is equivalent to
(q− 3)2 ≥ 0.

P 1.176. If a ≥ b ≥ 1≥ c > 0 such that a+ b+ c = 3, then

1
a
+

1
b
+

1
c
+ 11≥ 4(a2 + b2 + c2).

(Vasile C., 2015)

Solution. Let
q = ab+ bc + ca.

First Solution. Write the inequality as

q
abc

+ 8q ≥ 25.

According to P 1.170, for fixed q, the product abc is maximal when b = 1. There-
fore, it suffices to consider the case b = 1, when a + c = 2, and the inequality
becomes

1
ac
+ 4ac ≥ 4,

(2ac − 1)2 ≥ 0.

The equality holds for a = 1+
1
p

2
, b = 1 and a = 1−

1
p

2
.
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Second Solution. From (a− 1)(b− 1)(c − 1)≤ 0, we get

abc ≤ q− 2, q > 2.

Thus, it suffices to show that

q
q− 2

+ 11≥ 4(9− 2q),

which is equivalent to
(2q− 5)2 ≥ 0.

P 1.177. If a ≥ b ≥ 1≥ c > 0 such that a+ b+ c = 3, then

1
abc

+
2

a2 + b2 + c2
≥

5
ab+ bc + ca

.

(Vasile C., 2015)

Solution. Let
q = ab+ bc + ca.

First Solution. According to P 1.170, for fixed q, the product abc is maximal
when b = 1. Therefore, it suffices to consider the case b = 1, when the inequality
becomes

1
ac
+

2
5− 2ac

≥
5

2+ ac
,

(ac − 1)2 ≥ 0.

The equality holds for a = b = c = 1.

Second Solution. From (a− 1)(b− 1)(c − 1)≤ 0, we get

abc ≤ q− 2, q > 2.

Thus, it suffices to show that

1
q− 2

+
2

9− 2q
≥

5
q

,

which is equivalent to
(q− 3)2 ≥ 0.
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P 1.178. If a ≥ b ≥ 1≥ c ≥ 0 such that a+ b+ c = 3, then

9
a3 + b3 + c3

+ 2≤
15

a2 + b2 + c2
.

(Vasile C., 2015)

Solution. Write the inequality as

3
abc + 9− 3q

+ 2≤
15

9− 2q
,

where
q = ab+ bc + ca.

From
3q ≤ (a+ b+ c)2 = 9

and

q = (1− a)(1− b)(1− c) + abc − 1+ a+ b+ c ≥ −1+ a+ b+ c = 2,

it follows that
2≤ q ≤ 3.

First Solution. Consider the following two cases.

Case 1: 2≤ q ≤ 9/4. Since abc ≥ 0, it suffices to prove that

1
3− q

+ 2≤
15

9− 2q
,

which is equivalent to the obvious inequality

(4q− 9)(q− 2)≤ 0.

Case 2: 9/4≤ q ≤ 3. By Schur’s inequality of third degree

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca),

we get
3abc ≥ 4q− 9.

Therefore, it suffices to show that

9
4q− 9+ 3(9− 3q)

+ 2≤
15

9− 2q
,

which is equivalent to
9

18− 5q
+ 2≤

15
9− 2q

,
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4q2 − 21q+ 27≤ 0,

(q− 3)(4q− 9)≤ 0.

The equality holds for a = b = c = 1, for a = b = 3/2 and c = 0, and also for
a = 2, b = 1 and c = 0.

Second Solution. According to P 1.170, for fixed q, the product abc is minimal
when a = b or c = 0. Therefore, it suffices to consider these cases.

Case 1: a = b ∈ [1, 3/2]. The desired inequality is equivalent to

9
2a3 + (3− 2a)3

+ 2≤
15

2a2 + (3− 2a)2
.

(a− 1)2(3− 2a)(9a− 2a2 − 3)≥ 0,

which is true since

9a− 2a2 − 3> 3(3a− a2 − 2) = 3(a− 1)(2− a)≥ 0.

Case 2: c = 0. We have 2≤ q ≤ 9/4, because

q = ab ≤
1
4
(a+ b)2 =

9
4

.

The desired inequality is equivalent to

1
3− q

+ 2≤
15

9− 2q
,

(4q− 9)(q− 2)≤ 0.

Clearly, the last inequality is true.

P 1.179. If a ≥ b ≥ 1≥ c ≥ 0 such that a+ b+ c = 3, then

36
a3 + b3 + c3

+ 9≤
65

a2 + b2 + c2
.

(Vasile C., 2015)

Solution. Write the inequality as

12
abc + 9− 3q

+ 9≤
65

9− 2q
,

where
q = ab+ bc + ca.
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From
3q ≤ (a+ b+ c)2 = 9

and

q = (1− a)(1− b)(1− c) + abc − 1+ a+ b+ c ≥ −1+ a+ b+ c = 2,

it follows that
2≤ q ≤ 3.

First Solution. Consider the following two cases.
Case 1: 2≤ q ≤ 7/3. Since abc ≥ 0, it suffices to prove that

4
3− q

+ 9≤
65

9− 2q
,

which is equivalent to the obvious inequality

(3q− 7)(q− 2)≤ 0.

Case 2: 7/3≤ q ≤ 3. By Schur’s inequality of third degree

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca),

we get
3abc ≥ 4q− 9.

Therefore, it suffices to show that

36
4q− 9+ 3(9− 3q)

+ 9≤
65

9− 2q
,

which is equivalent to
198− 45q

18− 5q
≤

65
9− 2q

.

We will prove the sharper inequality

200− 45q
18− 5q

≤
65

9− 2q
,

which is equivalent to
40− 9q
18− 5q

≤
13

9− 2q
,

(q− 3)(3q− 7)≤ 0.

The last inequality is clearly true. The equality holds for a = 2, b = 1 and c = 0.

Second Solution. According to the preceding P 1.178, it suffices to show that

4
�

15
a2 + b2 + c2

− 2
�

+ 9≤
65

a2 + b2 + c2
,
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which is equivalent to
a2 + b2 + c2 ≥ 5,

ab+ bc + ca ≥ 2.

P 1.180. If a ≥ b ≥ c ≥ 0 and ab+ bc + ca = 2 , then
p

a+ ab+
p

b+ bc +
p

c + ca ≥ 3.

(KaiRain, 2020)

Proof. Consider the main case a ≥ b ≥ c and show that
p

a+ ab+
p

b+ bc +
p

c + ca ≥ 3.

For c = 0, we need to show that ab = 2 involves
p

a+ ab+
p

b ≥ 3,

that is
p

a+ 2+

√

√2
a
≥ 3.

Denoting x =
s

a
2

, we need to show that

p

2x2 + 2≥ 3−
1
x

.

This is true if

2(x2 + 1)≥
�

3−
1
x

�2

for x ≥ 1/3, which is equivalent to the obvious inequality

(x − 1)2(2x2 + 4x − 1)≥ 0.

Using this result, it suffices to show that

p

a+ ab+
p

b+ bc +
p

c + ca ≥
p

a+ 2+

√

√2
a

,

that is equivalent to

p
c + ca ≥

p
a+ 2−

p

a+ ab+

√

√2
a
−
p

b+ bc,
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p
c + ca ≥

2− ab
p

a+ 2+
p

a+ ab
+

2− ab− abc
p

2a+ a
p

b+ bc
,

p
c + ca ≥

c(a+ b)
p

a+ 2+
p

a+ ab
+

c(a+ b− ab)
p

2a+ a
p

b+ bc
.

So, we need to show that

p
1+ a ≥

p
c(a+ b)

p
a+ 2+

p
a+ ab

+
p

c(a+ b− ab)
p

2a+ a
p

b+ bc
.

We get this inequality by summing the inequalities
p

1+ a
2

≥
p

c(a+ b)
p

a+ 2+
p

a+ ab
,

p
1+ a
2

≥
p

c(a+ b− ab)
p

2a+ a
p

b+ bc
.

From ab+ bc + ca = 2, it follows
2
3
≤ ab ≤ 2 and b ≤

p
2. Since

p

a+ ab ≤
p

a+ 2

and
a
p

b ≤
p

2a, a
p

b ≤ a
p

b+ bc,

it suffice to prove the inequalities

p
1+ a ≥

p
c(a+ b)
p

a+ ab
,

p
1+ a ≥

p
c(a+ b− ab)

a
p

b
.

By squaring, the first inequality becomes

a(1+ a)(1+ b)≥ c(a+ b)2,

a(1+ a)(1+ b)≥ (a+ b)(2− ab).

Since 2a ≥ a+ b, it suffices to show that

(1+ a)(1+ b)≥ 2(2− ab),

that is
a+ b+ 3ab ≥ 3.

Indeed, we have

a+ b+ 3ab ≥ 2
p

ab+ 3ab ≥ 2

√

√2
3
+ 2> 3.

Since
p

b ≥
p

c, the second inequality is true if

a
p

1+ a ≥ a+ b− ab,
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that is
a(
p

1+ a− 1)≥ b(1− a).

For the nontrivial case a ≤ 1, it suffices to show that

a(
p

1+ a− 1)≥ a(1− a),

that is p
1+ a+ a ≥ 2.

Since 3a2 ≥ ab+ bc + ca = 2, we have

p
1+ a+ a ≥

√

√

√

1+

√

√2
3
+

√

√2
3
> 2.

The inequality is an equality for a = 2, b = 1, c = 0.

Remark. The following sharper inequality holds in the same conditions:
p

a+ ab+
p

b+
p

c ≥ 3,

with equality for a = 2, b = 1, c = 0.
For fixed b, according to the relation ab + bc + ca = 2, we may consider that a

is a function of c. Differentiating this equation, we get

a′ = −
a+ b
b+ c

,

a′′ =
(a+ b+ (b− c)a′

(a+ c)2
=
(a+ b)(a− b+ 2c)

(a+ c)3
.

Write the required inequality as f (c)≥ 0, where

f (c) =
p

a+ ab+
p

b+
p

c − 3, c ∈ [0, b].

We have

f ′(c) =
a′
p

1+ b
2
p

a
+

1
2
p

c
,

f ′′(c) =
(2aa′′ − (a′)2)

p
1+ b

4a3/2
−

1
4c3/2

=
(a+ b)(a2 + 3ac − 3ab− bc)

p
1+ b

4a3/2(a+ c)3
−

1
4c3/2

.

Since
a2 + 3ac − 3ab− bc = a2 − 3a(b− c)− bc < a2,

we have

f ′′(c)<
(a+ b)

p

a(1+ b)
4(a+ c)3

−
1

4c3/2
.
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From b2 ≤ ab ≤ ab+ bc + ca = 2, we get b ≤
p

2,
p

1+ b < 4, hence

f ′′(c)<
(a+ b)

p
a

(a+ c)3
−

1
4c3/2

≤ 2
� p

a
a+ c

�3

−
1

4(
p

c)3
≤ 0.

Since f is concave and 0≤ c ≤ b, it is enough to show that f (0)≥ 0 (for c = 0 and
ab = 2) and f (b)≥ 0 (for c = b and 2ab+ b2 = 2). We have

f (0) =

√

√2+ 2b
b

+
p

b− 3=
(1−

p
b)2(2+ 4

p
b− b)

p

b(2+ 2b)− b
p

b+ 3b
≥ 0.

For c = b, when 2= 2ab+ b2 ≥ 3b2, hence b ≤
s

2
3

, we have

f (b) =

√

√(1+ b)(2− b2)
2b

+ 2
p

b− 3=
A

p

2b(1+ b)(2− b2)− 4b
p

b+ 6b
,

where, for x =
p

b ≤ 4

s

2
3
< 1,

A= (1+ x2)(2− x4)− 2x2(3− 2x)2 = (1− x)(2+ 2x − 14x2 + 10x3 + x4 + x5).

Since

2+ 2x − 14x2 + 10x3 + x4 + x5 = 2− 13x2 + 13x3 + (1− x)2 x(2+ 3x + x2)

> 2+ 13x3 − 13x2 = 2+
13x3

2
+

13x3

2
− 13x2

≥ 3
3

√

√

2 ·
13x3

2
·

13x3

2
− 13x2 =

�

3
3

√

√169
2
− 13

�

x2 > 0,

we have A> 0, hence f (b)> 0.

P 1.181. If a ≥ b ≥ c are nonnegative numbers such that ab+ bc + ca = 3 , then

p

a+ 2ab+
p

b+ 2bc +
p

c + 2ca ≥ 4.

(Vasile C., 2020)

Proof. We will prove the sharper inequality

p

a+ 2ab+
p

b+ bc +
p

c + ca ≥ 4.
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For c = 0, we need to show that ab = 3 involves
p

a+ 2ab+
p

b ≥ 4,

that is
p

a+ 6+

√

√3
a
≥ 4.

It is easy to show that this inequality is true for all a > 0. Using this result, it suffices
to show that

p

a+ 2ab+
p

b+ bc +
p

c + ca ≥
p

a+ 6+

√

√3
a

,

that is equivalent to

p
c + ca ≥

p

a+ 6−
p

a+ 2ab+

√

√3
a
−
p

b+ bc,

p
c + ca ≥

2(3− ab
p

a+ 6+
p

a+ 2ab
+

3− ab− abc
p

3a+ a
p

b+ bc
,

p
c + ca ≥

2c(a+ b)
p

a+ 6+
p

a+ 2ab
+

c(a+ b− ab)
p

3a+ a
p

b+ bc
.

So, we need to show that

p
1+ a ≥

2
p

c(a+ b)
p

a+ 6+
p

a+ 2ab
+
p

c(a+ b− ab)
p

3a+ a
p

b+ bc
.

We get this inequality by summing the inequalities

k
p

1+ a ≥
2
p

c(a+ b)
p

a+ 6+
p

a+ 2ab
, (1− k)

p
1+ a ≥

p
c(a+ b− ab)

p
3a+ a

p
b+ bc

,

where

k =

√

√2
3

.

From ab+ bc + ca = 3, it follows 1≤ ab ≤ 3 and b ≤
p

3. Since
p

a+ 2ab ≤
p

a+ 6,

the first inequality is true if

k
p

1+ a ≥
p

c(a+ b)
p

a+ 2ab
,

that is
2a(1+ a)(1+ 2b)≥ 3c(a+ b)2,
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2a(1+ a)(1+ 2b)≥ 3(3− ab)(a+ b).

Since 2a ≥ a+ b, it suffices to show that

(1+ a)(1+ 2b)≥ 3(3− ab),

that is
(5b+ 1)a+ 2b ≥ 8.

For a ≥ b ≥ 1, this inequality is obvious. For 0≤ b ≤ 1, from

b ≥ c =
3− ab
a+ b

we get

a ≥
3− b2

2b
.

Therefore,

(5b+ 1)a+ 2b− 8≥
(5b+ 1)(3− b2)

2b
+ 2b

=
3− b+ 3b2 − 5b3

2b
=
(1− b)(3+ 2b+ 5b2)

2b
≥ 0.

Since 1− k >
1
4

, the second inequality is true if

p
1+ a ≥

4
p

c(a+ b− ab)
p

3a+ a
p

b+ bc
,

Consider the nontrivial case a+ b−ab ≥ 0, and claim that
p

3a ≥ a
p

b+ bc, which
is equivalent to 3≥ ab+ abc. Indeed, we have

3− ab− abc = 3− ab−
ab(3− ab)

a+ b
=
(3− ab)(a+ b− ab)

a+ b
≥ 0.

Thus, it suffices to show that

p
1+ a ≥

2
p

c(a+ b− ab)

a
p

b+ bc
.

Since
a+ b− ab

a
≤ 1,

it suffices to show that
p

1+ a ≥ 2

√

√ c
b(1+ c)

,

that is
b(1+ a)(1+ c)≥ 4c.
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Since ab ≥ 1, we have
b(1+ a)≥ b+ 1≥ c + 1,

therefore,
b(1+ a)(1+ c)− 4c ≥ (1+ c)2 − 4c = (1− c)2 ≥ 0.

The inequality is an equality for a = 3, b = 1, c = 0.

P 1.182. If a, b, c are nonnegative real numbers such that ab+ bc + ca = 3, then
p

a+ 3b+
p

b+ 3c +
p

c + 3a ≥ 6.

Solution. Use the substitution
p

a+ 3b = 2x ,
p

b+ 3c = 2y,
p

c + 3a = 2z,

which yields

a =
x2 − 3y2 + 9z2

7
, a =

y2 − 3z2 + 9x2

7
, a =

z2 − 3x2 + 9y2

7
,

ab+ bc + ca =
−3(x4 + y4 + z4) + 10(x2 y2 + y2z2 + z2 x2)

7
.

So, we need to show that
x + y + z ≥ 3

for
3(x4 + y4 + z4) + 21= 10(x2 y2 + y2z2 + z2 x2).

By the contradiction method, we need to prove that

x + y + z < 3

involves
3(x4 + y4 + z4) + 21> 10(x2 y2 + y2z2 + z2 x2).

It suffices to prove the homogeneous inequality f (x , y, z)≥ 0, where

f (x , y, z) = 81(x4 + y4 + z4) + 7(x + y + z)4 − 270(x2 y2 + y2z2 + z2 x2).

According to P 3.68 from Volume 1, it is enough to show that f (0, y, z) ≥ 0 and
f (x , 1, 1)≥ 0 for x , y, z ≥ 0. We have

f (0, y, z) = 81(y4 + z4) + 7(y + z)4 − 270y2z2

≥ 162y2z2 + 112y2z2 − 270y2z2 = 4y2z2 ≥ 0
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and

f (x , 1, 1) = 81(x4 + 2) + 7(x + 2)4 − 540x2 = 4(22x4 + 14x3 − 93x2 + 56x + 1)

= (x − 1)2(22x2 + 58x + 1)≥ 0.

The equality occurs for a = b = c = 1.

P 1.183. If a, b, c are the lengths of the sides of a triangle, then

10
�

a
b
+

b
c
+

c
a

�

> 9
�

b
a
+

c
b
+

a
c

�

.

Solution. According to Remark 2 from the proof of P 1.149, it suffices to show that
P(1,1, 1)≥ 0 and P(b+ c, b, c)≥ 0 for b, c ≥ 0, where

P(a, b, c) = 10(ab2 + bc2 + ca2)− 9(a2 b+ b2c + c2a).

We have P(1,1, 1) = 3> 0 and

P(b+ c, b, c) = b3 − 7b2c + 12bc2 + c3.

We need to show that
x3 − 7x2 + 12x + 1> 0,

where x = b/c, x > 0. For x ∈ (0, 3]∪ [4,∞), we have

x3 − 7x2 + 12x + 1> x3 − 7x2 + 12x = x(3− x)(4− x)≥ 0.

For x ∈ (3,4), we have

x3 − 7x2 + 12x + 1> x3 − 7x2 + 12x +
x
4
=

x(2x − 7)2

4
≥ 0.

P 1.184. If a, b, c are the lengths of the sides of a triangle, then

a
3a+ b− c

+
b

3b+ c − a
+

c
3c + a− b

≥ 1.
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Solution. Write the inequality as follows:

∑

�

a
3a+ b− c

−
1
4

�

≥
1
4

,

∑ a− b+ c
3a+ b− c

≥ 1.

Applying the Cauchy-Schwarz inequality, we get

∑ a− b+ c
3a+ b− c

≥

�∑

(a− b+ c)
�2

∑

(a− b+ c)(3a+ b− c)
=

�∑

a
�2

∑

a2 + 2
∑

ab
= 1.

The equality holds for a = b = c.

P 1.185. If a, b, c are the lengths of the sides of a triangle, then

a2 − b2

a2 + bc
+

b2 − c2

b2 + ca
+

c2 − a2

c2 + ab
≤ 0.

(Vasile C., 2007)

First Solution. Suppose that a =max{a, b, c}. Since

c2 − a2 = −(a2 − b2)− (b2 − c2),

the inequality can be written as follows:

(a2 − b2)
�

1
a2 + bc

−
1

c2 + ab

�

+ (b2 − c2)
�

1
b2 + ca

−
1

c2 + ab

�

≤ 0,

−
(a2 − b2)(a− c)(a− b+ c)

a2 + bc
−
(b2 − c2)(b− c)(b+ c − a)

a2 + bc
≤ 0.

The equality holds for an equilateral triangle, and also for a degenerate triangle
having a side equal to zero.

Second Solution. The sequences

{a2, b2, c2}

and
§

1
a2 + bc

,
1

b2 + ca
,

1
c2 + ab

ª

are reversely ordered. Indeed, if a ≥ b ≥ c, then

1
a2 + bc

≤
1

b2 + ca
≤

1
c2 + ab

,



270 Vasile Cîrtoaje

because
1

b2 + ca
−

1
a2 + bc

=
(a− b)(a+ b− c)
(b2 + ca)(a2 + bc)

≥ 0,

1
c2 + ab

−
1

b2 + ca
=
(b− c)(b+ c − a)
(c2 + ab)(b2 + ca)

≥ 0.

Then, by the rearrangement inequality, we have

a2 ·
1

a2 + bc
+ b2 ·

1
b2 + ca

+ c2 ·
1

c2 + ab
≤

≤ b2 ·
1

a2 + bc
+ c2 ·

1
b2 + ca

+ a2 ·
1

c2 + ab
,

which is the desired inequality.

P 1.186. If a, b, c are the lengths of the sides of a triangle, then

a2(a+ b)(b− c) + b2(b+ c)(c − a) + c2(c + a)(a− b)≥ 0.

(Vasile C., 2006)

First Solution. Assume that

a =max{a, b, c},

use the substitution

a = x + p+ q, b = x + p, c = x + q, x , p, q ≥ 0,

and write the inequality as

a2 b2 + b2c2 + c2a2 − abc(a+ b+ c)≥ ab3 + bc3 + ca3 − a3 b− b3c − c3a,

a2(b− c)2 + b2(c − a)2 + c2(a− b)2 ≥ 2(a+ b+ c)(a− b)(b− c)(c − a),

(x + p+ q)2(p− q)2 + (x + p)2p2 + (x + q)2q2 ≥ 2(3x + 2p+ 2q)pq(q− p),

which is equivalent to
Ax2 + 2Bx + C ≥ 0,

where
A= p2 − pq+ q2 ≥ 0,

B = p3 + q(p− q)2 ≥ 0,

C = (p2 + pq− q2)2 ≥ 0.
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The equality holds for an equilateral triangle, and also for a degenerate triangle
with

a
2
=

b

1+
p

5
=

c

3+
p

5
(or any cyclic permutation).

Second Solution. Using the substitution

x =
s

ca
b

, y =

√

√ab
c

, z =

√

√ bc
a

,

we can write the inequality as follows:

b2c2 + c2a2 + a2 b2 ≥ ab(b2 + c2 − a2) + bc(c2 + a2 − b2) + ca(a2 + b2 − c2),

bc
a
+

ca
b
+

ab
c
≥ 2b cos A+ 2c cos B + 2a cos C ,

x2 + y2 + z2 ≥ 2yz cos A+ 2zx cos B + 2x y cos C ,

(x − y cos C − z cos B)2 + (y sin C − z sin B)2 ≥ 0.

P 1.187. If a, b, c are the lengths of the sides of a triangle, then

a2 b+ b2c + c2a ≥
Æ

abc(a+ b+ c)(a2 + b2 + c2).

(Vasile Cîrtoaje and Vo Quoc Ba Can, 2005)

Solution. Without loss of generality, assume that b is between a and c; that is

(b− a)(b− c)≤ 0.

First Solution. By the AM-GM inequality, we have

4abc(a+ b+ c)(a2 + b2 + c2)≤ [ac(a+ b+ c) + b(a2 + b2 + c2)]2.

Thus, we only need to show that

2(a2 b+ b2c + c2a)≥ ac(a+ b+ c) + b(a2 + b2 + c2),

which is equivalent to

b[a2 − (b− c)2]− ac(a+ b− c)≥ 0,

(a+ b− c)(a− b)(b− c)≥ 0.
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The equality holds for an equilateral triangle, and also for a degenerate triangle
with

c = a+ b, b3 = a2(a+ b)

(or any cyclic permutation).

Second Solution. The desired inequality is equivalent to D ≥ 0, where D is the
discriminant of the quadratic function

f (x) = (a2 + b2 + c2)x2 − 2(a2 b+ b2c + c2a)x + abc(a+ b+ c).

For the sake of contradiction, assume that D < 0 for some a, b, c. Then, f (x) > 0
for all real x . This is not true, because

f (b) = b(b− a)(b− c)(a+ b− c)≤ 0.

P 1.188. If a, b, c are the lengths of the sides of a triangle, then

a2
�

b
c
− 1

�

+ b2
� c

a
− 1

�

+ c2
�a

b
− 1

�

≥ 0.

(Vasile Cîrtoaje, Moldova TST, 2006)

First Solution. Using the substitution

a =
1
x

, b =
1
y

, c =
1
z

,

the inequality becomes
E(x , y, z)≥ 0,

where
E(x , y, z) = yz2(z − y) + zx2(x − z) + x y2(y − x).

Without loss of generality, assume that

a =min{a, b, c}, x =max{x , y, z}.

We will show that
E(x , y, z)≥ E(y, y, z)≥ 0.

We have

E(x , y, z)− E(y, y, z) = z(x3 − y3)− z2(x2 − y2) + y3(x − y)− y2(x2 − y2)

= (x − y)(x − z)(xz + yz − y2)≥ 0,
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because

xz + yz − y2 ≥ y(2z − y) =
2b− c

b2c
=
(b− a) + (a+ b− c)

b2c
≥ 0.

Also,
E(y, y, z) = yz(y − z)2 ≥ 0.

The equality holds for a = b = c.

Second Solution. Write the inequality as F(a, b, c)≥ 0, where

F(a, b, c) = a3 b2 + b3c2 + c3a2 − abc(a2 + b2 + c2).

Since

2E(a, b, c) =
�∑

a3 b2 +
∑

a2 b3 − 2abc
∑

a2
�

−
�∑

a2 b3 −
∑

a3 b2
�

=
�∑

a3 b2 +
∑

a3c2 − 2abc
∑

a2
�

−
�∑

a2 b3 −
∑

a2c3
�

=
∑

a3(b− c)2 −
∑

a2(b3 − c3)

and
∑

a2(b3 − c3) =
∑

a2(b− c)3,

we get

E(a, b, c) =
∑

a3(b− c)2 −
∑

a2(b− c)3 =
∑

a2(b− c)2(a− b+ c)≥ 0.

Third Solution. By the Cauchy-Schwarz inequality, we have

∑ a2 b
c
≥

�∑

a2 b
�2

∑

a2 bc
.

Therefore, it suffices to show that
�∑

a2 b
�2
≥ abc(a+ b+ c)(a2 + b2 + c2),

which is the inequality from the preceding P 1.187.

P 1.189. If a, b, c are the lengths of the sides of a triangle, then

(a) a3 b+ b3c + c3a ≥ a2 b2 + b2c2 + c2a2;

(b) 3(a3 b+ b3c + c3a)≥ (ab+ bc + ca)(a2 + b2 + c2);

(c)
a3 b+ b3c + c3

3
≥
�

a+ b+ c
3

�4

.
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Solution. (a) First Solution. Write the inequality as

a2 b(a− b) + b2c(b− c) + c2a(c − a)≥ 0.

Using the substitution

a = y + z, b = z + x , c = x + y, x , y, z ≥ 0,

the inequality turns into

x y3 + yz3 + zx3 ≥ x yz(x + y + z),

which follows from the Cauchy-Schwarz inequality

(x y3 + yz3 + zx3)(z + x + y)≥ x yz(y + z + x)2.

The equality holds for an equilateral triangle, and also for a degenerate triangle
with a = 0 and b = c (or any cyclic permutation).

Second Solution. Multiplying by a+ b+ c, the inequality becomes as follows:
∑

a4 b+ abc
∑

a2 ≥
∑

a2 b3 + abc
∑

ab,
∑

b4c + abc
∑

a2 ≥
∑

b2c3 + abc
∑

ab,

∑ b3

a
+
∑

a2 ≥
∑ bc2

a
+
∑

ab,

∑

a2 ≥
∑ b

a
(c2 + a2 − b2),

a2 + b2 + c2 ≥ 2bc cos B + 2ca cos C + 2ab cos A,

(a− b cos A− c cos C)2 + (b sin A− c sin C)2 ≥ 0.

(b) Write the inequality as
∑

a2 b(a− b) +
∑

b2(a− b)(a− c)≥ 0.

Since
∑

a2 b(a− b)≥ 0 (according to the inequality in (a)), it suffices to show that
∑

b2(a− b)(a− c)≥ 0.

This is a particular case (x = c, y = a, z = b) of the following inequality

(x − y)(x − z)a2 + (y − z)(y − x)b2 + (z − x)(z − y)c2 ≥ 0,

where x , y, z are real numbers. If two of x , y, z are equal, then the inequality is
trivial. Otherwise, assume that x > y > z and write the inequality as

a2

y − z
+

c2

x − y
≥

b2

x − z
.



Cyclic Inequalities 275

Applying the Cauchy-Schwarz inequality, we get

a2

y − z
+

c2

x − y
≥

(a+ c)2

(y − z) + (x − y)
=
(a+ c)2

x − z
≥

b2

x − z
.

The equality holds for a = b = c.

(c) According to the inequality (b), it suffices to show that

9(ab+ bc + ca)(a2 + b2 + c2)≥ (a+ b+ c)4.

This is equivalent to
(A− B)(4B − A)≥ 0,

where
A= a2 + b2 + c2, B = ab+ bc + ca.

Since A≥ B and

4B − A> 2(ab+ bc + ca)− a2 − b2 − c2

= a(2b+ 2c − a)− (b− c)2

≥ a2 − (b− c)2

= (a− b+ c)(a+ b− c)≥ 0.

the conclusion follows. The equality holds for a = b = c.

P 1.190. If a, b, c are the lengths of the sides of a triangle, then

2
�

a2

b2
+

b2

c2
+

c2

a2

�

≥
b2

a2
+

c2

b2
+

a2

c2
+ 3.

Solution. Write the inequality as follows:

∑ a2

b2
≥ 3+

∑ b2

a2
−
∑ a2

b2
,

∑ b2

c2
≥ 3+

∑ c2

b2
−
∑ a2

b2
,

∑ b2

c2
≥
∑

�

1+
c2

b2
−

a2

b2

�

,

∑ b2

c2
≥ 2

∑ c
b

cos A.

Putting

x =
b
c

, y =
c
a

, z =
a
b

,
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we have x yz = 1 and

c
b
=

1
x
= yz,

a
c
=

1
y
= zx ,

b
a
=

1
z
= x y.

Therefore, we can write the inequality as

x2 + y2 + z2 ≥ 2yz cos A+ 2zx cos B + 2x y cos C ,

which is equivalent to the obvious inequality

(x − y cos C − z cos B)2 + (y sin C − z sin B)2 ≥ 0.

The equality occurs for a = b = c.

P 1.191. If a, b, c are the lengths of the sides of a triangle such that a < b < c, then

a2

a2 − b2
+

b2

b2 − c2
+

c2

c2 − a2
≤ 0.

(Vasile C., 2003)

Solution. Write the inequality as

a2

b2 − a2
+

b2

c2 − b2
≥

c2

c2 − a2
.

Since c ≤ a+ b, it suffices to show that

a2

b2 − a2
+

b2

c2 − b2
≥
(a+ b)2

c2 − a2
,

which is equivalent to

a2
�

1
b2 − a2

−
1

c2 − a2

�

+ b2
�

1
c2 − b2

−
1

c2 − a2

�

≥
2ab

c2 − a2
,

a2(c2 − b2)
b2 − a2

+
b2(b2 − a2)

c2 − b2
≥ 2ab,

�

a

√

√ c2 − b2

b2 − a2
− b

√

√ b2 − a2

c2 − b2

�2

≥ 0.

The equality occurs for a degenerate triangle with c = a + b and a = x b, where
x ≈ 0.53209 is the positive root of the equation x3 + 3x2 − 1= 0.
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P 1.192. If a, b, c are the lengths of the sides of a triangle, then

a
b
+

b
c
+

c
a
+ 3≥ 2

�

a+ b
b+ c

+
b+ c
c + a

+
c + a
a+ b

�

.

(Manlio Marangelli, 2008)

First Solution. Assume that c = max{a, b, c}. If a ≤ b ≤ c, then the inequality
follows from P 1.157. Consider further that

b ≤ a ≤ c.

Write the inequality as follows:

∑
�a

b
− 1

�

≥ 2
∑

�

b+ c
c + a

− 1
�

,

∑

(a− b)
�

1
b
+

2
c + a

�

≥ 0,

(a− b)
�

1
b
+

2
c + a

�

+ [(b− a) + (a− c)]
�

1
c
+

2
a+ b

�

+ (c − a)
�

1
a
+

2
b+ c

�

≥ 0,

(a− b)
�

1
b
+

2
c + a

−
1
c
−

2
a+ b

�

+ (c − a)
�

1
a
+

2
b+ c

−
1
c
−

2
a+ b

�

≥ 0,

(a− b)(c − b)
�

1
bc
−

2
(a+ b)(a+ c)

�

+ (c − a)2
�

1
ac
−

2
(a+ b)(b+ c)

�

≥ 0.

Since

1
bc
−

2
(a+ b)(a+ c)

=
c(a− b) + a(a+ b)

bc(a+ b)(a+ c)
≥

a(a+ b)
bc(a+ b)(a+ c)

=
a

bc(a+ c)

and

1
ac
−

2
(a+ b)(b+ c)

=
−c(a− b) + b(a+ b)

ac(a+ b)(b+ c)
>

−c(a− b)
ac(a+ b)(b+ c)

=
−(a− b)

a(a+ b)(b+ c)
,

it suffices to show that

(a− b)(c − b)a
bc(a+ c)

−
(c − a)2(a− b)
a(a+ b)(b+ c)

≥ 0,

which is true if
(c − b)a
bc(a+ c)

≥
(c − a)2

a(a+ b)(b+ c)
.

We can get this by multiplying the inequalities

c − b ≥ c − a,
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1
b
≥

1
a

,

1
c
≥

1
a+ b

,

a
a+ c

≥
c − a
b+ c

.

The last inequality is true since

a
a+ c

−
c − a
b+ c

≥
a

a+ c
−

b
b+ c

=
c(a− b)

(a+ c)(b+ c)
≥ 0.

The equality holds for a = b = c.

Second Solution (by Vo Quoc Ba Can). Since

∑ a+ b
b+ c

=
∑

�

1+
a− c
b+ c

�

= 3+
∑ a− c

b+ c
,

we can write the desired inequality as

∑ a
b
− 3≥ 2

∑ a− c
b+ c

.

Since

(ab+ bc + ca)
�
∑ a

b
− 3

�

=
∑

a2 − 2
∑

ab+
∑ a2c

b
and

(ab+ bc + ca)
∑ a− c

b+ c
= [a(b+ c) + bc]

∑ a− c
b+ c

=
∑

a2 −
∑

ab+
∑ bc(a− c)

b+ c
,

the inequality is equivalent to

∑ a2c
b
+ 2

∑ bc(c − a)
b+ c

≥
∑

a2.

Since
∑ a2c

b
≥
∑

a2

(see the inequality in P 1.188), we only need to show that

∑ bc(c − a)
b+ c

≥ 0.

Write this inequality as follows:
∑

bc(c2 − a2)(a+ b)≥ 0,
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∑

(c2 − a2)
�

1+
b
a

�

≥ 0,

∑

(c2 − a2)
b
a
≥ 0,

∑ bc2

a
≥
∑

ab.

According to P 1.188, we have

∑ bc2

a
≥
∑

a2 ≥
∑

ab.

P 1.193. Let a, b, c be the lengths of the sides of a triangle. If k ≥ 2, then

ak b(a− b) + bkc(b− c) + cka(c − a)≥ 0.

(Vasile C., 1986)

Solution (by Darij Grinberg). For k = 2, we get the known inequality (a) in P
1.189:

a2 b(a− b) + b2c(b− c) + c2a(c − a)≥ 0.

We will prove the following more general statement: if f is an increasing nonneg-
ative function defined on [0,∞), then

E(a, b, c)≥ 0,

where

E(a, b, c) = a2 b f (a)(a− b) + b2c f (b)(b− c) + c2a f (c)(c − a).

For f (x) = x k−2, k ≥ 2, we get the original inequality. In order to prove the claimed
generalization, assume that a =max{a, b, c}. There are two cases to consider.

Case 1: a ≥ b ≥ c. Since
f (a)≥ f (b)≥ f (c)≥ 0,

we have

E(a, b, c)≥ a2 b f (c)(a− b) + b2c f (c)(b− c) + c2a f (c)(c − a)

= f (c)[a2 b(a− b) + b2c(b− c) + c2a(c − a)]≥ 0.

Case 2: a ≥ c ≥ b. Since
f (a)≥ f (c)≥ f (b)≥ 0,
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we have

E(a, b, c)≥ a2 b f (a)(a− b) + b2c f (a)(b− c) + c2a f (a)(c − a)

= f (a)[a2 b(a− b) + b2c(b− c) + c2a(c − a)]≥ 0.

The equality holds for a = b = c, and also for a degenerate triangle with a = 0 and
b = c (or any cyclic permutation).

P 1.194. Let a, b, c be the lengths of the sides of a triangle. If k ≥ 1, then

3(ak+1 b+ bk+1c + ck+1a)≥ (a+ b+ c)(ak b+ bkc + cka).

Solution. For k = 1, the inequality is equivalent to

2(a2 b+ b2c + c2a)≥ ab2 + bc2 + ca2 + 3abc,

(2c − a)b2 + (2a2 − 3ac − c2)b− ac(a− 2c)≥ 0.

Assuming that a =min{a, b, c} and making the substitution

b = x +
a+ c

2
,

this inequality becomes

(2c − a)x2 +
�

x +
3a
4

�

(a− c)2 ≥ 0.

It is true since

4x + 3a = a+ 4b− 2c = 2(a+ b− c) + (2b− a)> 0.

In order to prove the desired inequality for k > 1, we rewrite it as

ak b(2a− b− c) + bkc(2b− c − a) + cka(2c − a− b)≥ 0.

We will prove that if f is an increasing nonnegative function defined on [0,∞),
then E(a, b, c)≥ 0, where

E(a, b, c) = ab(2a− b− c) f (a) + bc(2b− c − a) f (b) + ca(2c − a− b) f (c).

For f (x) = x k−1, k ≥ 1, we get the original inequality. In order to prove this
generalization, assume that a =max{a, b, c}. There are two cases to consider.
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Case 1: a ≥ b ≥ c. Since f (a)≥ f (b)≥ f (c)≥ 0, we have

E(a, b, c)≥ ab(2a− b− c) f (b) + bc(2b− c − a) f (b) + ca(2c − a− b) f (c)

= b[2(a− b)(a− c) + ab− c2] f (b) + ca(2c − a− b) f (c)

≥ b[2(a− b)(a− c) + ab− c2] f (c) + ca(2c − a− b) f (c)

= [2(a2 b+ b2c + c2a)− ab2 − bc2 − ca2 − 3abc] f (c)≥ 0.

Case 2: a ≥ c ≥ b. Since f (a)≥ f (c)≥ f (b)≥ 0, we have

E(a, b, c)≥ ab(2a− b− c) f (c) + bc(2b− c − a) f (b) + ca(2c − a− b) f (c)
= a[(c − b)(2c − a) + b(a− b)] f (c) + bc(2b− c − a) f (b).

Since
(c − b)(2c − a) + b(a− b)≥ (c − b)(b+ c − a) + b(a− b)≥ 0,

we get

E(a, b, c)≥ a[(c − b)(2c − a) + b(a− b)] f (b) + bc(2b− c − a) f (b)

= [2(a2 b+ b2c + c2a)− ab2 − bc2 − ca2 − 3abc] f (b)≥ 0.

The equality holds for a = b = c.

Remark. For k = 1, the inequality has the form

2
�

b
a
+

c
b
+

a
c

�

≥
a
b
+

b
c
+

c
a
+ 3.

A sharper inequality is the following

3
�

b
a
+

c
b
+

a
c

�

≥ 2
�

a
b
+

b
c
+

c
a

�

+ 3.

Using the substitution

b = x +
a+ c

2
,

this inequality turns into

(3c − 2a)x2 +
�

x + a−
c
4

�

(a− c)2 ≥ 0,

which is true since, on the assumption a =min{a, b, c}, we have 3c − 2a > 0 and

4x + 4a− c = 2a+ 4b− 3c = 3(a+ b− c) + (b− a)> 0.
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P 1.195. Let a, b, c, d be positive real numbers such that a+ b+ c+d = 4. Prove that

a
3+ b

+
b

3+ c
+

c
3+ d

+
d

3+ a
≥ 1.

Solution. By the Cauchy-Schwarz inequality, we have

∑ a
3+ b

≥

�∑

a
�2

∑

a(3+ b)
=

16
12+

∑

ab
.

Therefore, it suffices to show that

ab+ bc + cd + da ≤ 4.

Indeed,

ab+ bc + cd + da = (a+ c)(b+ d)≤
�

(a+ c) + (b+ d)
2

�2

= 2.

The equality occurs for a = b = c = d = 1.

P 1.196. Let a, b, c, d be positive real numbers such that a+ b+ c+d = 4. Prove that

a
1+ b2

+
b

1+ c2
+

c
1+ d2

+
d

1+ a2
≥ 2.

Solution. Since
a

1+ b2
= a−

ab2

1+ b2
,

the inequality is equivalent to

ab2

1+ b2
+

bc2

1+ c2
+

cd2

1+ d2
+

da2

1+ a2
≤ 2.

Since
ab2

1+ b2
≤

ab2

2b
=

ab
2

,

it suffices to show that
ab+ bc + cd + da ≤ 4.

Indeed, we have

ab+ bc + cd + da = (a+ c)(b+ d)≤
�

(a+ c) + (b+ d)
2

�2

= 2.

The equality occurs for a = b = c = d = 1.
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P 1.197. If a, b, c, d are nonnegative real numbers such that a+ b+ c + d = 4, then

a2 bc + b2cd + c2da+ d2ab ≤ 4.

(Song Yoon Kim, 2006)

Solution. Let (x , y, z, t) be a permutation of (a, b, c, d) such that

x ≥ y ≥ z ≥ t,

hence
x yz ≥ x y t ≥ xzt ≥ yzt.

By the rearrangement inequality, we have

a2 bc + b2cd + c2da+ d2ab = a · abc + b · bcd + c · cda+ d · dab
≤ x · x yz + y · x y t + z · xzt + t · yzt
= (x y + zt)(xz + y t).

Consequently, it suffices to show that x + y + z + t = 4 involves

(x y + zt)(xz + y t)≤ 4.

Indeed, by the AM-GM inequality, we have

(x y + zt)(xz + y t)≤
1
4
(x y + zt + xz + y t)2 =

1
4
(x + t)2(y + z)2 ≤ 4,

because

(x + t)(y + z)≤
1
4
(x + t + y + z)2 = 4.

The equality holds for a = b = c = d = 1, and also for a = 2, b = c = 1 and d = 0
(or any cyclic permutation).

P 1.198. If a, b, c, d are nonnegative real numbers such that a+ b+ c + d = 4, then

a(b+ c)2 + b(c + d)2 + c(d + a)2 + d(a+ b)2 ≤ 16.

Solution (by Vo Quoc Ba Can). Write the inequality as

(a+ b+ c + d)3 ≥ 4[a(b+ c)2 + b(c + d)2 + c(d + a)2 + d(a+ b)2].

Since
(a+ b+ c + d)2 ≥ 4(a+ b)(c + d),
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we have

(a+ b+ c + d)3 ≥ 4(a+ b)(c + d)(a+ b+ c + d)

= 4(c + d)(a+ b)2 + 4(a+ b)(c + d)2.

Therefore, it suffices to show that

(c + d)(a+ b)2 + (a+ b)(c + d)2 ≥ a(b+ c)2 + b(c + d)2 + c(d + a)2 + d(a+ b)2,

which is equivalent to

c(a+ b)2 + a(c + d)2 ≥ a(b+ c)2 + c(d + a)2,

a[(c + d)2 − (b+ c)2] + c[(a+ b)2 − (d + a)2]≥ 0,

(b+ d)(b− d)(c − a)≥ 0.

Similarly, due to cyclicity, the desired in equality is true if

(c + a)(c − a)(d − b)≥ 0.

Since one of the inequalities (b − d)(c − a) ≥ 0 and (c − a)(d − b) ≥ 0 is true, the
conclusion follows. The equality holds for a = c and b = d.

P 1.199. If a, b, c, d are positive real numbers, then

a− b
b+ c

+
b− c
c + d

+
c − d
d + a

+
d − a
a+ b

≥ 0.

Solution. We have
a− b
b+ c

+
c − d
d + a

+ 2=
a+ c
b+ c

+
a+ c
d + a

= (a+ c)
�

1
b+ c

+
1

d + a

�

≥ (a+ c)
4

(b+ c) + (d + a)

=
4(a+ c)

a+ b+ c + d
.

Similarly,
b− c
c + d

+
d − a
a+ b

+ 2≥
4(b+ d)

a+ b+ c + d
.

Adding these inequalities yields the desired inequality. The equality holds for a = c
and b = d.

Conjecture. If a, b, c, d, e are positive real numbers, then

a− b
b+ c

+
b− c
c + d

+
c − d
d + e

+
d − e
e+ a

+
e− a
a+ b

≥ 0.
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P 1.200. If a, b, c, d are positive real numbers, then

(a)
a− b

a+ 2b+ c
+

b− c
b+ 2c + d

+
c − d

c + 2d + a
+

d − a
d + 2a+ b

≥ 0;

(b)
a

2a+ b+ c
+

b
2b+ c + d

+
c

2c + d + a
+

d
2d + a+ b

≤ 1.

Solution. (a) Write the inequality as

∑

�

a− b
a+ 2b+ c

+
1
2

�

≥ 2,

∑ 3a+ c
a+ 2b+ c

≥ 4.

By the Cauchy-Schwarz inequality, we get

∑ 3a+ c
a+ 2b+ c

≥

�∑

(3a+ c)
�2

∑

(3a+ c)(a+ 2b+ c)

=
16
�∑

a
�2

4
�∑

a2 + 2
∑

ab+
∑

ac
�

=
4
�∑

a
�2

�∑

a
�2 = 4.

The equality holds for a = b = c = d.

(b) Write the inequality as

∑

�

1
2
−

a
2a+ b+ c

�

≥ 1,

∑ b+ c
2a+ b+ c

≥ 2.

By the Cauchy-Schwarz inequality, we get

∑ b+ c
2a+ b+ c

≥

�∑

(b+ c)
�2

∑

(b+ c)(2a+ b+ c)

=
4
�∑

a
�2

2
�∑

a2 + 2
∑

ab+
∑

ac
�

=
2
�∑

a
�2

�∑

a
�2 = 2.
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The equality holds for a = b = c = d.

Conjecture 1. If a, b, c, d, e are positive real numbers, then

a− b
a+ 2b+ c

+
b− c

b+ 2c + d
+

c − d
c + 2d + e

+
d − e

d + 2e+ a
+

e− a
e+ 2a+ b

≥ 0.

Conjecture 2 (by Ando). If a1, a2, . . . , an (n≥ 4) are positive real numbers, then

a1

(n− 2)a1 + a2 + a3
+

a2

(n− 2)a2 + a3 + a4
+ · · ·+

an

(n− 2)an + a1 + a2
≤ 1.

P 1.201. If a, b, c, d are positive real numbers such that abcd = 1, then

1
a(a+ b)

+
1

b(b+ c)
+

1
c(c + d)

+
1

d(d + a)
≥ 2.

(Vasile C., 2007)

Solution. Making the substitution

a =
s

y
x

, b =
√

√ z
y

, c =
s

t
z

, d =
s

x
t

,

where x , y, z, t are positive real numbers, the inequality can be rewritten as

x
y +
p

xz
+

y
z +
p

y t
+

z
t +
p

zx
+

t
x +
p

t y
≥ 2.

Since
2
p

xz ≤ x + z, 2
p

y t ≤ y + t,

it suffices to show that

x
x + 2y + z

+
y

y + 2z + t
+

z
z + 2t + x

+
t

t + 2x + y
≥ 1.

By the Cauchy-Schwarz inequality, we have

∑ x
z + 2y + z

≥

�∑

x
�2

∑

x(x + 2y + z)
=

�∑

x
�2

∑

x2 + 2
∑

x y +
∑

xz
= 1.

The equality holds for a = c =
1
b
=

1
d

.
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Conjecture 1. If a1, a2, . . . , an are positive real numbers such that a1a2 · · · an = 1,
then

1
a2

1 + a1a2
+

1
a2

2 + a2a3
+ · · ·+

1
a2

n + ana1
≥

n
2

.

Conjecture 2. If a1, a2, . . . , an are positive real numbers, then

1
a2

1 + a1a2
+

1
a2

2 + a2a3
+ · · ·+

1
a2

n + ana1
≥

n2

2(a1a2 + a2a3 + · · ·+ ana1)
.

Remark 1. Using the substitution

a1 =
x2

x1
, a2 =

x3

x2
, . . . , an =

x1

xn
,

the inequality in Conjecture 1 becomes

x2
1

x2
2 + x1 x3

+
x2

2

x2
3 + x2 x4

+ · · ·+
x2

n

x2
1 + xn x2

≥
n
2

,

where x1, x2, . . . , xn > 0. This cyclic inequality is like Shapiro’s inequality

x1

x2 + x3
+

x2

x3 + x4
+ · · ·+

xn

x1 + x2
≥

n
2

,

which is true for even n≤ 12 and for odd n≤ 23.

Remark 2. By the AM-GM inequality, we have

a1a2 + a2a3 + · · ·+ ana1 ≥ n n
q

a2
1a2

2 · · · a2
n.

Thus, the inequality in Conjecture 2 is weaker than the inequality in Conjecture 1.
Therefore, if Conjecture 1 is true, then Conjecture 2 is also true.

P 1.202. If a, b, c, d are positive real numbers, then

1
a(1+ b)

+
1

b(1+ c)
+

1
c(1+ d)

+
1

d(1+ a)
≥

16

1+ 8
p

abcd
.

(Pham Kim Hung, 2007)

Solution. Let p = 4pabcd. Putting

a = p
x2

x1
, b = p

x3

x2
, c = p

x4

x3
, d = p

x1

x4
,
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where x1, x2, x3, x4 are positive real numbers, the inequality turns into

∑ x1

x2 + px3
≥

16p
1+ 8p2

.

By the Cauchy-Schwarz inequality, we have

∑ x1

x2 + px3
≥

�∑

x1

�2

∑

x1(x2 + px3)
=

�∑

x1

�2

(x1 + x3)(x2 + x4) + 2p(x1 x3 + x2 x4)
.

Since

x1 x3 + x2 x4 ≤
� x1 + x3

2

�2

+
� x2 + x4

2

�2

,

it suffices to show that

(A+ B)2

2AB + p(A2 + B2)
≥

8p
1+ 8p2

,

where
A= x1 + x3, B = x2 + x4.

This inequality is equivalent to

A2 + B2 + 2(8p2 − 8p+ 1)AB ≥ 0,

which is true because

A2 + B2 + 2(8p2 − 8p+ 1)AB ≥ 2AB + 2(8p2 − 8p+ 1)AB

= 4(2p− 1)2AB ≥ 0.

The equality holds for a = b = c = d =
1
2

.

P 1.203. If a, b, c, d are nonnegative real numbers such that a2 + b2 + c2 + d2 = 4,
then

(a) 3(a+ b+ c + d)≥ 2(ab+ bc + cd + da) + 4;

(b) a+ b+ c + d − 4≥ (2−
p

2)(ab+ bc + cd + da− 4).

(Vasile C., 2006)
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Solution. Let p = a+ b+ c + d. By the Cauchy-Schwarz inequality

(1+ 1+ 1+ 1)(a2 + b2 + c2 + d2)≥ (a+ b+ c + d)2,

we get p ≤ 4, and by the inequality

(a+ b+ c + d)2 ≥ a2 + b2 + c2 + d2,

we get p ≥ 2. In addition, we have

ab+ bc + cd + da = (a+ c)(b+ d)≤
(a+ c + b+ d)2

4
=

p2

4
.

(a) It suffices to show that

3p ≥
p2

2
+ 4.

Indeed,

3p−
p2

2
− 4=

(4− p)(p− 2)
2

≥ 0.

The equality holds for a = b = c = d = 1.

(b) It suffices to show that

p− 4≥ (2−
p

2)

�

p2

4
− 4

�

.

This inequality is equivalent to

(4− p)(p− 2
p

2)≥ 0,

which is true for p ≥ 2
p

2. So, it remains to consider the case 2≤ p < 2
p

2. Since

2(ab+ bc + cd + da)≤ (a+ b+ c + d)2 − (a2 + b2 + c2 + d2) = p2 − 4,

it is enough to prove that

p− 4≥ (2−
p

2 )

�

p2 − 4
2
− 4

�

.

Write this inequality as

(2+
p

2 )(p− 4)≥ p2 − 12,

(2
p

2− p)(p− 2+
p

2 )≥ 0.

The equality holds for a = b = c = d = 1, and also for a = b = 0 and c = d =
p

2
(or any cyclic permutation).
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P 1.204. Let a, b, c, d be positive real numbers.

(a) If a, b, c, d ≥ 1, then
�

a+
1
b

��

b+
1
c

��

c +
1
d

��

d +
1
a

�

≥ (a+ b+ c + d)
�

1
a
+

1
b
+

1
c
+

1
d

�

;

(b) If abcd = 1, then
�

a+
1
b

��

b+
1
c

��

c +
1
d

��

d +
1
a

�

≤ (a+ b+ c + d)
�

1
a
+

1
b
+

1
c
+

1
d

�

.

(Vasile Cîrtoaje and Ji Chen, 2011)

Solution. Let

A=(1+ ab)(1+ bc)(1+ cd)(1+ da)

=1+
∑

ab+
∑

a2 bd + 2abcd + abcd
∑

ab+ a2 b2c2d2

=(1− abcd)2 + 4abcd + (1+ abcd)
∑

ab+
∑

a2 bd

=(1− abcd)2 + 4abcd + (1+ abcd)(a+ c)(b+ d) +
∑

a2 bd

and

B =(a+ b+ c + d)(abc + bcd + cda+ dab)

=4abcd +
∑

a2(bc + cd + d b)

=4abcd +
∑

a2c(b+ d) +
∑

a2 bd

=4abcd + (ac + bd)(a+ c)(b+ d) +
∑

a2 bd.

Thus,

A− B = (1− abcd)2 + (1+ abcd)(a+ c)(b+ d)− (ac + bd)(a+ c)(b+ d)

= (1− abcd)2 + (1− ac)(1− bd)(a+ c)(b+ d).

(a) The inequality A≥ B is clearly true for a, b, c, d ≥ 1. The equality holds for
a = b = c = d = 1.

(b) For abcd = 1, we have

B − A=
1
ac
(1− ac)2(a+ c)(b+ d)≥ 0.

The equality holds for ac = bd = 1.
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P 1.205. If a, b, c, d are positive real numbers, then

�

1+
a

a+ b

�2
+
�

1+
b

b+ c

�2

+
�

1+
c

c + d

�2
+
�

1+
d

d + a

�2

> 7.

(Vasile C., 2012)

First Solution. Assume that d = max{a, b, c, d}. We get the desired inequality by
summing the inequalities

�

1+
a

a+ b

�2
+
�

1+
b

b+ c

�2

+
�

1+
c

c + a

�2
> 6

and
�

1+
c

c + d

�2
+
�

1+
d

d + a

�2

> 1+
�

1+
c

c + a

�2
.

Let

x =
a− b
a+ b

, y =
b− c
b+ c

, z =
c − a
c + a

.

We have −1< x , y, z < 1 and

x + y + z + x yz = 0.

Since
a

a+ b
=

x + 1
2

,
b

b+ c
=

y + 1
2

,
c

c + a
=

z + 1
2

,

we can write the first inequality as follows:

(x + 3)2 + (y + 3)2 + (z + 3)2 > 24,

x2 + y2 + z2 + 6(x + y + z) + 3> 0,

x2 + y2 + z2 + 3> 6x yz.

By the AM-GM inequality, we have

x2 + y2 + z2 + 3≥ 6 6
p

x2 y2z2 > 6x yz.

Write now the second inequality as
�

1+
c

c + d

�2
− 1>

�

c
c + a

−
d

d + a

��

2+
c

c + a
+

d
d + a

�

.

Since
c

c + a
−

d
d + a

=
a(c − d)

(c + a)(d + a)
≤ 0,

we have
�

1+
c

c + d

�2
− 1> 0≥

�

c
c + a

−
d

d + a

��

2+
c

c + a
+

d
d + a

�

.
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Second Solution. Using the inequality

(1+ x)2 > 1+ 3x2, 0< x < 1,

we have

�

1+
a

a+ b

�2
+
�

1+
b

b+ c

�2

+
�

1+
c

c + d

�2
+
�

1+
d

d + a

�2

>

> 4+ 3

�

� a
a+ b

�2
+
�

b
b+ c

�2

+
� c

c + d

�2
+
�

d
d + a

�2
�

.

Therefore, it suffices to prove that

� a
a+ b

�2
+
�

b
b+ c

�2

+
� c

c + d

�2
+
�

d
d + a

�2

≥ 1,

which is equivalent to the known inequality in P 1.191 from Volume 2:

1
(1+ x)2

+
1

(1+ y)2
+

1
(1+ z)2

+
1

(1+ t)2
≥ 1,

where

x =
a
b

, y =
b
c

, z =
c
d

, t =
d
a

, x yzt = 1.

P 1.206. If a, b, c, d are positive real numbers, then

a2 − bd
b+ 2c + d

+
b2 − ca

c + 2d + a
+

c2 − d b
d + 2a+ b

+
d2 − ac

a+ 2b+ c
≥ 0.

(Vo Quoc Ba Can, 2009)

Solution. Write the inequality as follows:

∑

�

4a2 − 4bd
b+ 2c + d

+ b+ d − 2a
�

≥ 0,

∑ (b− d)2 + 2(a− c)(2a− b− d)
b+ 2c + d

≥ 0.

It suffices to show that

∑ (a− c)(2a− b− d)
b+ 2c + d

≥ 0.
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This inequality is equivalent to

(a− c)
�

2a− b− d
b+ 2c + d

−
2c − d − b
d + 2a+ b

�

+ (b− d)
�

2b− c − a
c + 2d + a

−
2d − a− c
a+ 2b+ c

�

≥ 0,

which can be written as

(a− c)(a2 − c2)
(b+ 2c + d)(d + 2a+ b)

+
(b− d)(b2 − d2)

(c + 2d + a)(a+ 2b+ c)
≥ 0.

The equality occurs for a = c and b = d.

P 1.207. If a, b, c, d are positive real numbers such that a ≤ b ≤ c ≤ d, then
√

√ 2a
a+ b

+

√

√ 2b
b+ c

+

√

√ 2c
c + d

+

√

√ 2d
d + a

≤ 4.

(Vasile C., 2009)

Solution. According to the inequality in P 1.74, we have
√

√ 2a
a+ b

+

√

√ 2b
b+ c

+

√

√ 2c
c + a

≤ 3.

Therefore, it suffices to show that
√

√ 2c
c + d

+

√

√ 2d
d + a

≤ 1+

√

√ 2c
c + a

.

By squaring, this inequality becomes

2c
c + d

+
2d

d + a
+ 2

√

√ 4cd
(c + d)(d + a)

≤ 1+
2c

c + a
+ 2

√

√ 2c
c + a

.

We can get it by summing the inequalities

2c
c + d

+
2d

d + a
≤ 1+

2c
c + a

,

2

√

√ 4cd
(c + d)(d + a)

≤ 2

√

√ 2c
c + a

.

The former inequality is true since

2c
c + d

+
2d

d + a
− 1−

2c
c + a

=
(a− d)(d − c)(c − a)
(c + d)(d + a)(a+ c)

≤ 0,

while the second inequality reduces to

c(a− d)(d − c)≤ 0.

The equality holds for a = b = c = d.
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P 1.208. Let a, b, c, d be nonnegative real numbers, and let

x =
a

b+ c
, y =

b
c + d

, z =
c

d + a
, t =

d
a+ b

.

Prove that

(a)
p

xz +
p

y t ≤ 1;

(b) x + y + z + t + 4(xz + y t)≥ 4.

(Vasile C., 2004)

Solution. (a) Using the Cauchy-Schwarz inequality, we have

p
xz +

p

y t =
p

ac
p

(b+ c)(d + a)
+

p
bd

p

(c + d)(a+ b)

≤
p

ac
p

ac +
p

bd
+

p
bd

p
ac +

p
bd
= 1.

The equality holds for a = b = c = d, for a = c = 0, and for b = d = 0

(b) Write the inequality as
A+ B ≥ 6,

where

A= x + z + 4xz + 1=
(a+ b)(c + d) + (a+ c)2 + ab+ 2ac + cd

(b+ c)(d + a)

=
(a+ b)(c + d)
(b+ c)(d + a)

+
(a+ c)2

(b+ c)(d + a)
+

a
d + a

+
c

b+ c
,

B = y + t + 4y t + 1=
(b+ c)(d + a)
(c + d)(a+ b)

+
(b+ d)2

(c + d)(a+ b)
+

b
a+ b

+
d

c + d
.

Since
(a+ b)(c + d)
(b+ c)(d + a)

+
(b+ c)(d + a)
(c + d)(a+ b)

≥ 2,

it suffices to show that

(a+ c)2

(b+ c)(d + a)
+

(b+ d)2

(c + d)(a+ b)
+
∑ a

d + a
≥ 4.

By the Cauchy-Schwarz inequality, we have

(a+ c)2

(b+ c)(d + a)
+

(b+ d)2

(c + d)(a+ b)
≥
(a+ b+ c + d)2

C
,

∑ a
d + a

≥
(a+ b+ c + d)2

D
,
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where
C = (b+ c)(d + a) + (c + d)(a+ b),

D =
∑

a(d + a) = a2 + b2 + c2 + d2 + ab+ bc + cd + da,

C + D = (a+ b+ c + d)2.

Thus, it is enough to show that

(C + D)
�

1
C
+

1
D

�

≥ 4,

which is clearly true. The equality holds for a = b = c = d.

P 1.209. If a, b, c, d are nonnegative real numbers, then
�

1+
2a

b+ c

��

1+
2b

c + d

��

1+
2c

d + a

��

1+
2d

a+ b

�

≥ 9.

(Vasile C., 2004)

Solution. We can rewrite the inequality as

�

1+
a+ c
a+ b

��

1+
a+ c
c + d

�

�

1+
b+ d
b+ c

��

1+
b+ d
d + a

�

≥ 9.

Using the Cauchy-Schwarz inequality and the AM-GM inequality yields

�

1+
a+ c
a+ b

��

1+
a+ c
c + d

�

≥
�

1+
a+ c

p

(a+ b)(c + d)

�2

≥
�

1+
2a+ 2c

a+ b+ c + d

�2

,

�

1+
b+ d
b+ c

��

1+
b+ d
d + a

�

≥
�

1+
b+ d

p

(b+ c)(d + a)

�2

≥
�

1+
2b+ 2d

a+ b+ c + d

�2

.

Thus, it suffices to show that
�

1+
2a+ 2c

a+ b+ c + d

��

1+
2b+ 2d

a+ b+ c + d

�

≥ 3.

This is equivalent to the obvious inequality

4(a+ c)(b+ d)
(a+ b+ c + d)2

≥ 0.

The equality holds for a = c = 0 and b = d, as well as for b = d = 0 and a = c.
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P 1.210. Let a, b, c, d be nonnegative real numbers. If k > 0, then
�

1+
ka

b+ c

��

1+
kb

c + d

��

1+
kc

d + a

��

1+
kd

a+ b

�

≥ (1+ k)2.

(Vasile C., 2004)

Solution. Let us denote

x =
a

b+ c
, y =

b
c + d

, z =
c

d + a
, t =

d
a+ b

.

Since
∏

(1+ kx)≥ 1+ k(x + y + z + t) + k2(x y + yz + zt + t x + xz + y t),

it suffices to show that
x + y + z + t ≥ 2

and
x y + yz + zt + t x + xz + y t ≥ 1.

The inequality x+ y+z+ t ≥ 2 is the well-known Shapiro’s inequality for 4 positive
real numbers. This can be proved by the Cauchy-Schwarz inequality, as follows:

a
b+ c

+
b

c + d
+

c
d + a

+
d

a+ b
≥

(a+ b+ c + d)2

a(b+ c) + b(c + d) + c(d + a) + d(a+ b)
≥ 2.

The right inequality reduces to the obvious inequality

(a− c)2 + (b− d)2 ≥ 0.

To prove the inequality x y+ yz+zt+ t x+ xz+ y t ≥ 1, we will use the inequalities

x + z
2
≥ xz,

y + t
2
≥ y t,

and the identity
xz(1+ y + t) + y t(1+ x + z) = 1.

If these are true, then

x y + yz + zt + t x + xz + y t =
x + z

2
(y + t) +

y + t
2
(x + z) + xz + y t

≥ xz(y + t) + y t(x + z) + xz + y t
= xz(1+ y + t) + y t(1+ x + z) = 1.
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We have
x + z

2
− xz =

bc + da+ (a− c)2

2(b+ c)(d + a)
≥ 0

and
y + t

2
− y t =

ab+ cd + (b− d)2

2(a+ b)(c + d)
≥ 0.

To prove the identity above, we rewrite it as
∑

x yz + xz + y t = 1,

and see that
∑

x yz =

∑

abc(a+ b)
A

=

∑

a2 bc +
∑

a2 bd
A

and

xz + y t =
ac(a+ b)(c + d) + bd(b+ c)(d + a)

A
=

∑

a2cd + (ac + bd)2

A
,

where

A=
∏

(a+ b) =
∑

a2 bc +
∑

a2 bd +
∑

a2cd + (ac + bd)2.

Thus, the proof is completed. The equality holds for a = c = 0 and b = d, as well
as for b = d = 0 and a = c.

Remark. For k = 2, we get the inequality in P 1.209. For k = 1, we get the
following known inequality

(a+ b+ c)(b+ c + d)(c + d + a)(d + a+ b)≥ 4(a+ b)(b+ c)(c + d)(d + a).

A proof of this inequality starts from the inequalities

(a+ b+ c)2 ≥ (2a+ b)(2c + b)

and
(2a+ b)(2b+ a)≥ 2(a+ b)2.

We have
∏

(a+ b+ c)2 ≥
∏

(2a+ b) ·
∏

(2c + b)

=
∏

(2a+ b)(2b+ a)

≥ 24
∏

(a+ b)2,

hence
∏

(a+ b+ c)≥ 4
∏

(a+ b).
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P 1.211. If a, b, c, d are positive real numbers such that a+ b+ c + d = 4, then

1
ab
+

1
bc
+

1
cd
+

1
da
≥ a2 + b2 + c2 + d2.

(Vasile C., 2007)

Solution. Write the inequality as

(a+ c)(b+ d)≥ abcd(a2 + b2 + c2 + d2).

From (a− c)4 ≥ 0 and (b− d)4 ≥ 0, we get

(a+ c)4 ≥ 8ac(a2 + c2), (b+ d)4 ≥ 8bd(b2 + d2),

hence
bd(a+ c)4 + ac(b+ d)4 ≥ 8abcd(a2 + b2 + c2 + d2).

Therefore, it suffices to show that

8(a+ c)(b+ d)≥ bd(a+ c)4 + ac(b+ d)4.

Since 4bd ≤ (b+ d)2 and 4ac ≤ (a+ c)2, we only need to show that

32(a+ c)(b+ d)≥ (b+ d)2(a+ c)4 + (a+ c)2(b+ d)4.

This inequality is true if
32≥ x y(x2 + y2)

for all positive x , y satisfying x + y = 4. Indeed,

8[32− x y(x2 + y2)] = (x + y)4 − 8x y(x2 + y2) = (x − y)4 ≥ 0.

The equality occurs for a = b = c = d = 1.

P 1.212. If a, b, c, d are positive real numbers, then

a2

(a+ b+ c)2
+

b2

(b+ c + d)2
+

c2

(c + d + a)2
+

d2

(d + a+ b)2
≥

4
9

.

(Pham Kim Hung, 2006)

First Solution. By Hölder’s inequality, we have

∑ a2

(a+ b+ c)2
≥

�∑

a4/3
�3

�∑

a(a+ b+ c)
�2 .
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Since
∑

a(a+ b+ c) = (a+ c)2 + (b+ d)2 + (a+ c)(b+ d)

and

∑

a4/3 =
�

a4/3 + c4/3
�

+
�

b4/3 + d4/3
�

≥ 2
�a+ c

2

�4/3

+ 2
�

b+ d
2

�4/3

,

it suffices to show that

9
�

(a+ c)4/3 + (b+ d)4/3
�3
≥ 8[(a+ c)2 + (b+ d)2 + (a+ c)(b+ d)]2.

Due to homogeneity, we may assume that b+ d = 1. Putting a+ c = t3, t > 0, the
inequality becomes

9(t4 + 1)3 ≥ 8(t6 + 1+ t3)2,

9
�

t2 +
1
t2

�3

≥ 8
�

t3 +
1
t3
+ 1

�2

.

Setting

x = t +
1
t

, x ≥ 2,

the inequality turns into

9(x2 − 2)3 ≥ 8(x3 − 3x + 1)2,

which is equivalent to

(x − 2)2(x4 + 4x3 + 6x2 − 8x − 20)≥ 0.

This is true since

x4 + 4x3 + 6x2 − 8x − 20= x4 + 4x2(x − 2) + 4x(x − 2) + 10(x2 − 2)> 0.

Thus, the proof is completed. The equality holds for a = b = c = d.

Second Solution. Due to homogeneity, we may assume that

a+ b+ c + d = 1.

In this case, we write the inequality as

� a
1− d

�2
+
�

b
1− a

�2

+
� c

1− b

�2
+
�

d
1− c

�2

≥
4
9

.

Let (x , y, z, t) be a permutation of (a, b, c, d) such that

x ≥ y ≥ z ≥ t.
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Since
1

(1− t)2
≤

1
(1− z)2

≤
1

(1− y)2
≤

1
(1− x)2

,

by the rearrangement inequality, we have

� x
1− t

�2
+
� y

1− z

�2
+
�

z
1− y

�2

+
� t

1− x

�2

≤

≤
� a

1− d

�2
+
�

b
1− a

�2

+
� c

1− b

�2
+
�

d
1− c

�2

.

Therefore, it suffices to show that x + y + z + t = 1 involves

U + V ≥
4
9

,

where

U =
� x

1− t

�2
+
� t

1− x

�2

,

V =
� y

1− z

�2
+
�

z
1− y

�2

.

Let
s = x + t, p = x t, s ∈ (0,1),

Since

x2 + t2 = s2 − 2p, x3 + t3 = s3 − 3ps, x4 + t4 = s4 − 4ps2 + 2p2,

we get

U =
x2 + t2 − 2(x3 + t3) + x4 + t4

(1− s+ p)2

=
2p2 − 2(1− s)(1− 2s)p+ s2(1− s)2

p2 + 2(1− s)p+ (1− s)2
,

(2− U)p2 − 2(1− s)(1− 2s+ U)p+ (1− s)2(s2 − U) = 0.

The quadratic trinomial in p has the discriminant

D = (1− s)2[(1− 2s+ U)2 − (2− U)(s2 − U)].

From the necessary condition D ≥ 0, we get

U ≥
4s− 1− 2s2

(2− s)2
.

Analogously,

V ≥
4r − 1− 2r2

(2− r)2
,
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where r = y + z. Taking into account that

s+ r = 1,

we get

U + V ≥
4s− 1− 2s2

(2− s)2
+

4r − 1− 2r2

(2− r)2

=
4s− 1− 2s2

(1+ r)2
+

4r − 1− 2r2

(1+ s)2

=
5(s2 + r2)− 2(s4 + r4)

(2+ sr)2

=
5(s2 + r2)− 2(s2 + r2)2 + 4s2r2

(2+ sr)2
,

hence

U + V −
4
9
≥

5(s2 + r2)− 2(s2 + r2)2 + 4s2r2

(2+ sr)2
−

4
9

=
5(s2 + r2)− 2(s2 + r2)2

(2+ sr)2
+

2(1− 4sr)2 − 18
9(2+ sr)2

≥
5(s2 + r2)− 2(s2 + r2)2 − 2

(2+ sr)2

=
(2− s2 − r2)(2s2 + 2r2 − 1)

(2+ sr)2
.

Thus, we need to show that (2− s2− r2)(2s2+2r2−1)≥ 0. This is true since since

2− s2 − r2 > 2− (s+ r)2 = 1,

2s2 + 2r2 − 1≥ (s+ r)2 − 1= 0.

P 1.213. If a, b, c, d are positive real numbers such that a+ b+ c + d = 3, then

ab(b+ c) + bc(c + d) + cd(d + a) + da(a+ b)≤ 4.

(Pham Kim Hung, 2007)

Solution. Write the inequality as
∑

ab2 +
∑

abc ≤ 4,

(ab2 + cd2 + bcd + dab) + (bc2 + da2 + abc + cda)≤ 4,
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(b+ d)(ab+ cd) + (a+ c)(bc + da)≤ 4.

Without loss of generality, assume that a+ c ≤ b+ d. Since

(ab+ cd) + (bc + da) = (a+ c)(b+ d),

we can rewrite the inequality as

(a+ c)(b+ d)2 + (a+ c − b− d)(bc + da)≤ 4.

Since a+ c − b− d ≤ 0, it suffices to show that

(a+ c)(b+ d)2 ≤ 4.

Indeed, by the AM-GM inequality, we have

(a+ c)
�

b+ d
2

��

b+ d
2

�

≤
1
27

�

a+ c +
b+ d

2
+

b+ d
2

�3

= 1.

The equality holds for a = b = 0, c = 1 and d = 2 (or any cyclic permutation).

P 1.214. If a ≥ b ≥ c ≥ d ≥ 0 and a+ b+ c + d = 2, then

ab(b+ c) + bc(c + d) + cd(d + a) + da(a+ b)≤ 1.

(Vasile C., 2007)

Solution. Write the inequality as
∑

ab2 +
∑

abc ≤ 1.

Since
∑

ab2−
∑

a2 b = (ab2+bc2+ca2−a2 b−b2c−c2a)+(cd2+da2+ac2−c2d−d2a−a2c)

= (a− b)(b− c)(c − a) + (c − d)(d − a)(a− c)≤ 0,

it suffices to show that
∑

ab2 +
∑

a2 b+ 2
∑

abc ≤ 2.

Indeed,
∑

ab2 +
∑

a2 b+ 2
∑

abc =
∑

(ab2 + a2 b+ abc + abd)

= (a+ b+ c + d)
∑

ab

= 2(a+ c)(b+ d)

≤ 2
�

(a+ c) + (b+ d)
2

�2

= 2.

The equality holds for a = b = t and c = d = 1− t, where t ∈
�

1
2

, 1
�

.
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P 1.215. Let a, b, c, d be nonnegative real numbers such that a + b + c + d = 4. If

k ≥
37
27

, then

ab(b+ kc) + bc(c + kd) + cd(d + ka) + da(a+ kb)≤ 4(1+ k).

(Vasile C., 2007)

Solution. Write the inequality in the homogeneous form

ab(b+ kc) + bc(c + kd) + cd(d + ka) + da(a+ kb)≤
(1+ k)(a+ b+ c + d)3

16
.

Assume that d =min{a, b, c, d} and use the substitution

a = d + x , b = d + y, c = d + z,

where x , y, z ≥ 0. The inequality can be restated as

4Ad + B ≥ 0,

where
A= (3k− 1)(x2 + y2 + z2)− 2(k+ 1)y(x + z) + (6− 2k)xz,

B = (1+ k)(x + y + z)3 − 16(x y2 + yz2 + kx yz).

It suffices to show that A≥ 0 and B ≥ 0. We have

A= (3k− 1)y2 + (3k− 1)(x + z)2 − 2(k+ 1)y(x + z)− 8(k− 1)xz

≥ (3k− 1)y2 + (3k− 1)(x + z)2 − 2(k+ 1)y(x + z)− 2(k− 1)(x + z)2

= (3k− 1)y2 + (k+ 1)(x + z)2 − 2(k+ 1)y(x + z)

≥ 2
Æ

(3k− 1)(k+ 1)y(x + z)− 2(k+ 1)y(x + z)

= 2
p

k+ 1
�p

3k− 1−
p

k+ 1
�

y(x + z)≥ 0.

Since
(x + y + z)3 − 16x yz ≥ 0,

the inequality B ≥ 0 holds for all k ≥
37
27

if it holds for k =
37
27

. In this particular

case, the inequality B ≥ 0 can be written as

4
� x + y + z

3

�3

≥ x y2 + yz2 +
37
27

x yz.

Actually, the following sharper inequality holds (see P 2.31)

4
� x + y + z

3

�3

≥ x y2 + yz2 +
3
2

x yz.

Thus, the proof is completed. The equality holds for a = b = c = d = 1. If

k =
37
27

, then the equality holds also for a =
4
3

, b =
8
3

and c = d = 0 (or any cyclic

permutation).
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P 1.216. If a, b, c, d are nonnegative real numbers such that a+ b+ c + d = 4, then
√

√ 3a
b+ 2

+

√

√ 3b
c + 2

+

√

√ 3c
d + 2

+

√

√ 3d
a+ 2

≤ 4.

(Vasile Cîrtoaje, 2020)

Solution. (after an idea of Michael Rozenberg) Let (a1, a2, a3, a4) be an increasing
permutation of (a, b, c, d). Since the sequences

(a1, a2, a3, a4) and
�

1
a4 + 2

,
1

a3 + 2
,

1
a2 + 2

,
1

a1 + 2

�

are increasing, according to the rearrangement inequality, we have
√

√ 3a
b+ 2

+

√

√ 3b
c + 2

+

√

√ 3c
d + 2

+

√

√ 3d
a+ 2

≤

≤
√

√ 3a1

a4 + 2
+

√

√ 3a2

a3 + 2
+

√

√ 3a3

a2 + 2
+

√

√ 3a4

a1 + 2
= A+ B,

where

A=

√

√ 3a1

a4 + 2
+

√

√ 3a4

a1 + 2
, B =

√

√ 3a2

a3 + 2
++

√

√ 3a3

a2 + 2
.

We need to show that A+ B ≤ 2. According to Lemma below, we have

A+ B ≤
a1 + a4 + 4

3
+

a2 + a3 + 4
3

= 4.

The equality holds for a = b = c = d = 1.

Lemma. If a, b are nonnegative real numbers, then
√

√ 3a
b+ 2

+

√

√ 3b
a+ 2

≤
a+ b+ 4

3
.

Proof. Use the substitution

x =

√

√ 3a
b+ 2

, y =

√

√ 3b
a+ 2

,

which yields x y < 3 and

a =
2x2(y2 + 3)

9− x2 y2
, b =

2y2(x2 + 3)
9− x2 y2

, a+ b =
4x2 y2 + 6(x2 + y2)

9− x2 y2
.

Thus, we need to show that

3(x + y)≤
4x2 y2 + 6(x2 + y2)

9− x2 y2
+ 4,
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which is equivalent to

2(x + y)2 − (9− x2 y2)(x + y) + 12− 4x y ≥ 0,
�

4x + 4y − 9+ x2 y2
�2
+ 15− 32x y + 18x2 y2 − x4 y4 ≥ 0,

�

4x + 4y − 9+ x2 y2
�2
+ (1− x y)2(3− x y)(5+ x y)≥ 0.

The equality holds for a = b = 1.

P 1.217. Let a, b, c, d be positive real numbers such that a ≤ b ≤ c ≤ d. Prove that

2
�

a
b
+

b
c
+

c
d
+

d
a

�

≥ 4+
a
c
+

c
a
+

b
d
+

d
b

.

(Vasile C., 2012)

First Solution. Let

E(a, b, c, d) = 2
�

a
b
+

b
c
+

c
d
+

d
a

�

− 4−
a
c
−

c
a
−

b
d
−

d
b

.

We show that
E(a, b, c, d)≥ E(b, b, c, d)≥ E(b, b, c, c).

We have

E(a, b, c, d)− E(b, b, c, d) = (b− a)
�

1
c
+

2d
ab
−

2
b
−

c
ab

�

≥ 0,

since
1
c
+

2d
ab
−

2
b
−

c
ab
≥

1
c
+

2c
ab
−

2
b
−

c
ab

=
1
c
+

c
ab
−

2
b
≥

1
c
+

c
b2
−

2
b
=
(b− c)2

b2c
≥ 0.

Also,

E(b, b, c, d)− E(b, b, c, c) = (d − c)
�

1
b
−

2c − b
cd

�

≥ 0,

since
1
b
−

2c − b
cd

≥
1
b
−

2c − b
c2

=
(b− c)2

bc2
≥ 0.

Because E(b, b, c, c) = 0, the proof is completed. The equality holds for a = b and
c = d.

Second Solution. Using the substitution

x =
a
b

, y =
b
c

, z =
c
d

, 0< x , y, z ≤ 1,
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the inequality becomes as follows:

2
�

x + y + z +
1

x yz

�

≥ 4+ x y +
1

x y
+ yz +

1
yz

,

y(2− x − z) +
1
y

�

2
xz
−

1
x
−

1
z

�

− 2(2− x − z)≥ 0,

(2− x − z)
�

y +
1

x yz
− 2

�

≥ 0.

The last inequality is true since 2− x − y ≥ 0 and

y +
1

x yz
− 2≥ y +

1
y
− 2≥ 0.

P 1.218. Let a, b, c, d be positive real numbers such that

a ≤ b ≤ c ≤ d, abcd = 1.

Prove that
a
b
+

b
c
+

c
d
+

d
a
≥ ab+ bc + cd + da.

(Vasile C., 2012)

Solution. Write the inequality as follows:

a2cd + b2da+ c2ab+ d2 bc ≥ ab+ bc + cd + da,

ac(ad + bc) + bd(ab+ cd)≥ (ad + bc) + (ab+ cd),

(ac − 1)(ad + bc) + (bd − 1)(ab+ cd)≥ 0.

Since
ac − 1=

1
bd
− 1≥ 1− bd

and
bd ≥

p

abcd = 1,

we have

(ac − 1)(ad + bc) + (bd − 1)(ab+ cd)≥ (1− bd)(ad + bc) + (bd − 1)(ab+ cd)
= (bd − 1)(a− c)(b− d)≥ 0.

The equality holds for a = b =
1
c
=

1
d
≤ 1.
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P 1.219. Let a, b, c, d be positive real numbers such that

a ≤ b ≤ c ≤ d, abcd = 1.

Prove that

4+
a
b
+

b
c
+

c
d
+

d
a
≥ 2(a+ b+ c + d).

(Vasile C., 2012)

Solution. Making the substitution

x = 4

s

a
b

, y =

√

√ b
c

, z = 4

s

c
d

, 0< x , y, z ≤ 1,

we need to show that E(x , y, z)≥ 0, where

E(x , y, z) = 4+ x4 + z4 + y2 +
1

x4 y2z4
− 2

�

x3 yz +
yz
x
+

z
x y
+

1
x yz3

�

.

We will show that

E(x , y, z)≥ E(x , 1, z)≥ E(x , 1, 1)≥ 0. (*)

The left inequality is equivalent to

(1− y)E1(x , y, z)≥ 0,

where

E1(x , y, z) = −1− y +
1+ y

x4 y2z4
+ 2

�

x3z +
z
x

�

−
2
y

�

z
x
+

1
xz3

�

.

To prove it, we show that

E1(x , y, z)≥ E1(x , 1, z)≥ 0.

We have

E1(x , 1, z) = 2(1− x3z)
�

1
x4z4

− 1
�

≥ 0.

Since
E1(x , y, z − E1(x , 1, z) = (1− y)E2(x , y, z),

where

E2(x , y, z) = 1+
1+ 2y
x4 y2z4

−
2
y

�

z
x
+

1
xz3

�

,
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we need to show E2(x , y, z)≥ 0. Indeed,

E2(x , y, z) = 1+
1

x4 y2z4
−

2
y

�

z
x
+

1
xz3
−

1
x4z4

�

≥
2

x2 yz2
−

2
y

�

z
x
+

1
xz3
−

1
x4z4

�

=
2

x yz

�

1
xz
− z2 −

1
z2
+

1
x3z3

�

≥
2

x yz

�

1
z
− z2 −

1
z2
+

1
z3

�

=
2

x yz

�

1− z3

z
+

1− z
z3

�

≥ 0.

The middle inequality in (*) is equivalent to

(1− z)F(x , z)≥ 0,

where

F(x , z) = (1+ z + z2 + z3)
�

1
x4z4

− 1
�

+ 2
�

x3 +
2
x

�

−
1+ z + z2

xz
.

It is true since

F(x , z)>
1

x4z4
− 1+

3
x
−

1+ z + z2

xz

≥
1
xz
− 1+

3
x
−

1+ z + z2

xz

=
2− x − z

x
≥ 0.

The right inequality in (*) is also true since

x4E(x , 1, 1) = x8 − 2x7 + 6x4 − 6x3 + 1

= (x − 1)2(x6 − x4 − 2x3 + 3x2 + 2x + 1)

≥ (x − 1)2(x6 − x4 − 2x3 + 2x2)

= x2(x − 1)4(x2 + 2x + 2)≥ 0.

The proof is completed. The equality holds for a = b = c = d = 1.

P 1.220. Let A= {a1, a2, a3, a4} be a set of real numbers such that

a1 + a2 + a3 + a4 = 0.

Prove that there exists a permutation B = {a, b, c, d} of A such that

a2 + b2 + c2 + d2 + 3(ab+ bc + cd + da)≥ 0.
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Solution. Write the desired inequality as

a2 + b2 + c2 + d2 + 3(ab+ bc + cd + da)≥ (a+ b+ c + d)2,

ab+ bc + cd + da ≥ 2(ac + bd),

(ab+ cd − ac − bd) + (bc + da− ac − bd)≥ 0.

(a− d)(b− c) + (a− b)(d − c)≥ 0.

Clearly, this inequality is true for a ≤ b ≤ d ≤ c. The equality occurs when A has
three equal elements.

P 1.221. If a, b, c, d are nonnegative real numbers such that

a ≥ b ≥ 1≥ c ≥ d, a+ b+ c + d = 3,

then
a2 + b2 + c2 + d2 + 10abcd ≤ 5.

(Vasile C., 2015)

First Solution. Let

E(a, b, c, d) = a2 + b2 + c2 + d2 + 10abcd.

We will show that
E(a, b, c, d)≤ E(a, b, x , x)≤ 5,

where
x = (c + d)/2, a+ b+ 2x = 3.

The left inequality is true since

E(a, b, c, d)− E(a, b, x , x) =
1
2
(c − d)2(1− 5ab)≤ 0.

The right inequality can be written as follows:

a2 + b2 + 2x2 + 10abx2 ≤ 5,

(a+ b)2 + 2x2 + 2ab(5x2 − 1)≤ 5,

2s2 + (3− s)2 + ab[5(3− s)2 − 4]≤ 10,

where
s = a+ b, s ∈ [2, 3].

Case 1: 5(3− s)2 − 4≥ 0. Since ab ≤ s2/4, it suffices to show that

2s2 + (3− s)2 +
1
4

s2[5(3− s)2 − 4]≤ 10,
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which is equivalent to the obvious inequality

(s− 1)(s− 2)[5s(s− 3)− 2]≤ 0.

Case 2: 5(3− s)2−4≤ 0. From (a−1)(b−1)≥ 0, we get ab ≥ s−1. Therefore, it
suffices to show that

2s2 + (3− s)2 + (s− 1)[5(3− s)2 − 4]≤ 10,

which is equivalent to the obvious inequality

(s− 2)(s− 3)(5s− 7)≤ 0.

The equality holds for a = b = 1, c = d = 1/2, and for a = 2, b = 1, c = d = 0.

Second Solution. From

(a− 1)(b− 1)(c − 1)(d − 1)≥ 0,

we have
−2+

∑

s ym

ab−
∑

abc + abcd ≥ 0.

Since
2
∑

s ym

ab = 9− a2 − b2 − c2 − d2,

we get

−2+
9− a2 − b2 − c2 − d2

2
−
∑

abc + abcd ≥ 0,

a2 + b2 + c2 + d2 ≤ 5− 2
∑

abc + 2abcd.

Therefore, it suffices to show that

(5− 2
∑

abc + 2abcd) + 10abcd ≤ 5,

which is equivalent to
∑

abc ≥ 6abcd.

For the non-trivial case d 6= 0, this inequality is equivalent to

1
a
+

1
b
+

1
c
+

1
d
≥ 6.

Since
1
a
+

1
b
≥

4
a+ b

and
1
c
+

1
d
≥

4
c + d

,
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it suffices to show that
2

a+ b
+

2
c + d

≥ 3,

which is equivalent to
(a+ b− 1)(a+ b− 2)≥ 0.

P 1.222. If a, b, c, d are nonnegative real numbers such that

a ≥ b ≥ 1≥ c ≥ d, a+ b+ c + d = 6,

then
a2 + b2 + c2 + d2 + 4abcd ≤ 26.

(Vasile C., 2015)

First Solution. Let

E(a, b, c, d) = a2 + b2 + c2 + d2 + 10abcd.

We will show that
E(a, b, c, d)≤ E(a, b, x , x)≤ 5,

where
x = (c + d)/2, a+ b+ 2x = 3.

The left inequality is true since

E(a, b, c, d)− E(a, b, x , x) =
1
2
(c − d)2(1− 2ab)≤ 0.

The right inequality can be written as follows:

a2 + b2 + 2x2 + 4abx2 ≤ 26,

(a+ b)2 + 2x2 + 2ab(2x2 − 1)≤ 26,

2s2 + (6− s)2 + 2ab[(6− s)2 − 2]≤ 52,

where
s = a+ b, s ∈ [4, 6].

Case 1: (6− s)2 − 2≥ 0. Since ab ≤ s2/4, it suffices to show that

2s2 + (6− s)2 +
1
2

s2[(6− s)2 − 2]≤ 52,

which is equivalent to the obvious inequality

(s− 2)(s− 4)[s(s− 6)− 4]≤ 0.
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Case 2: (6− s)2 − 2 ≤ 0. From (a− 1)(b− 1) ≥ 0, we get ab ≥ s− 1. Therefore, it
suffices to show that

2s2 + (6− s)2 + 2(s− 1)[(6− s)2 − 2]≤ 52,

which is equivalent to the obvious inequality

(s− 2)(s− 6)(2s− 7)≤ 0.

The equality holds for a = b = 2, c = d = 1, and for a = 5, b = 1, c = d = 0.

Second Solution. From

(a− 1)(b− 1)(c − 1)(d − 1)≥ 0,

we have
−5+

∑

s ym

ab−
∑

abc + abcd ≥ 0.

Since
2
∑

s ym

ab = 36− a2 − b2 − c2 − d2,

we get

−5+
36− a2 − b2 − c2 − d2

2
−
∑

abc + abcd ≥ 0,

a2 + b2 + c2 + d2 ≤ 26− 2
∑

abc + 2abcd.

Therefore, it suffices to show that

(26− 2
∑

abc + 2abcd) + 4abcd ≤ 26,

which is equivalent to
∑

abc ≥ 3abcd.

For the non-trivial case d 6= 0, this inequality is equivalent to

1
a
+

1
b
+

1
c
+

1
d
≥ 3.

Since
1
a
+

1
b
≥

4
a+ b

and
1
c
+

1
d
≥

4
c + d

,

it suffices to show that
4

a+ b
+

4
c + d

≥ 3,

which is equivalent to
(a+ b− 2)(a+ b− 4)≥ 0,

(a+ b− 2)(2− c − d)≥ 0.
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P 1.223. Let a, b, c, d be nonnegative real numbers such that

a ≥ b ≥ 1≥ c ≥ d, a+ b+ c + d = p, p ≥ 2.

Prove that
p2 − 4p+ 8

2
≤ a2 + b2 + c2 + d2 ≤ p2 − 2p+ 2.

Solution. Write the right inequality as follows:

(p− 1)2 − a2 + (1− b2)− c2 − d2 ≥ 0,

(p− 1− a)(p− 1+ a) + (1− b)(1+ b)− c2 − d2 ≥ 0.

Since p− 1− a = (b− 1) + c + d ≥ 0 and

(p− 1+ a)− (1+ b) = 2(a− 1) + c + d ≥ 0,

it suffices to show that

(p− 1− a)(1+ b) + (1− b)(1+ b)− c2 − d2 ≥ 0,

which is equivalent to
(c + d)(1+ b)− c2 − d2 ≥ 0.

Indeed,
(c + d)(1+ b)≥ c + d ≥ c2 + d2.

The right inequality is an equality for

(a, b, c, d) = (p− 1,1, 0,0).

Since (a+ b)2 ≤ 2(a2+ b2) and (c+ d)2 ≤ 2(c2+ d2), the left inequality is true
if

p2 − 4p+ 8≤ (a+ b)2 + (c + d)2,

which is equivalent to

[(a+ b) + (c + d)]2 − 4[(a+ b) + (c + d)] + 8≤ (a+ b)2 + (c + d)2,

(a+ b)(c + d)− 2(a+ b)− 2(c + d) + 4≤ 0,

(a+ b− 2)(c + d − 2)≤ 0.

The left inequality is an equality for

(a, b, c, d) =
�

1, 1,
p− 2

2
,

p− 2
2

�

, 2≤ p ≤ 4,

(a, b, c, d) =
�

p− 2
2

,
p− 2

2
,1, 1

�

, p ≥ 4.
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P 1.224. Let a ≥ b ≥ 1≥ c ≥ d ≥ 0 such that

a+ b+ c + d = 4, a2 + b2 + c2 + d2 = q,

where q ∈ [4,10] is a fixed number. Prove that the product r = abcd is maximal
when b = 1 and c = d.

(Vasile C., 2015)

Solution. The condition q ≥ 4 follows from the Cauchy-Schwarz inequality

4(a2 + b2 + c2 + d2)≥ (a+ b+ c + d)2.

The condition q ≤ 10 follows from the inequality (a − 1)(b − 1) ≥ 0, which is
equivalent to

ab ≥ s− 1,

where
s = a+ b, s ∈ [2, 4].

Indeed,

q ≤ (a+ b)2 − 2ab+ (c + d)2 ≤ s2 − 2(s− 1) + (4− s)2

= 2(s− 1)(s− 4) + 10≤ 10.

Notice that q = 4 for a = b = c = d = 1, and q = 10 for a = 3, b = 1, c = d = 0.
We will show that for any fixed q ∈ [4, 10], we have

abcd ≤ f (d)≤ f (d1),

where
f (d) = d

�

d2 − 3d + 5−
q
2

�

,

d1 = 1−

√

√q− 4
6

, d1 ∈ [0, 1].

The left inequality abcd ≤ f (d) is a consequence of the inequality

(a− 1)(b− 1)(c − 1)≤ 0,

which leads to

abc ≤ 1− (a+ b+ c) + (ab+ bc + ca)

= 1− (4− d) +
1
2
[(a+ b+ c)2 − (a2 + b2 + c2)]

= −3+ d +
1
2
[(4− d)2 − (q− d2)]

= d2 − 3d + 5−
q
2

,
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hence
abcd ≤ f (d),

with equality for b = 1.
The right inequality f (d)≤ f (d1) follows immediately from

f (d)− f (d1) = (d − d1)
2(d + 2d1 − 3)≤ 0.

This inequality is an equality for d = d1. In conclusion, for any fixed q ∈ [4, 10],
we have

abcd ≤ f (d1),

with equality for b = 1 and d = d1. These equality conditions are equivalent to b =
1 and c = d. Indeed, from b = 1, d = d1, a+ b+ c+d = 3 and a2+ b2+ c2+d2 = q,
we get

a = 1+

√

√2(q− 4)
3

, b = 1, c = d = 1−

√

√q− 4
6

.

P 1.225. If a, b, c, d are nonnegative real numbers such that

a ≥ b ≥ 1≥ c ≥ d, a+ b+ c + d = 4,

then
a2 + b2 + c2 + d2 + 6abcd ≤ 10.

(Vasile C., 2015)

First Solution. According to P 1.224, it suffices to prove the inequality for b = 1
and c = d. Thus, we need to show that a2 + 2c2 + 6ac2 ≤ 9 for a+ 2c = 3; that is,

c(1− c)2 ≥ 0.

The equality holds for a = b = c = d = 1, and for a = 3, b = 1, c = d = 0.

Second Solution. Let

E(a, b, c, d) = a2 + b2 + c2 + d2 + 6abcd.

We will show that
E(a, b, c, d)≤ E(a, b, x , x)≤ 10,

where
x = (c + d)/2.

The left inequality is true since

E(a, b, c, d)− E(a, b, x , x) =
1
2
(c − d)2(1− 3ab)≤ 0.
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The right inequality can be written as follows:

a2 + b2 + 2x2 + 6abx2 ≤ 10, a+ b+ 2x = 4,

(a+ b)2 + 2x2 + 2ab(3x2 − 1)≤ 10,

2s2 + (4− s)2 + ab[3(4− s)2 − 4]≤ 20,

where
s = a+ b, s ∈ [2,4].

Case 1: 3(4− s)2 − 4≥ 0. Since ab ≤ s2/4, it suffices to show that

2s2 + (4− s)2 +
1
4

s2[3(4− s)2 − 4]≤ 20,

which is equivalent to the obvious inequality

(s− 2)2[3s(s− 4)− 4]≤ 0.

Case 2: 3(4− s)2−4≤ 0. From (a−1)(b−1)≥ 0, we get ab ≥ s−1. Therefore, it
suffices to show that

2s2 + (4− s)2 + (s− 1)[3(4− s)2 − 4]≤ 20,

which is equivalent to the obvious inequality

(s− 2)2(s− 4)≤ 0.

Third Solution (by Linqaszayi). From

(a− 1)(b− 1)(c − 1)(d − 1)≥ 0,

we have
−3+

∑

s ym

ab−
∑

abc + abcd ≥ 0.

Since
2
∑

s ym

ab = 16− a2 − b2 − c2 − d2,

we get
10− a2 − b2 − c2 − d2 ≥ 2

∑

abc − 2abcd.

Therefore, it suffices to show that

2
∑

abc − 2abcd ≥ 6abcd,

which is equivalent to
∑

abc ≥ 4abcd.
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For the non-trivial case d > 0, this inequality is equivalent to the Cauchy-Schwarz
inequality

(a+ b+ c + d)
�

1
a
+

1
b
+

1
c
+

1
d

�

≥ 16.

Fourth Solution (by Nguyen Van Quy). Write the inequality as

a2 + (b+ c + d)2 + 6abcd − 2(bc + cd + d b)≤ 10,

3abcd − (bc + cd + d b)≤ (a− 1)(3− a).

By the AM-GM inequality or the Cauchy-Schwarz inequality, we have

bc + cd + d b ≥
9bcd

b+ c + d
,

hence

3abcd − (bc + cd + d b)≤ 3abcd −
9bcd

b+ c + d
=

3bcd(a− 1)(3− a)
b+ c + d

.

Since
3− a ≥ 4− a− b = c + d ≥ 0,

it suffices to show that
3bcd

b+ c + d
≤ 1.

Indeed, using the AM-GM inequality and b+ c + d = 4− a ≤ 3, we get

3bcd
b+ c + d

≤
(b+ c + d)2

9
≤ 1.

P 1.226. If a, b, c, d are nonnegative real numbers such that

a ≥ b ≥ 1≥ c ≥ d, a+ b+ c + d = 4,

then
a2 + b2 + c2 + d2 + 6

p

abcd ≤ 10.

(Vasile C., 2015)

First Solution. According to P 1.224, it suffices to prove the inequality for b = 1
and c = d. Thus, we need to show that a + 2c = 3 implies a2 + 2c2 + 6c

p
a ≤ 9;

that is,
a2 + 2c2 + 6c

p
a ≤ (a+ 2c)2,

c(c + 2a− 3
p

a )≥ 0,
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3c(
p

a− 1)2

c + 2a+ 3
p

a
≥ 0.

The equality holds for a = b = c = d = 1, and for a = 3, b = 1, c = d = 0.

Second Solution. Let

E(a, b, c, d) = a2 + b2 + c2 + d2 + 6
p

abcd.

We will show that
E(a, b, c, d)≤ E(a, b, x , x)≤ 10,

where

x =
c + d

2
=

4− a− b
2

.

The left inequality can be reduces to the obvious form
�p

c −
p

d
�2 h

6
p

ab−
�p

c +
p

d
�2i

≥ 0,

while the right inequality is equivalent to

a2 + b2 + 2x2 + 6x
p

ab ≤ 10.

Since 2
p

ab ≤ a+ b, it suffices to show that

a2 + b2 + 2x2 + 3x(a+ b)≤ 10.

which can be rewritten as

2(a2 + b2) + (4− a− b)2 + 3(4− a− b)(a+ b)≤ 20,

2(a+ b)2 − 4ab+ 16− 8(a+ b) + (a+ b)2 + 12(a+ b)− 3(a+ b)2 ≤ 20,

4(a− 1)(b− 1)≥ 0.

P 1.227. If a, b, c, d, e are positive real numbers, then

a
a+ 2b+ 2c

+
b

b+ 2c + 2d
+

c
c + 2d + 2e

+
d

d + 2e+ 2a
+

e
e+ 2a+ 2b

≥ 1.

Solution. The inequality follows by applying the Cauchy-Schwarz inequality:

∑ a
a+ 2b+ 2c

≥

�∑

a
�2

∑

a(a+ 2b+ 2c)
=

�∑

a
�2

∑

a2 + 2
∑

ab+ 2
∑

ac
= 1.

The equality holds for a = b = c = d = e.
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P 1.228. Let a, b, c, d, e be positive real numbers such that a+ b+c+d+e = 5. Prove
that

a
b
+

b
c
+

c
d
+

d
e
+

e
a
≤ 1+

4
abcde

.

Solution. Let (x , y, z, t, u) be a permutation of (a, b, c, d, e) such that x ≥ y ≥ z ≥
t ≥ u. By the rearrangement inequality, we have

a
b
+

b
c
+

c
d
+

d
e
+

e
a
≤

x
u
+

y
t
+

z
z
+

t
y
+

u
x

=
� x

u
+

u
x
+ 2

�

+
�

y
t
+

t
y
+ 2

�

− 3

= 4(p+ q)− 3,

where

p =
1
4

� x
u
+

u
x
+ 2

�

≥ 1, q =
1
4

�

y
t
+

t
y
+ 2

�

≥ 1.

From (p− 1)(q− 1)≥ 0, we get

p+ q ≤ 1+ pq,

4(p+ q)− 3≤ 1+ 4pq,

hence
a
b
+

b
c
+

c
d
+

d
e
+

e
a
≤ 1+ 4pq.

Thus, it suffices to show that

pq ≤
1

x yztu
,

which is is equivalent to

z
� x + u

2

�2 � y + t
2

�2

≤ 1.

Indeed, by the AM-GM inequality, we get

z
� x + u

2

�2 � y + t
2

�2

≤





z +
x + u

2
+

x + u
2
+

y + t
2
+

y + t
2

5





5

= 1.

The equality holds for a = b = c = d = e = 1.

Remark. Similarly, we can prove the following generalization (Michael Rozenberg).

• If a1, a2, . . . , an are positive real numbers such that a1 + a2 + · · ·+ an = n, then

n− 4+
4

a1a2 · · · an
≥

a1

a2
+

a2

a3
+ · · ·+

an

a1
.
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P 1.229. If a, b, c, d, e are real numbers such that a+ b+ c + d + e = 0, then

−
p

5− 1
4

≤
ab+ bc + cd + de+ ea
a2 + b2 + c2 + d2 + e2

≤
p

5− 1
4

.

Solution. From
(a+ b+ c + d + e)2 = 0,

we get
∑

a2 + 2
∑

ab+ 2
∑

ac = 0.

Therefore, for any real k, we have
∑

a2 + (2k+ 2)
∑

ab =
∑

2a(kb− c).

By the AM-GM inequality, we get

2a(kb− c)≤ a2 + (kb− c)2,

hence
∑

a2 + (2k+ 2)
∑

ab ≤
∑

[a2 + (kb− c)2] = (k2 + 2)
∑

a2 − 2k
∑

ab,

which is equivalent to
∑

a2 ≥
2(2k+ 1)

k2 + 1

∑

ab.

Choosing k =
−1−

p
5

2
and k =

−1+
p

5
2

, we get the desired inequalities. The

equality in both inequalities occurs when

a = kb− c, b = kc − d, c = kd − e, d = ke− a, e = ka− b;

that is, when

a = x , b = y, c = −x + k y, d = −k(x + y), e = kx − y,

where x and y are real numbers.

P 1.230. Let a, b, c, d, e be positive real numbers such that

a2 + b2 + c2 + d2 + e2 = 5.

Prove that

a2

b+ c + d
+

b2

c + d + e
+

c2

d + e+ a
+

d2

e+ a+ b
+

e2

a+ b+ c
≥

5
3

.

(Pham Van Thuan, 2005)
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Solution. By the AM-GM Inequality, we get

2(b+ c + d)≤ (b2 + 1) + (c2 + 1) + (d2 + 1) = 8− a2 − e2.

Therefore, it suffices to show that

∑ a2

8− a2 − e2
≥

5
6

.

By the Cauchy-Schwarz Inequality, we have

∑ a2

8− a2 − e2
≥

�∑

a2
�2

∑

a2(8− a2 − e2)
=

25

40−
∑

a4 −
∑

a2e2

=
50

80−
∑

(a2 + e2)2
≥

50

80−
1
5

�∑

(a2 + e2)
�2
=

5
6

.

The equality holds for a = b = c = d = e = 1.

P 1.231. Let a, b, c, d, e be nonnegative real numbers such that a+ b+ c+ d + e = 5.
Prove that

(a2 + b2)(b2 + c2)(c2 + d2)(d2 + e2)(e2 + a2)≤
729
2

.

(Vasile C., 2007)

Solution. Write the inequality as

E(a, b, c, d, e)≤ 0,

and, without loss of generality, assume that

e =min{a, b, c, d, e}.

We claim that it suffices to prove the desired inequality for the case e = 0. To prove
this, it suffices to show that

E(a, b, c, d, e)≤ E
�

a+
e
2

, b, c, d +
e
2

,0
�

, (*)

which is equivalent to

(a2 + b2)(c2 + d2)(d2 + e2)(e2 + a2)≤

≤
�

�

a+
e
2

�2
+ b2

��

c2 +
�

d +
e
2

�2��

d +
e
2

�2 �

a+
e
2

�2
.
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Since

a2 + b2 ≤
�

a+
e
2

�2
+ b2,

c2 + d2 ≤ c2 +
�

d +
e
2

�2
,

d2 + e2 ≤ d2 + de ≤
�

d +
e
2

�2
,

e2 + a2 ≤ ae+ a2 ≤
�

a+
e
2

�2
,

the conclusion follows. Thus, we only need to show that

a+ b+ c + d = 5

involves
E(a, b, c, d, 0)≤ 0,

where
E(a, b, c, d, 0) = a2d2(a2 + b2)(b2 + c2)(c2 + d2)−

729
2

.

Without loss of generality, assume that

c =min{b, c}.

We claim that it suffices to prove the inequality E(a, b, c, d, 0)≤ 0 for the case c = 0.
To prove this, it suffices to show that

E(a, b, c, d, 0)≤ E
�

a, b+
c
2

, 0, d +
c
2

, 0
�

, (**)

which is equivalent to

d2(a2 + b2)(b2 + c2)(c2 + d2)≤
�

d +
c
2

�2 �

a2 +
�

b+
c
2

�2��

b+
c
2

�2 �

d +
c
2

�2
.

This is true since

d2(c2 + d2)≤
�

d +
c
2

�4
,

a2 + b2 ≤ a2 +
�

b+
c
2

�2
,

b2 + c2 ≤ b2 + bc ≤
�

b+
c
2

�2
.

Thus, we only need to show that

a+ b+ d = 5

involves
E(a, b, 0, d, 0)≤ 0,
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where
E(a, b, 0, d, 0) = a2 b2d4(a2 + b2)−

729
2

.

We will show that

E(a, b, 0, d, 0)≤ E
�

a+ b
2

,
a+ b

2
, 0, d, 0

�

≤ 0. (***)

The left inequality is true if

32a2 b2(a2 + b2)≤ (a+ b)6.

Indeed, we have

(a+ b)6 − 32a2 b2(a2 + b2)≥ 4ab(a+ b)4 − 32a2 b2(a2 + b2) = 4ab(a− b)4 ≥ 0.

To prove the right inequality, denote

u=
a+ b

2
.

We need to show that
2u+ d = 5

implies
E(u, u, 0, d, 0)≤ 0;

that is,

u6d4 ≤
729
4

,

u3d2 ≤
27
2

.

By the AM-GM inequality, we have

5=
2u
3
+

2u
3
+

2u
3
+

d
2
+

d
2
≥ 5

5

√

√

√

�

2u
3

�3 � t
2

�2

,

from which the conclusion follows. The equality holds for a = b =
3
2

, c = 0, d = 2

and e = 0 (or any cyclic permutation).

P 1.232. If a, b, c, d, e ∈ [1,5], then

a− b
b+ c

+
b− c
c + d

+
c − d
d + e

+
d − e
e+ a

+
e− a
a+ b

≥ 0.

(Vasile C., 2002)
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Solution. Write the inequality as

∑

�

a− b
b+ c

+
2
3

�

≥
10
3

,

∑ 3a− b+ 2c
b+ c

≥ 10.

Since
3a− b+ 2c ≥ 3− 5+ 2= 0,

we may apply the Cauchy-Schwarz inequality to get

∑ 3a− b+ 2c
b+ c

≥

�∑

(3a− b+ 2c)
�2

∑

(b+ c)(3a− b+ 2c)
=

16
�∑

a
�2

∑

a2 + 4
∑

ab+ 3
∑

ac
.

Therefore, it suffices to show that

8
�∑

a
�2
≥ 5

∑

a2 + 20
∑

ab+ 15
∑

ac.

Since
�∑

a
�2
=
∑

a2 + 2
∑

ab+ 2
∑

ac,

this inequality is equivalent to

3
∑

a2 +
∑

ac ≥ 4
∑

ab.

Indeed,

3
∑

a2 +
∑

ac − 4
∑

ab =
1
2

∑

(a− 2b+ c)2 ≥ 0.

The equality holds for a = b = c = d = e.

P 1.233. If a, b, c, d, e, f ∈ [1, 3], then

a− b
b+ c

+
b− c
c + d

+
c − d
d + e

+
d − e
e+ f

+
e− f
f + a

+
f − a
a+ b

≥ 0.

(Vasile C., 2002)

Solution. Write the inequality as

∑

�

a− b
b+ c

+
1
2

�

≥ 3,

∑ 2a− b+ c
b+ c

≥ 6.
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Since
2a− b+ c ≥ 2− 3+ 1= 0,

we may apply the Cauchy-Schwarz inequality to get

∑ 2a− b+ c
b+ c

≥

�∑

(2a− b+ c)
�2

∑

(b+ c)(2a− b+ c)
=

2
�∑

a
�2

∑

ab+
∑

ac
.

Thus, we still have to show that
�∑

a
�2
≥ 3

�∑

ab+
∑

ac
�

.

Let
x = a+ d, y = b+ e, z = c + f .

Since
∑

ab+
∑

ac = x y + yz + zx ,

we have
�∑

a
�2
− 3

�∑

ab+
∑

ac
�

= (x + y + z)2 − 3(x y + yz + zx)≥ 0.

The equality holds for a = c = e and b = d = f .

P 1.234. If a1, a2, . . . , an (n≥ 3) are positive real numbers, then
n
∑

i=1

ai

ai−1 + 2ai + ai+1
≤

n
4

,

where a0 = an and an+1 = a1.
(Vasile C., 2008)

Solution. Applying the Cauchy-Schwarz inequality, we have

n
∑

i=1

ai

ai−1 + 2ai + ai+1
=

n
∑

i=1

ai

(ai−1 + ai) + (ai + ai+1)

≤
1
4

n
∑

i=1

ai

�

1
ai−1 + ai

+
1

ai + ai+1

�

=
1
4

�

n
∑

i=1

ai

ai−1 + ai
+

n
∑

i=1

ai

ai + ai+1

�

=
1
4

�

n
∑

i=1

ai+1

ai + ai+1
+

n
∑

i=1

ai

ai + ai+1

�

=
n
4

.

The equality holds for a1 = a2 = · · ·= an.
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P 1.235. Let a1, a2, . . . , an (n≥ 3) be positive real numbers such that a1a2 · · · an = 1.
Prove that

1
n− 2+ a1 + a2

+
1

n− 2+ a2 + a3
+ · · ·+

1
n− 2+ an + a1

≤ 1.

(Vasile C., 2008)

First Solution. Let r =
n− 2

n
. We can get the desired inequality by summing the

following inequalities

n− 2
n− 2+ a1 + a2

≤
ar

3 + ar
4 + · · ·+ ar

n

ar
1 + ar

2 + · · ·+ ar
n

,

n− 2
n− 2+ a2 + a3

≤
ar

1 + ar
4 + · · ·+ ar

n

ar
1 + ar

2 + · · ·+ ar
n

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n− 2
n− 2+ an + a1

≤
ar

2 + ar
3 + · · ·+ ar

n−1

ar
1 + ar

2 + · · ·+ ar
n

.

The first inequality is equivalent to

(a1 + a2)(a
r
3 + ar

4 + · · ·+ ar
n)≥ (n− 2)(ar

1 + ar
2).

By the AM-GM inequality, we have

ar
3 + ar

4 + · · ·+ ar
n ≥ (n− 2)(a3a4 · · · an)

r
n−2 =

n− 2

(a1a2)
r

n−2
.

Therefore, it suffices to show that

a1 + a2 ≥ (a1a2)
r

n−2 (ar
1 + ar

2),

or, equivalently,

a1 + a2 ≥ (a1a2)
1
n

�

a
n−2

n
1 + a

n−2
n

2

�

.

This is equivalent to the obvious inequality
�

a
n−1

n
1 − a

n−1
n

2

��

a
1
n
1 − a

1
n
2

�

≥ 0.

The equality holds for a1 = a2 = · · ·= an.

Second Solution. Since

n− 2
n− 2+ a1 + a2

= 1−
a1 + a2

n− 2+ a1 + a2
,
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we can write the desired inequality as
n
∑

i=1

ai + ai+1

ai + ai+1 + n− 2
≥ 2,

where an+1 = a1. Using the Cauchy-Schwarz inequality, we get

n
∑

i=1

ai + ai+1

ai + ai+1 + n− 2
≥

�

n
∑

i=1

p

ai + ai+1

�2

n
∑

i=1

(ai + ai+1 + n− 2)

=

2
n
∑

i=1

ai + 2
∑

1≤i< j≤n

Æ

(ai + ai+1)(a j + a j+1)

2
n
∑

i=1

ai + n(n− 2)

.

Therefore, it suffices to prove that

∑

1≤i< j≤n

q

(ai + ai+1)(a j + a j+1)≥
n
∑

i=1

ai + n(n− 2).

Setting an+2 = a2, by the Cauchy-Schwarz inequality and the AM-GM inequality,
we have

∑

1≤i< j≤n

q

(ai + ai+1)(a j + a j+1) =

=
n
∑

i=1

Æ

(ai + ai+1)(ai+1 + ai+2) +
∑

1≤i< j≤n
j 6=i+1

q

(ai + ai+1)(a j + a j+1)

≥
n
∑

i=1

�

ai+1 +
p

aiai+2

�

+ n(n− 3) n
p

a1a2 · · · an

=
n
∑

i=1

ai + n(n− 3) +
n
∑

i=1

p

aiai+2

≥
n
∑

i=1

ai + n(n− 3) + n n
p

a1a2 · · · an =
n
∑

i=1

ai + n(n− 2).

P 1.236. If a1, a2, ..., an ≥ 1, then
∏

�

a1 +
1
a2
+ n− 2

�

≥ nn−2(a1 + a2 + · · ·+ an)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

.

(Vasile C., 2011)
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Solution. Write the inequality as E(a1, a2, ..., an)≥ 0, and denote

A=
�

a2 +
1
a3
+ n− 2

��

a3 +
1
a4
+ n− 2

�

· · ·
�

an−1 +
1
an
+ n− 2

�

.

We will prove that
E(a1, a2, ..., an)≥ E(1, a2, ..., an).

If this is true, then

E(a1, a2, ..., an)≥ E(1, a2, ..., an)≥ E(1, 1, a3, ..., an)≥ · · · ≥ E(1,1, ..., 1, an) = 0.

We have

E(a1, a2, ..., an)− E(1, a2, ..., an) = (a1 − 1)
�

B −
C
a1

�

,

where

B = A(an + n− 2)− nn−2
�

1
a2
+

1
a3
+ · · ·+

1
an

�

,

C = A
�

1
a2
+ n− 2

�

− nn−2(a2 + a3 + · · ·+ an).

Since a1 − 1≥ 0, we need to show that

a1B − C ≥ 0.

According to the AM-GM inequality, we have

A≥
�

n n

√

√a2

a3

��

n n

√

√a3

a4

�

· · ·
�

n n

√

√an−1

an

�

= nn−2 n

√

√a2

an
,

an + n− 2≥ (n− 1) n−1
p

an,

A(an + n− 2)≥ (n− 1)nn−2
n
r

a2a
1

n−1
n ≥ (n− 1)nn−2,

therefore

B ≥ nn−2
�

n− 1−
1
a2
−

1
a3
− · · · −

1
an

�

≥ 0

and

a1B − C ≥ B − C = A
�

an −
1
a2

�

+ nn−2
�

a2 −
1
a2

�

+ · · ·+ nn−2
�

an −
1
an

�

≥ 0.

The equality holds when n− 1 of the numbers a1, a2, ..., an are equal to 1.
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P 1.237. If a1, a2, ..., an ≥ 1, then
�

a1 +
1
a1

��

a2 +
1
a2

�

· · ·
�

an +
1
an

�

+ 2n ≥ 2
�

1+
a1

a2

��

1+
a2

a3

�

· · ·
�

1+
an

a1

�

.

(Vasile C., 2011)

Solution. Write the inequality as E(a1, a2, ..., an)≥ 0, and denote

A=
�

a2 +
1
a2

�

· · ·
�

an +
1
an

�

,

B =
�

1+
a2

a3

�

· · ·
�

1+
an−1

an

�

.

We will prove that
E(a1, a2, ..., an)≥ E(1, a2, ..., an).

If this is true, then

E(a1, a2, ..., an)≥ E(1, a2, ..., an)≥ E(1, 1, a3, ..., an)≥ · · · ≥ E(1,1, ..., 1, an) = 0.

We have

E(a1, a2, ..., an)− E(1, a2, ..., an) = (a1 − 1)
�

C −
D
a1

�

,

where
C = A−

2B
a2

,

D = A− 2Ban.

Since a1 − 1≥ 0, we need to show that

a1C − D ≥ 0.

First, we prove that C ≥ 0; that is,

(a2
2 + 1) · · · (a2

n + 1)≥ 2(a2 + a3) · · · (an−1 + an).

By squaring, this inequality becomes

(a2
2 + 1)[(a2

2 + 1)(a2
3 + 1)] · · · [(a2

n−1 + 1)(a2
n + 1)](a2

n + 1)≥

≥ 4(a2 + a3)
2 · · · (an−1 + an)

2.

By the Cauchy-Schwarz inequality, we have

(a2
2 + 1)(a2

3 + 1)≥ (a2 + a3)
2, ... , (a2

n−1 + 1)(a2
n + 1)≥ (an−1 + an)

2.

Therefore, we still have to show that

(a2
2 + 1)(a2

n + 1)≥ 4,
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which is clearly true for a2 ≥ 1 and an ≥ 1. Finally, we have

a1C − D ≥ C − D = 2B
�

an −
1
a2

�

≥ 0.

The equality holds when n− 1 of a1, a2, ..., an are equal to 1.

P 1.238. Let k and n be positive integers, and let a1, a2, ..., an be real numbers such
that

a1 ≤ a2 ≤ · · · ≤ an.

Consider the inequality

(a1 + a2 + · · ·+ an)
2 ≥ n(a1ak+1 + a2ak+2 + · · ·+ anan+k),

where an+i = ai for any positive integer i. Prove this inequality for

(a) n= 2k;

(b) n= 4k.

(Vasile C., 2004)

Solution. (a) We need to prove that

(a1 + a2 + · · ·+ a2k)
2 ≥ 4k(a1ak+1 + a2ak+2 + · · ·+ aka2k).

If x is a real number such that

ak ≤ x ≤ ak+1,

then

(x − a1)(ak+1 − x) + (x − a2)(ak+2 − x) + · · ·+ (x − ak)(a2k − x)≥ 0.

Expanding and multiplying by 4k, we get

4kx(a1 + a2 + · · ·+ a2k)≥ 4k2 x2 + 4k(a1ak+1 + a2ak+2 + · · ·+ aka2k).

On the other hand, by the AM-GM inequality, we have

(a1 + a2 + · · ·+ a2k)
2 + 4k2 x2 ≥ 4kx(a1 + a2 + · · ·+ a2k).

Adding these inequalities yields the desired inequality. The equality holds for

a j+1 = a j+2 = · · ·= a j+k =
a1 + a2 + · · ·+ a2k

2k
,

where j ∈ {1, 2, · · · , k− 1}.
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(b) We need to show that

(a1 + a2 + · · ·+ a4k)
2 ≥ 4k(a1ak+1 + a2ak+2 + · · ·+ a4kak).

Using the substitution

bi = ai + a2k+i, i = 1, 2, ..., 2k,

this inequality becomes

(b1 + b2 + · · ·+ b2k)
2 ≥ 4k(b1 bk+1 + b2 bk+2 + · · ·+ bk b2k),

which is just the inequality in (a). The equality holds for


















a j+1 = a j+2 = · · ·= a j+k = a

a j+2k+1 = a j+2k+2 = · · ·= a j+3k = b

a1 + a2 + · · ·+ a4k = 2k(a+ b)

,

where a ≤ b are real numbers, and j ∈ {1,2, · · · , k− 1}.

Remark. Actually, the inequality holds for any integer k satisfying
n
4
≤ k ≤

n
2

.

P 1.239. If a1, a2, . . . , an are real numbers, then

a1(a1 + a2) + a2(a2 + a3) + · · ·+ an(an + a1)≥
2
n
(a1 + a2 + · · ·+ an)

2.

Solution. Making the substitution

a =
1
n
(a1 + a2 + · · ·+ an)

and
x i = ai − a, i = 1, 2, ..., n,

we have
x1 + x2 + · · ·+ xn = 0

and
∑

a1(a1 + a2)−
2
n
(a1 + a2 + · · ·+ an)

2 =
∑

(x1 + a)(x1 + x2 + 2a)− 2na2

=
∑

x1(x1 + x2) =
1
2

∑

(x1 − x2)
2 ≥ 0.

The equality holds for a1 = a2 = · · · = an - if n is odd, and for a1 = a3 = · · · = an−1

and a2 = a4 = · · ·= an - if n is even.
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P 1.240. If a1, a2, . . . , an ∈ [1, 2], then

n
∑

i=1

3
ai + 2ai+1

≥
n
∑

i=1

2
ai + ai+1

,

where an+1 = a1.
(Vasile C., 2005)

Solution. Rewrite the inequality as follows

n
∑

i=1

ai − ai+1

(ai + ai+1)(ai + 2ai+1)
≥ 0,

n
∑

i=1

�

k(ai − ai+1)
(ai + ai+1)(ai + 2ai+1)

+
1
ai
−

1
ai+1

�

≥ 0, k > 0,

n
∑

i=1

(ai − ai+1)[(k− 3)aiai+1 − a2
i − 2a2

i+1]

aiai+1(ai + ai+1)(ai + 2ai+1)
≥ 0,

Setting k = 6, the inequality becomes

n
∑

i=1

(ai − ai+1)2(2ai+1 − ai)
aiai+1(ai + ai+1)(ai + 2ai+1)

≥ 0.

Since 1≤ ai ≤ 2, we have 2ai+1 − ai ≥ 0 for all i = 1, 2, . . . , n. Thus, the inequality
is proved. The equality holds for a1 = a2 = · · ·= an.

P 1.241. Let a1, a2, . . . , an (n≥ 3) be real numbers such that a1+ a2+ · · ·+ an = n.

(a) If a1 ≥ 1≥ a2 ≥ · · · ≥ an, then

a3
1 + a3

2 + · · ·+ a3
n + 2n≥ 3(a2

1 + a2
2 + · · ·+ a2

n);

(b) If a1 ≤ 1≤ a2 ≤ · · · ≤ an, then

a3
1 + a3

2 + · · ·+ a3
n + 2n≤ 3(a2

1 + a2
2 + · · ·+ a2

n).

(Vasile C., 2007)

Solution. (a) Write the inequality as
∑

(a3
1 − 3a2

1 + 3a1 − 1)≥ 0,

∑

(a1 − 1)3 ≥ 0,

(a1 − 1)3 ≥ (1− a2)
3 + · · ·+ (1− an)

3,
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[(1− a2) + · · ·+ (1− an)]
3 ≥ (1− a2)

3 + · · ·+ (1− an)
3.

Clearly, the last inequality is true. The equality holds for a1 = a2 = · · · = an = 1,
and also for a1 = 2, a2 = · · ·= an−1 = 1, an = 0.

(b) Similarly, write the inequality as
∑

(a3
1 − 3a2

1 + 3a1 − 1)≤ 0,

∑

(1− a1)
3 ≥ 0,

(1− a1)
3 ≥ (a2 − 1)3 + · · ·+ (an − 1)3,

[(a2 − 1) + · · ·+ (an − 1)]3 ≥ (a2 − 1)3 + · · ·+ (an − 1)3.

The last inequality is obviously true. The equality holds for a1 = a2 = · · ·= an = 1,
and also for a1 = 0, a2 = · · ·= an−1 = 1, an = 2.

P 1.242. Let a1, a2, . . . , an (n ≥ 3) be nonnegative real numbers such that a1 + a2 +
· · ·+ an = n.

(a) If a1 ≥ 1≥ a2 ≥ · · · ≥ an, then

a4
1 + a4

2 + · · ·+ a4
n + 5n≥ 6(a2

1 + a2
2 + · · ·+ a2

n);

(b) If a1 ≤ 1≤ a2 ≤ · · · ≤ an, then

a4
1 + a4

2 + · · ·+ a4
n + 6n≤ 7(a2

1 + a2
2 + · · ·+ a2

n).

(Vasile C., 2007)

Solution. (a) Write the inequality as
∑

(a4
1 − 6a2

1 + 8a1 − 3)≥ 0,

∑

(a1 − 1)3(a1 + 3)≥ 0,

(a1 − 1)3(a1 + 3)≥ (1− a2)
3(a2 + 3) + · · ·+ (1− an)

3(an + 3).

Since

(a1 − 1)3 = [(1− a2) + · · ·+ (1− an)]
3 ≥ (1− a2)

3 + · · ·+ (1− an)
3,

it suffices to show that

[(1− a2)
3 + · · ·+ (1− an)

3](a1 + 3)≥ (1− a2)
3(a2 + 3) + · · ·+ (1− an)

3(an + 3),
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which is equivalent to the obvious inequality

(1− a2)
3(a1 − a2) + · · ·+ (1− an)

3(a1 − an)≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1.

(b) Write the inequality as
∑

(a4
1 − 7a2

1 + 10a1 − 4)≤ 0,

∑

(a1 − 1)2(a2
1 + 2a1 − 4)≤ 0,

(a2 − 1)2(a2
2 + 2a2 − 4) + · · ·+ (an − 1)2(a2

n + 2an − 4)≤ (1− a1)
2(4− 2a1 − a2

1).

Since

(1− a1)
2 = [(a2 − 1) + · · ·+ (an − 1)]2 ≥ (a2 − 1)2 + · · ·+ (an − 1)2,

it suffices to show that

(a2−1)2(a2
2+2a2−4)+· · ·+(an−1)2(a2

n+2an−4)≤ [(a2−1)2+· · ·+(an−1)2](4−2a1−a2
1),

which is equivalent to

(a2 − 1)2(a2
1 + a2

2 + 2a1 + 2a2 − 8) + · · ·+ (an − 1)2(a2
1 + a2

n + 2a1 + 2an − 8)≤ 0.

This inequality is true if

a2
1 + a2

n + 2a1 + 2an − 8≤ 0.

Since

a1 + an = n− (a2 + · · ·+ an−1) = 2+ (1− a2) + · · ·+ (1− an−1)≤ 2,

we have

a2
1 + a2

n + 2a1 + 2an − 8= (a1 + an + 1)2 − 9− 2a1an ≤ (a1 + an + 1)2 − 9≤ 0.

The equality holds for a1 = a2 = · · ·= an = 1, and also for a1 = 0, a2 = · · ·= an−1 =
1, an = 2.

Remark. The inequality in (a) remains valid for all real a1, a2, . . . , an such that

a1 + a2 + · · ·+ an = n, a1 ≥ 1≥ a2 ≥ · · · ≥ an.
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P 1.243. If a1, a2, . . . , an are positive real numbers such that

a1 ≥ 1≥ a2 ≥ · · · ≥ an,
1
a1
+

1
a2
+ · · ·+

1
an
= n,

then
a2

1 + a2
2 + · · ·+ a2

n + 2n≥ 3(a1 + a2 + · · ·+ an).

(Vasile C., 2008)

Solution. Write the inequality as follows:

(a1 − 1)(a1 − 2) + (a2 − 1)(a2 − 2) + · · ·+ (an − 1)(an − 2)≥ 0,

(a1 − 1)(a1 − 2)≥ (1− a2)(a2 − 2) + · · ·+ (1− an)(an − 2),
�

1−
1
a1

�

(a2
1 − 2a1)≥

�

1
a2
− 1

�

(a2
2 − 2a2) + · · ·+

�

1
an
− 1

�

(a2
n − 2an),

��

1
a2
− 1

�

+ · · ·+
�

1
an
− 1

��

(a2
1−2a1)≥

�

1
a2
− 1

�

(a2
2−2a2)+· · ·+

�

1
an
− 1

�

(a2
n−2an),

�

1
a2
− 1

�

(a2
1 − 2a1 − a2

2 + 2a2) + · · ·+
�

1
an
− 1

�

(a2
1 − 2a1 − a2

n + 2an)≥ 0,

�

1
a2
− 1

�

(a1 − a2)(a1 + a2 − 2) + · · ·+
�

1
an
− 1

�

(a1 − an)(a1 + an − 2)≥ 0.

Clearly, it suffices to prove that a1 + an − 2≥ 0. Indeed,

a1 + an − 2= n− 2− (a2 + · · ·+ an−1) = (1− a2) + · · ·+ (1− an−1)≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1.

P 1.244. If a1, a2, . . . , an are real numbers such that

a1 ≤ 1≤ a2 ≤ · · · ≤ an, a1 + a2 + · · ·+ an = n,

then

(a)
a1 + 1
a2

1 + 1
+

a2 + 1
a2

2 + 1
+ · · ·+

an + 1
a2

n + 1
≤ n;

(b)
1

a2
1 + 3

+
1

a2
2 + 3

+ · · ·+
1

a2
1 + 3

≤
n
4

.

(Vasile C., 2009)



336 Vasile Cîrtoaje

Solution. (a) Write the inequality as
�

1−
a1 + 1
a2

1 + 1

�

+

�

1−
a2 + 1
a2

2 + 1

�

+ · · ·+
�

1−
an + 1
a2

n + 1

�

≥ 0,

a1(a1 − 1)
a2

1 + 1
+

a2(a2 − 1)
a2

2 + 1
+ · · ·+

an(an − 1)
a2

n + 1
≥ 0,

a2(a2 − 1)
a2

2 + 1
+ · · ·+

an(an − 1)
a2

n + 1
≥

a1(1− a1)
a2

1 + 1
,

a2(a2 − 1)
a2

2 + 1
+ · · ·+

an(an − 1)
a2

n + 1
≥

a1[(a2 − 1) + · · ·+ (an − 1)]
a2

1 + 1
,

(a2 − 1)

�

a2

a2
2 + 1

−
a1

a2
1 + 1

�

+ · · ·+ (an − 1)

�

an

a2
n + 1

−
a1

a2
1 + 1

�

≥ 0,

(a2 − 1)(a2 − a1)(1− a1a2)
a2

2 + 1
+ · · ·+

(an − 1)(an − a1)(1− a1an)
a2

n + 1
≥ 0.

For a1 ≥ 0, it suffices to show that 1− a1an ≥ 0. Indeed,

2
p

a1an ≤ a1 + an = 2+ (1− a2) + · · ·+ (1− an−1)≤ 2.

For a1 ≤ 0, the inequality is also true because

1− a1a2 > 0, · · · , 1− a1an > 0.

The equality holds for a1 = a2 = · · ·= an = 1.

(b) As in the case (a), we write the inequality as

(a2 − 1)(a2 − a1)(3− a1a2 − a1 − a2)
a2

2 + 3
+· · ·+

(an − 1)(an − a1)(3− a1an − a1 − an)
a2

2 + 3
≥ 0.

For a1 ≥ 0, it suffices to show that 3−a1an−a1−an ≥ 0. From (1−a1)(an−1)≥ 0,
we get 3− a1an ≥ 4− a1 − an, hence

1
2
(3− a1an − a1 − an)≥ 2− a1 − an = (a2 − 1) + · · ·+ (an−1 − 1)≥ 0.

For a1 ≤ 0, the inequality is also true because

3− a1a2 − a1 − a2 > 2− a1 − a2 = (a3 − 1) + · · ·+ (an − 1)≥ 0,

· · ·

3− a1an − a1 − an > 2− a1 − an = (a2 − 1) + · · ·+ (an−1 − 1)≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1.
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P 1.245. If a1, a2, . . . , an are nonnegative real numbers such that

a1 ≤ 1≤ a2 ≤ · · · ≤ an, a1 + a2 + · · ·+ an = n,

then
a2

1 − 1

(a1 + 3)2
+

a2
2 − 1

(a2 + 3)2
+ · · ·+

a2
n − 1

(an + 3)2
≥ 0.

(Vasile C., 2009)

Solution. Write the inequality as follows:

a2
2 − 1

(a2 + 3)2
+ · · ·+

a2
n − 1

(an + 3)2
≥

1− a2
1

(a1 + 3)2
,

a2
2 − 1

(a2 + 3)2
+ · · ·+

a2
n − 1

(an + 3)2
≥
[(a2 − 1) + · · ·+ (an − 1)](1+ a1)

(a1 + 3)2
,

(a2 − 1)
�

a2 + 1
(a2 + 3)2

−
a1 + 1
(a1 + 3)2

�

+ · · ·+ (an − 1)
�

an + 1
(an + 3)2

−
a1 + 1
(a1 + 3)2

�

≥ 0,

(a2 − 1)(a2 − a1)(3− a1 − a2 − a1a2)
(a1 + 3)2(a2 + 3)2

+· · ·+
(an − 1)(an − a1)(3− a1 − an − a1an)

(a1 + 3)2(an + 3)2
≥ 0.

It suffices to show that 3− a1 − an − a1an ≥ 0. Since

3− a1 − an − a1an ≥ 3− a1 − an −
1
4
(a1 + an)

2 =
1
4
(2− a1 − an)(6+ a1 + an)≥ 0,

we only need to show that 2− a1 − an ≥ 0. Indeed, we have

2− a1 − an = (a2 − 1) + · · ·+ (an−1 − 1)≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1.

P 1.246. If a1, a2, . . . , an are nonnegative real numbers such that

a1 ≥ 1≥ a2 ≥ · · · ≥ an, a1 + a2 + · · ·+ an = n,

then
1

3a3
1 + 4

+
1

3a3
2 + 4

+ · · ·+
1

3a3
n + 4

≥
n
7

.

(Vasile C., 2009)
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Solution. Write the inequality as follows:
�

1
3a3

2 + 4
−

1
7

�

+ · · ·+
�

1
3a3

n + 4
−

1
7

�

≥
1
7
−

1
3a3

1 + 4
,

1− a3
2

3a3
2 + 4

+ · · ·+
1− a3

n

3a3
n + 4

≥
a3

1 − 1

3a3
1 + 4

,

1− a3
2

3a3
2 + 4

+ · · ·+
1− a3

n

3a3
n + 4

≥
[(1− a2) + · · ·+ (1− an)](1+ a1 + a2

1)

3a3
1 + 4

,

(1−a2)

�

1+ a2 + a2
2

3a3
2 + 4

−
1+ a1 + a2

1

3a3
1 + 4

�

+· · ·+(1−an)

�

1+ an + a2
n

3a3
n + 4

−
1+ a1 + a2

1

3a3
1 + 4

�

≥ 0.

It suffices to show that

1+ ai + a2
i

3a3
i + 4

−
1+ a1 + a2

1

3a3
1 + 4

≥ 0

for i = 2, . . . , n. Write these inequalities as

(a1 − ai)Ei ≥ 0,

where

Ei = 3a2
1a2

i + 3a1ai(a1 + ai) + 3(a2
1 + a1ai + a2

i )− 4(a1 + ai)− 4

= (a1 + ai)(3a1 + 3ai − 4+ 3a1ai) + 3a2
1a2

i − 3a1ai − 4.

Since
a1 + ai ≥ a1 + an = 2+ (1− a2) + · · ·+ (1− an−1)≥ 2,

we have

Ei ≥ 2(6− 4+ 3a1ai) + 3a2
1a2

i − 3a1ai − 4= 3a1ai + 3a2
1a2

i ≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1, and also for a1 = 2, a2 = · · ·= an−1 =
1, an = 0.

P 1.247. If a1, a2, . . . , an are nonnegative real numbers such that

a1 ≤ 1≤ a2 ≤ · · · ≤ an, a1 + a2 + · · ·+ an = n,

then
√

√ 3a1

4− a1
+

√

√ 3a2

4− a2
+ · · ·+

√

√ 3an

4− an
≤ n.

(Vasile C., 2009)
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Solution. Write the inequality as follows:

�√

√ 3a1

4− a1
− 1

�

+

�√

√ 3a2

4− a2
− 1

�

+ · · ·+
�√

√ 3an

4− an
− 1

�

≤ 0.

a1 − 1

4− a1 +
p

3a1(4− a1)
+

a2 − 1

4− a2 +
p

3a2(4− a2)
+ · · ·+

an − 1

4− an +
p

3an(4− an)
≤ 0,

a2 − 1

4− a2 +
p

3a2(4− a2)
+ · · ·+

an − 1

4− an +
p

3an(4− an)
≤
(a2 − 1) + · · ·+ (an − 1)

4− a1 +
p

3a1(4− a1)
,

(a2 − 1)E2 + · · ·+ (an − 1)En ≥ 0,

where

E j =
1

4− a1 +
p

3a1(4− a1)
−

1

4− a j +
Æ

3a j(4− a j)
, j = 2, . . . , n.

It suffices to show that all E j ≥ 0. The inequality E j ≥ 0 is equivalent to

q

3a j(4− a j)−
Æ

3a1(4− a1)≥ a j − a1,

3(a j − a1)(4− a1 − a j)
Æ

3a j(4− a j) +
p

3a1(4− a1)
≥ a j − a1.

This is true if
Æ

3a1(4− a1) +
q

3a j(4− a j)≤ 3(4− a1 − a j).

We have

a1 + a j − 2≤ a1 + an − 2= (1− a2) + · · ·+ (1− an−1)≤ 0.

Denote
x = a1 + a j, x ≤ 2.

Since
Æ

3a1(4− a1) +
q

3a j(4− a j)≤
q

2[3a1(4− a1) + 3a j(4− a j)]≤
p

24x − 3x2,

it suffices to show that
p

24x − 3x2 ≤ 3(4− x),

which is equivalent to the obvious inequality

(2− x)(6− x)≥ 0.

The equality holds for a1 = a2 = · · ·= an = 1.
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P 1.248. If a1, a2, . . . , an are nonnegative real numbers such that

a1 ≤ 1≤ a2 ≤ · · · ≤ an, a2
1 + a2

2 + · · ·+ a2
n = n,

then
1

3− a1
+

1
3− a2

+ · · ·+
1

3− an
≤

n
2

.

(Vasile C., 2009)

Solution. Write the inequality as follows:
�

2
3− a1

− 1
�

+
�

2
3− a1

− 1
�

+ · · ·+
�

2
3− a1

− 1
�

≤ 0.

a1 − 1
3− a1

+
a2 − 1
3− a2

+ · · ·+
an − 1
3− an

≤ 0,

a2 − 1
3− a2

+ · · ·+
an − 1
3− an

≤
1− a1

3− a1
,

a2
2 − 1

(1+ a2)(3− a2)
+ · · ·+

a2
n − 1

(1+ an)(3− an)
≤

1− a2
1

(1+ a1)(3− a1)
,

a2
2 − 1

(1+ a2)(3− a2)
+ · · ·+

a2
n − 1

(1+ an)(3− an)
≤
(a2

2 − 1) + · · ·+ (a2
n − 1)

(1+ a1)(3− a1)
,

(a2
2 − 1)E2 + · · ·+ (a2

n − 1)En ≤ 0,

where
E j =

1
(1+ a j)(3− a j)

−
1

(1+ a1)(3− a1)
, j = 2, . . . , n.

It suffices to show that E j ≤ 0, which is equivalent to

(a j − a1)(a1 + a j − 2)≤ 0.

This is true because

a1 + ai − 2≤ a1 + an − 2= (1− a2) + · · ·+ (1− an−1)≤ 0.

The equality holds for a1 = a2 = · · ·= an = 1.

P 1.249. If a1, a2, . . . , an are real numbers such that

a1 ≤ 1≤ a2 ≤ · · · ≤ an, a1 + a2 + · · ·+ an = n,

then
(1+ a2

1)(1+ a2
2) · · · (1+ a2

n)≥ 2n.

(Vasile C., 2009)
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Solution. Use the substitutions a1 = 1− S and

a2 = b2 + 1, . . . , an = bn + 1,

where S and b2, . . . , bn are nonnegative real numbers such that

S = b2 + · · ·+ bn.

We have
1
2
(1+ a2

1) = 1− S +
1
2

S2,

1
2
(1+ a2

i ) = 1+ bi +
1
2

b2
i , i = 2, . . . , n,

and, by Lemma below,

1
2n−1

(1+ a2
2) · · · (1+ a2

n) =
�

1+ b2 +
1
2

b2
2

�

· · ·
�

1+ bn +
1
2

b2
n

�

≥ 1+ S +
1
2

S2.

Therefore, it suffices to show that
�

1− S +
1
2

S2
��

1+ S +
1
2

S2
�

≥ 1,

which is equivalent to S4 ≥ 0. The equality holds for a1 = a2 = · · ·= an = 1.

Lemma. If c1, c2, . . . , ck are nonnegative real numbers such that c1+c2+· · ·+ck = S,
then

�

1+ c1 +
1
2

c2
1

��

1+ c2 +
1
2

c2
2

�

· · ·
�

1+ ck +
1
2

c2
k

�

≥ 1+ S +
1
2

S2.

Proof. We have
∏

1≤i≤k

�

1+ ci +
1
2

c2
i

�

≥ 1+
∑

1≤i≤k

�

ci +
1
2

c2
i

�

+
∑

1≤i< j≤k

�

ci +
1
2

c2
i

��

c j +
1
2

c2
j

�

≥ 1+
∑

1≤i≤k

�

ci +
1
2

c2
i

�

+
∑

1≤i< j≤k

cic j

= 1+ S +
1
2

S2.

P 1.250. If a1, a2, . . . , an are positive real numbers such that

a1 ≥ 1≥ a2 ≥ · · · ≥ an, a1a2 · · · an = 1,

then
1

a1 + 1
+

1
a2 + 1

+ · · ·+
1

an + 1
≥

n
2

.

(Vasile C., 2009)
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Solution. We use the induction method. For n = 2, the desired inequality is an
identity. Let us denote

En(a1, a2, . . . , an) =
1

a1 + 1
+

1
a2 + 1

+ · · ·+
1

an + 1
−

n
2

.

We will show that

En(a1, a2, a3, . . . , an)≥ En(a1a2, 1, a3, . . . , an−1, an)≥ 0

for n≥ 3.
The right inequality can be written as

En−1(a1a2, a3, . . . , an−1, an)≥ 0.

Since
a1a2 =

1
a3 · · · an−1an

≥ 1

and
(a1a2)a3 · · · an−1an = 1,

the right inequality follows by the induction hypothesis.
The left inequality is equivalent to

1
a1 + 1

+
1

a2 + 1
≥

1
a1a2 + 1

+
1
2

,

1− a2

2(a2 + 1)
≥

a1(1− a2)
(a1 + 1)(a1a2 + 1)

,

which is true if
(a1 + 1)(a1a2 + 1)≥ 2a1(a2 + 1).

This inequality can be written in the obvious form

(a1 − 1)(a1a2 − 1)≥ 0.

The equality holds for a1 ≥ 1= a2 = · · ·= an−1 ≥ an.

P 1.251. If a1, a2, . . . , an are positive real numbers such that

a1 ≥ 1≥ a2 ≥ · · · ≥ an, a1a2 · · · an = 1,

then
1

(a1 + 2)2
+

1
(a2 + 2)2

+ · · ·+
1

(an + 2)2
≥

n
9

.

(Vasile C., 2009)
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Solution. We use the induction method. For n= 2, the desired inequality is equiv-
alent to

(a1 − 1)4 ≥ 0.

Let us denote

En(a1, a2, . . . , an) =
1

(a1 + 2)2
+

1
(a2 + 2)2

+ · · ·+
1

(an + 2)2
−

n
9

.

To end the proof, it suffices to show that

En(a1, a2, a3, . . . , an−1, an)≥ En(a1, 1, a3, . . . , an−1, a2an)≥ 0

for n≥ 3.
The right inequality can be written as

En−1(a1, a3, . . . , an−1, a2an)≥ 0.

Since
a2an ≤ an ≤ an−1

and
a1a3 . . . an−1(a2an) = 1,

the inequality follows by the induction hypothesis.
The left inequality is equivalent to

1
(a2 + 2)2

+
1

(an + 2)2
≥

1
9
+

1
(a2an + 2)2

.

Denoting
s = a2 + an, p = a2an, s ≤ 2, p ≤ 1,

the inequality becomes

s2 + 4s+ 8− 2p
(2s+ 4+ p)2

≥
p2 + 4p+ 13

9(p+ 2)2
,

(1+ p− s)(As+ B)≥ 0,

where
A= 16− 20p− 5p2, B = 80− 32p− 29p2 − p3 > 0.

Since
1+ p− s = (1− a2)(1− an)≥ 0,

we only need to show that As+ B ≥ 0. For the nontrivial case A< 0, we get

As+ B ≥ 2A+ B = 112− 72p− 39p2 − p3 = (1− p)(112+ 40p+ p2)≥ 0.

This completes the proof. The equality holds for a1 = a2 = · · ·= an = 1.
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Remark. Similarly, we can prove the following generalization:

• Let a1, a2, . . . , an be positive real numbers such that

a1 ≥ 1≥ a2 ≥ · · · ≥ an, a1a2 · · · an = 1.

If k ≥ 1, then

1
(a1 + k)k

+
1

(a2 + k)k
+ · · ·+

1
(an + k)k

≥
n

(1+ k)k
.

For n= 2, the desired inequality is true if g(x)≥ 0 for x ≥ 1, where

g(x) =
1

(x + k)k
+

x k

(kx + 1)k
−

2
(1+ k)k

,

g ′(x)
k
=

x k−1(x + k)k+1 − (kx + 1)k+1

(x + k)k+1(kx + 1)k+1
.

It suffices to show that h(x)≥ 0 for x ≥ 1, where

h(x) = (k− 1) ln x + (k+ 1) ln(x + k)− (k+ 1) ln(kx + 1),

h′(x) =
k− 1

x
+

k+ 1
x + k

−
k(k+ 1)
kx + 1

=
k(k− 1)(x − 1)2

(x + k)(kx + 1)
.

Since h′(x)≥ 0, h(x) is increasing for x ≥ 1, hence

h(x)≥ h(1) = 0.

Let

En(a1, a2, . . . , an) =
1

(a1 + k)k
+

1
(a2 + k)k

+ · · ·+
1

(an + k)k
−

n
(1+ k)k

.

It suffices to show that

En(a1, a2, a3, . . . , an−1, an)≥ En(a1, 1, a3, . . . , an−1, a2an)≥ 0.

The right inequality follows by the induction hypothesis, while the left inequality
is equivalent to

f1(a2) + f1(an)≥ f1(1) + f2(a2an),

where

f1(x) =
1

(x + k)k
.

Using the substitution
a2 = ea, an = eb,
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the inequality becomes

f (a) + f (b)≥ f (0) + f (a+ b),

where

f (x) =
1

(ex + k)k
.

From

f ′′(x) =
k2ex(ex − 1)
(ex + k)k+2

,

it follows that f is concave on (−∞, 0]. Since

0≥ a ≥ b ≥ a+ b,

the inequality f (a) + f (b)≥ f (0) + f (a+ b) follows from Karamata’s inequality.

P 1.252. If a1, a2, . . . , an are positive real numbers such that

a1 ≥ 1≥ a2 ≥ · · · ≥ an, a1a2 · · · an = 1,

then

an
1 + an

2 + · · ·+ an
n − n≥ n2

�

1
a1
+

1
a2
+ · · ·+

1
an
− n

�

.

(Vasile C., 2009)

Solution. We use the induction method. For n= 2, the desired inequality is equiv-
alent to

(a1 − 1)4 ≥ 0.

Let us denote

En(a1, a2, . . . , an) = an
1 + an

2 + · · ·+ an
n − n− n2

�

1
a1
+

1
a2
+ · · ·+

1
an
− n

�

.

We will show that

En(a1, a2, a3, . . . , an−1, an)≥ En(a1, 1, a3, . . . , an−1, a2an)≥ 0.

The right inequality can be written as

En−1(a1, a3, . . . , an−1, a2an)≥ 0.

Since
a2an ≤ an ≤ an−1
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and
a1a3 · · · an−1(a2an) = 1,

the inequality follows by the induction hypothesis.
The left inequality is equivalent to

an
2 + an

n − 1− an
2an

n ≥ n2
�

1
a2
+

1
an
− 1−

1
a2an

�

,

n2
�

1
a2
− 1

��

1
an
− 1

�

≥ (1− an
2)(1− an

n),

which is true if

n2

a2an
≥ (1+ a2 + · · ·+ an−1

2 )(1+ an + · · ·+ an−1
n ).

Since a2 ≤ 1 and an ≤ 1, this inequality is clearly true. The equality holds for
a1 = a2 = · · ·= an = 1.

P 1.253. If a1, a2, . . . , an (n≥ 3) are real numbers such that

a1 + a2 + · · ·+ an = n, a1 ≥ a2 ≥ 1≥ a3 ≥ · · · ≥ an,

then
a4

1 + a4
2 + · · ·+ a4

n − n≥
14
3
(a2

1 + a2
2 + · · ·+ a2

n − n).

(Vasile C., 2009)

Solution (by Linqaszayi). Using the substitution

ai = 1+ x i, i = 1,2, . . . , n,

which implies

x1 ≥ x2 ≥ 0≥ x3 ≥ · · · ≥ xn, x1 + x2 + · · ·+ xn = 0,

we need to show that E(x1, x2, . . . , xn)≥ 0, where

E(x1, x2, x3, . . . , xn) = 3
n
∑

i=1

x i
4 + 12

n
∑

i=1

x i
3 + 4

n
∑

i=1

x i
2.

We will prove that

E(x1, x2, . . . , xn)≥ E
� x1 + x2

2
,

x1 + x2

2
, x3, . . . , xn

�

≥ 0.
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The left inequality is true because

x4
1 + x4

2 ≥ 2
� x1 + x2

2

�4

, x3
1 + x3

2 ≥ 2
� x1 + x2

2

�3

, x2
1 + x2

2 ≥ 2
� x1 + x2

2

�2

.

To prove the right inequality, we replace x3, . . . , xn with −x3, . . . ,−xn. So, we need
to show that

x1 + x2 = x3 + · · ·+ xn, x1, x2, x3, . . . , xn ≥ 0,

involves

E + 3(x4
3 + · · ·+ x4

n)− 12(x3
3 + · · ·+ x3

n) + 4(x2
3 + · · ·+ x2

n)≥ 0,

where

E = 6
� x1 + x2

2

�4

+ 24
� x1 + x2

2

�3

+ 8
� x1 + x2

2

�2

= 6A4 + 24A3 + 8A2,

with
A=

x3 + · · ·+ xn

2
.

Since

A4 ≥
x4

3 + · · ·+ x4
n

16
, A3 ≥

x3
3 + · · ·+ x3

n

8
, A2 ≥

x2
3 + · · ·+ x2

n

4
,

we have

E ≥
3
8
(x4

3 + · · ·+ x4
n) + 3(x3

3 + · · ·+ x3
n) + 2(x2

3 + · · ·+ x2
n).

Therefore, it suffices to show that
�

3
8
+ 3

�

(x4
3 + · · ·+ x4

n) + (3− 12)(x3
3 + · · ·+ x3

n) + (2+ 4)(x2
3 + · · ·+ x2

n)≥ 0,

which is equivalent to the obvious inequality

x2
3(3x3 − 4)2 + · · ·+ x2

n(3x2
n − 4)2 ≥ 0.

This completes the proof. The equality holds for a1 = a2 = · · · = an = 1, and also
for

a1 = a2 =
5
3

, a3 = · · ·= an−1 = 1, an =
−1
3

.

P 1.254. Let a1, a2, . . . , an be positive real numbers such that

a1 ≥ 1≥ a2 ≥ · · · ≥ an, a1a2 · · · an = 1.

Prove that
1− a1

3+ a2
1

+
1− a2

3+ a2
2

+ · · ·+
1− an

3+ a2
n

≥ 0.

(Vasile C., 2013)
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Solution. We use the induction method. For n= 2, the desired inequality is equiv-
alent to

(a1 − 1)4 ≥ 0.

Let us denote

En(a1, a2, . . . , an) =
1− a1

3+ a2
1

+
1− a2

3+ a2
2

+ · · ·+
1− an

3+ a2
n

.

We will show that

En(a1, . . . , an−2, an−1, an)≥ En(a1, . . . , an−2, 1, an−1an)≥ 0.

The right inequality can be written as

En−1(a1, a2, . . . , an−2, an−1an)≥ 0.

Since
a1 ≥ 1≥ a2 ≥ · · · ≥ an−2 ≥ an−1an,

and
a1a2 · · · an−2(an−1an) = 1,

the inequality follows by the induction hypothesis.
The left inequality reduces to

1− an−1

3+ a2
n−1

+
1− an

3+ a2
n

≥
1− an−1an

3+ a2
n−1a2

n

,

which is equivalent to the obvious inequality

(1− an−1)(1− an)(3+ an−1an)(3− an−1an − a2
n−1an − an−1a2

n)≥ 0.

Thus, the proof is completed. The equality holds for a1 = a2 = · · ·= an = 1.

P 1.255. Let a1, a2, . . . , an (n≥ 3) be nonnegative real numbers such that

a1 ≥ · · · ≥ ak ≥ 1≥ ak+1 ≥ · · · ≥ an, 1≤ k ≤ n− 1,

and
a1 + a2 + · · ·+ an = p.

Prove that

(a) if p ≥ k , then

a2
1 + a2

2 + · · ·+ a2
n ≤ (p− k+ 1)2 + k− 1;
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(b) if k ≤ p ≤ n , then

a2
1 + a2

2 + · · ·+ a2
n ≥

p2 − 2kp+ kn
n− k

;

(c) if p ≥ n , then

a2
1 + a2

2 + · · ·+ a2
n ≥

p2 − 2(n− k)p+ n(n− k)
k

.

(Vasile C., 2015)

First Solution. (a) For k = 1, the inequality is equivalent to a2
1+a2

2+ · · ·+a2
n ≤ p2,

which is clearly true. For k ≥ 2, write the inequality as

[(p− k+ 1)2 − a2
1] + (1− a2

2) + · · ·+ (1− a2
k)− a2

k+1 − · · · − a2
n ≥ 0,

(p−k+1−a1)(n−k+1+a1)≥ (a2−1)(a2+1)+· · ·+(ak−1)(ak+1)+a2
k+1+· · ·+a2

n.

Since
p− k+ 1− a1 = (a2 − 1) + · · ·+ (ak − 1) + ak+1 + · · ·+ an ≥ 0

and

(p− k+ 1+ a1)− (a2 + 1) = (p− k+ 1− a1) + (a1 − a2) + (a1 − 1)≥ 0,

we have

(p− k+ 1− a1)(p− k+ 1+ a1)≥ (p− k+ 1− a1)(a2 + 1).

In addition, we have

(a2 − 1)(a2 + 1) + · · ·+ (ak − 1)(ak + 1)≤ (a2 − 1)(a2 + 1) + · · ·+ (ak − 1)(a2 + 1)
= (a2 + · · ·+ ak − k+ 1)(a2 + 1).

Thus, it suffices to show that

(p− k+ 1− a1)(a2 + 1)≥ (a2 + · · ·+ ak − k+ 1)(a2 + 1) + a2
k+1 + · · ·+ a2

n,

which is equivalent to

(ak+1 + · · ·+ an)(a2 + 1)≥ a2
k+1 + · · ·+ a2

n.

Indeed, we have

(ak+1 + · · ·+ an)(a2 + 1)≥ ak+1 + · · ·+ an ≥ a2
k+1 + · · ·+ a2

n.

The equality holds for

a1 = p− k+ 1, a2 = · · ·= ak = 1, ak+1 = · · ·= an = 0.
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(b) Let

A= a1 + · · ·+ ak, B = ak+1 + · · ·+ an, A≥ k, A+ B = p ≤ n.

We have
A2 ≤ k(a2

1 + · · ·+ a2
k), B2 ≤ (n− k)(a2

k+1 + · · ·+ a2
n),

hence
A2

k
+

B2

n− k
≤ a2

1 + a2
2 + · · ·+ a2

n.

Thus, it suffices to show that

n− k
k

A2 + B2 ≥ p2 − 2kp+ kn,

which is equivalent to

n− k
k

A2 + B2 ≥ (A+ B)2 − 2k(A+ B) + kn,

n− 2k
k

A2 + 2kA− kn≥ 2kB(A− k),

(A− k)
�

n− 2k
k

A+ n
�

≥ 2kB(A− k),

(A− k)
�

n− 2k
k

A+ n− 2kB
�

≥ 0,

(A− k)
hn

k
(A− k) + 2(n− A− B)

i

≥ 0.

The equality holds for

a1 = · · ·= ak = 1, ak+1 = · · ·= an =
p− k
n− k

.

(c) Let

A= a1 + · · ·+ ak, B = ak+1 + · · ·+ an, B ≤ n− k, A+ B = p ≥ n.

We have
A2 ≤ k(a2

1 + · · ·+ a2
k), B2 ≤ (n− k)(a2

k+1 + · · ·+ a2
n),

hence
A2

k
+

B2

n− k
≤ a2

1 + a2
2 + · · ·+ a2

n.

Thus, it suffices to show that

A2 +
k

n− k
B2 ≥ p2 − 2(n− k)p+ (n− k)n,
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which is equivalent to

A2 +
k

n− k
B2 ≥ (A+ B)2 − 2(n− k)(A+ B) + (n− k)n,

2A(n− k− B) +
2k− n
n− k

B2 + 2(n− k)B − (n− k)n≥ 0,

2A(n− k− B)− (n− k− B)
�

n+
2k− n
n− k

B
�

≥ 0,

(n− k− B)
�

2A− n−
2k− n
n− k

B
�

≥ 0,

(n− k− B)
�

2(A+ B − n) +
n(n− k− B)

n− k

�

≥ 0.

The equality holds for

a1 = · · ·= ak =
p− n+ k

k
, ak+1 = · · ·= an = 1.

Second Solution. The desired inequalities can be proved by applying Karamata’s
inequality to the convex function f (u) = u2. In the case (a), the decreasingly
ordered sequence (p − k + 1,1, . . . , 1, 0, . . . , 0) majorizes the decreasingly ordered
sequence (a1, a2, . . . , an); that is

(p− k+ 1,1, . . . , 1, 0, . . . , 0)� (a1, a2, . . . , ak, ak+1, . . . , an).

Also, in the cases (b) and (c), we have

(a1, a2, . . . , ak, ak+1, . . . , an)�
�

1, 1, . . . , 1,
p− k
n− k

, . . . ,
p− k
n− k

�

and

(a1, a2, . . . , ak, ak+1, . . . , an)�
�

p− n+ k
k

,
p− n+ k

k
, . . . ,

p− n+ k
k

, 1, . . . , 1
�

,

respectively

P 1.256. Let a1, a2, . . . , an (n≥ 3) be nonnegative real numbers such that

a1 ≥ · · · ≥ ak ≥ 1≥ ak+1 ≥ · · · ≥ an, 1≤ k ≤ n− 1,

and
a1 + a2 + · · ·+ an = n, a2

1 + a2
2 + · · ·+ a2

n = q,

where q is a fixed number. Prove that the product r = a1a2 · · · an is maximum when

a2 = · · ·= ak = 1, ak+1 = · · ·= an.

(Vasile C., 2015)
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Solution. We show first that there exists a unique n-tuple (a1, a2, . . . , an) such that

a1 ≥ a2 = · · ·= ak = 1≥ ak+1 = · · ·= an.

By the Cauchy-Schwarz inequality

n(a2
1 + a2

2 + · · ·+ a2
n)≥ (a1 + a2 + · · ·+ an)

2,

we get q ≥ n. Since q = n involves a1 = a2 = · · · = an = 1, consider further that
q > n. For

a1 := x , a2 = · · ·= ak = 1, ak+1 = · · ·= an := y,

we get

x = 1+

√

√(n− k)(q− n)
n− k+ 1

, y = 1−
√

√ q− n
(n− k)(n− k+ 1)

.

Since x ≥ 1 and y ≤ 1, we only need to show that y ≥ 0. This is equivalent to

q ≤ (n− k+ 1)2 + k− 1,

which is the inequality (a) in P 1.255.
Consider that r is maximum at (b1, b2, . . . , bn), where

b1 ≥ · · · ≥ bk ≥ 1≥ bk+1 ≥ · · · ≥ bn.

We will show now, by the contradiction method, that

b2 = · · ·= bk = 1, bk+1 = · · ·= bn.

To show that bk+1 = · · ·= bn for 1≤ k ≤ n− 2, assume that

bk+1 6= bn.

For
a2 = b2, . . . , ak = bk, ak+2 = bk+2, . . . , an−1 = bn−1,

we have a1 + ak+1 + an = constant and a2
1 + a2

k+1 + a2
n = constant, where

a1 ≥ 1≥ ak+1 ≥ an.

According to P 1.168, the product a1ak+1an is maximum for ak+1 = an, which con-
tradicts the assumption that bk+1 6= bn. From this contradiction, it follows that
bk+1 = · · ·= bn.

To show that b2 = · · ·= bk = 1 for 2≤ k ≤ n− 1, assume that

b2 6= 1.

For
a3 = b3, . . . , an−1 = bn−1,
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we have a1 + a2 + an = constant and a2
1 + a2

2 + a2
n = constant, where

a1 ≥ a2 ≥ 1≥ an.

According to P 1.171, the product a1a2an is maximum for a2 = 1 or an = 1. The first
case contradicts the assumption that b2 6= 1, while the second case involves bn = 1,
hence b1 = b2 = · · ·= bn = 1 (because b1 ≥ b2 ≥ · · · ≥ bn and b1+b2+· · ·+bn = n),
which also contradicts the assumption that b2 6= 1; as a consequence, we have
b2 = 1, which involves b2 = · · ·= bk = 1.

P 1.257. If a1, a2, . . . , an are nonnegtive real numbers such that

a1 ≤ 1≤ a2 ≤ · · · ≤ an, a1 + a2 + · · ·+ an = n,

then
(a1a2 · · · an)

2
n (a2

1 + a2
2 + · · ·+ a2

n)≤ n.

(Vasile C., 2015)

Solution. For n= 2, we need to show that a1 + a2 = 2 implies

a1a2(a
2
1 + a2

2)≤ 2.

Indeed, we have

16− 8a1a2(a
2
1 + a2

2) = (a1 + a2)
4 − 8a1a2(a

2
1 + a2

2) = (a1 − a2)
4 ≥ 0.

For n ≥ 3, according to the preceding P 1.256, it suffices to consider the case
a2 = · · ·= an−1 = 1. Thus, we only need to show that a1 + an = 2 involves

(a1an)
2
n (a2

1 + a2
n + n− 2)≤ n.

This is true if f (x)≤ ln n for x ∈ (0,2), where

f (x) =
2
n
[ln x + ln(2− x)] + ln(2x2 − 4x + n+ 2).

From the derivative

f ′(x) =
2
n

�

1
x
−

1
2− x

�

+
4(x − 1)

2x2 − 4x + n+ 2
=

4(n+ 2)(1− x)3

nx(2− x)(2x2− 4x + n+ 2)
,

it follows that f (x) is increasing on (0,1] and decreasing on [1, 2); therefore,

f (x)≤ f (1) = ln n.

The equality holds for a1 = a2 = · · ·= an = 1.
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P 1.258. Let a1, a2, . . . , an (n≥ 3) be nonnegative real numbers such that

a1 ≥ · · · ≥ ak ≥ 1≥ ak+1 ≥ · · · ≥ an, 1≤ k ≤ n− 1,

and
a1 + a2 + · · ·+ an = p, a2

1 + a2
2 + · · ·+ a2

n = q,

where p and q are fixed numbers.
(a) For p ≤ n, the product r = a1a2 · · · an is maximum when a2 = · · · = ak = 1

and ak+1 = · · ·= an;
(b) For p ≥ n and q ≥ n−1+(p−n+1)2, the product r = a1a2 · · · an is maximum

when a2 = · · ·= ak = 1 and ak+1 = · · ·= an;
(c) For p ≥ n and q < n−1+(p−n+1)2, the product r = a1a2 · · · an is maximum

when a2 = · · ·= ak and ak+1 = · · ·= an = 1.

(Vasile Cîrtoaje and Linqaszayi, 2015)

Solution. (a) For p = k, we have

a1 = · · ·= ak = 1, ak+1 = · · ·= an = 0.

Consider further that p > k. We show first that there exists a unique n-tuple
(a1, a2, . . . , an) such that

a1 ≥ a2 = · · ·= ak = 1≥ ak+1 = · · ·= an.

According to P 1.255, we have

p2 − 2pk+ kn
n− k

≤ q ≤ (p− k+ 1)2 + k− 1.

For a1 := x , a2 = · · ·= ak = 1 and ak+1 = · · ·= an := y , from

a1 + a2 + · · ·+ an = p, a2
1 + a2

2 + · · ·+ a2
n = q,

we get
x + (n− k)y = p− k+ 1, x2 + (n− k)y2 = q− k+ 1.

We need to show that this system has a unique solution (x , y) such that x ≥ 1 ≥
y ≥ 0. From the system equations, we get f (x) = 0, where

f (x) = (n− k+ 1)x2 − 2(p− k+ 1)x + (p− k+ 1)2 − (n− k)(q− k+ 1).

We have

f (1) = (n− k)

�

p2 − 2pk+ kn
n− k

− q

�

≤ 0

and
f (p− k+ 1) = (n− k)[(p− k+ 1)2 + k− 1− q]≥ 0.
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Therefore, the equation f (x) = 0 has a single root x ∈ [1, p−k+1]. From 1≤ x ≤
p− k+ 1, we get

1≤ p− k+ 1− (n− k)y ≤ p− k+ 1,

hence

1≥
p− k
n− k

≥ y ≥ 0.

Consider now that r is maximum at (b1, b2, . . . , bn), where

b1 ≥ · · · ≥ bk ≥ 1≥ bk+1 ≥ · · · ≥ bn.

Applying the contradiction method as in P 1.256, we get

b2 = · · ·= bk = 1, bk+1 = · · ·= bn.

(b) We show first that there exists a unique n-tuple (a1, a2, . . . , an) such that

a1 ≥ a2 = · · ·= ak = 1≥ ak+1 = · · ·= an.

By hypothesis and P 1.255-(a), we have

n− 1+ (p− n+ 1)2 ≤ q ≤ (p− k+ 1)2 + k− 1.

As in the case (a), we need to show that the system

x + (n− k)y = p− k+ 1, x2 + (n− k)y2 = q− k+ 1,

has a unique solution (x , y) such that x ≥ 1 ≥ y ≥ 0. From the system equations,
we get g(y) = 0, where

g(y) = (n− k)(n− k+ 1)y2 − 2(n− k)(p− k+ 1)y + (p− k+ 1)2 + k− 1− q.

We have
g(0) = (p− k+ 1)2 + k− 1− q ≥ 0

and
g(1) = (p− n+ 1)2 + n− 1− q ≤ 0.

Therefore, the equation g(y) = 0 has a single root y ∈ [0,1]. From y ≤ 1, we get

y =
p− k+ 1− x

n− k
≤ 1,

hence
x ≥ p− n+ 1≥ 1.

Consider now that r is maximum at (b1, b2, . . . , bn), where

b1 ≥ · · · ≥ bk ≥ 1≥ bk+1 ≥ · · · ≥ bn.
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Applying the contradiction method as in P 1.256, we get

bk+1 = · · ·= bn.

We still need to show that
b2 = · · ·= bk = 1

for k ≥ 2. Assume for the sake of contradiction, that

b2 6= 1.

For
a3 = b3, · · · , an−1 = bn−1,

we have a1+a2+an = constant and a2
1+a2

2+a2
n = constant, where a1 ≥ a2 ≥ 1≥

an. According to P 1.171, the product a1a2ak+1 is maximum for a2 = 1 or an = 1.
The first case contradicts the assumption that b2 6= 1. The second case leads to
bn = 1, hence bk+1 = · · ·= bn = 1. From the hypothesis q ≥ n−1+(p−n+1)2 and

q = b2
1 + · · ·+ b2

k + n− k, p = b1 + · · ·+ bk + n− k,

we get
b2

1 + · · ·+ b2
k − k+ 1≥ (b1 + · · ·+ bk − k+ 1)2,

which is equivalent to

(b1 − 1)2 + · · ·+ (bk − 1)2 ≥ [(b1 − 1) + · · ·+ (bk − 1)]2.

This is true only if
b2 − 1= · · ·= bk − 1= 0,

that is,
b2 = · · ·= bk.

This result contradicts also the assumption that b2 6= 1; as a consequence, we have
b2 = 1, which involves b2 = · · ·= bk = 1.

(c) By hypothesis and P 1.255-(c), we have

p2 − 2(n− k)p+ n(n− k)
k

≤ q ≤ n− 1+ (p− n+ 1)2.

For k = 1, these inequalities become

n− 1+ (p− n+ 1)2 ≤ q < n− 1+ (p− n+ 1)2,

which is not possible. Consider further that

k ≥ 2.

We show first that there exists a unique n-tuple (a1, a2, . . . , an) such that

a1 ≥ a2 = · · ·= ak ≥ ak+1 = · · ·= an = 1.
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For a1 := x , a2 = · · ·= ak = y and ak+1 = · · ·= an = 1, from

a1 + a2 + · · ·+ an = p, a2
1 + a2

2 + · · ·+ a2
n = q,

we get
x + (k− 1)y = p− n+ k, x2 + (k− 1)y2 = q− n+ k.

We need to show that this system has a unique solution (x , y) such that x ≥ y ≥ 1.
From the system equations, we get h(y) = 0, where

h(y) = (k− 1)k y2 − 2(k− 1)(p− n+ k)y + (p− n+ k)2 + n− k− q.

We have
h(1) = (p− n+ 1)2 + n− 1− q > 0

and

h
�

p− n+ k
k

�

=
p2 − 2(n− k)p+ n(n− k)

k
− q ≤ 0.

Therefore, the equation hy) = 0 has a single root

y ∈
�

1,
p− n+ k

k

�

.

From

y =
p− n+ k− x

k− 1
≤

p− n+ k
k

,

we get

x ≥
p− n+ k

k
≥ y.

Consider now that r is maximum at (b1, b2, . . . , bn), where

b1 ≥ · · · ≥ bk ≥ 1≥ bk+1 ≥ · · · ≥ bn.

We need to show that

b2 = · · ·= bk, bk+1 = · · ·= bn = 1.

To show that b2 = · · ·= bk for k ≥ 3, assume for the sake of contradiction that

b2 6= bk.

For
a3 = b3, · · · , ak−1 = bk−1, ak+1 = bk+1, · · · , an = bn,

we have a1 + a2 + ak = constant and a2
1 + a2

2 + a2
k = constant, where

a1 ≥ a2 ≥ ak ≥ 1.

According to P 1.169 the product a1a2ak is maximum for a2 = ak, which contradicts
the assumption that b2 6= bk.
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To show that bk+1 = · · · = bn for k ≤ n − 2, assume for the sake of contradiction
that

bk+1 6= bn.

For
a2 = b2, · · · , ak = bk, ak+2 = bk+2, · · · , an−1 = bn−1,

we have a1 + ak+1 + an = constant and a2
1 + a2

k+1 + a2
n = constant, where

a1 ≥ 1≥ ak+1 ≥ an.

According to P 1.168, the product a1ak+1an is maximum for ak+1 = an, which con-
tradicts the assumption that bk+1 6= bn. Therefore, we have

b2 = · · ·= bk := x , bk+1 = · · ·= bn := y.

To end the proof, we still need to show that y = 1. Assume, for the sake of contra-
diction that

y 6= 1.

For
a3 = b3, · · · , an−1 = bn−1,

we have a1 + a2 + an = constant and a2
1 + a2

2 + a2
n = constant, where

a1 ≥ a2 ≥ 1≥ an.

According to P 1.171, the product a1a2an is maximum for an = 1 or a2 = 1, hence
for y = 1 or x = 1. The first case contradicts the assumption that y 6= 1. The
second case leads to

b2 = · · ·= bk = 1, bk+1 = · · ·= bn := y < 1.

From the hypothesis q ≤ n− 1+ (p− n+ 1)2 and

q = b2
1 + k− 1+ (n− k)y2, p = b1 + k− 1+ (n− k)y,

we get
b2

1 + (n− k)(y2 − 1)≤ [b1 + (n− k)(y − 1)]2,

which is equivalent to

(1− y)[(n− k− 1)(1− y)− 2(b1 − 1)]≥ 0.

Under the assumption that y < 1, this inequality implies

(n− k− 1)(1− y)≥ 2(b1 − 1).

On the other hand, the condition p ≥ n is equivalent to

b1 − 1≥ (n− k)(1− y).
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Thus, we have

(n− k− 1)(1− y)≥ 2(b1 − 1)≥ 2(n− k)(1− y),

which involves
−(n− k+ 1)(1− y)≥ 0.

This result contradicts also the assumption y 6= 1.
Remark 1. For p = n, from P 1.258 we get P 1.256.

Remark 2. From P 1.258, we get the following simplified statement.

• Let a1, a2, . . . , an (n≥ 3) be nonnegative real numbers such that

a1 ≥ · · · ≥ ak ≥ 1≥ ak+1 ≥ · · · ≥ an, 1≤ k ≤ n− 1,

and
a1 + a2 + · · ·+ an = p, a2

1 + a2
2 + · · ·+ a2

n = q,

where p and q are fixed numbers. Then, the product r = a1a2 · · · an is maximum when

a2 = · · ·= ak = 1, ak+1 = · · ·= an

or
a2 = · · ·= ak, ak+1 = · · ·= an = 1.

P 1.259. If a1, a2, . . . , an (n≥ 3) are nonnegative real numbers such that

a1 ≤ a2 ≤ 1≤ a3 ≤ · · · ≤ an, a1 + a2 + · · ·+ an = n− 1,

then
a2

1 + a2
2 + · · ·+ a2

n + 10a1a2 · · · an ≤ n+ 1.

(Vasile C., 2015)

Solution. According to P 1.258-(a), it suffices to prove the inequality for

a1 = a2, a3 = · · ·= an−1 = 1.

Thus, we need to show that

2a+ b = 2, 0≤ a ≤ 1/2, b ≥ 1,

implies
2a2 + (n− 3) + b2 + 10a2 b ≤ n+ 1,

which is equivalent to
2a2 + b2 + 10a2 b ≤ 4,
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2a2 + (2− 2a)2 + 10a2(2− 2a)≤ 4,

2a(1− 2a)(4− 5a)≥ 0.

The equality holds for

a1 = a2 = 0, a3 = · · ·= an−1 = 1, an = 2,

and for
a1 = a2 = 1/2, a3 = · · ·= an = 1.

P 1.260. If a, b, c, d, e are nonnegative real numbers such that

a ≤ b ≤ 1≤ c ≤ d ≤ e, a+ b+ c + d + e = 8,

then
a2 + b2 + c2 + d2 + e2 + 3abcde ≤ 38.

(Vasile C., 2015)

Solution. According to Remark 2 from P 1.258, it suffices to prove the inequality
for

a = b, c = d = 1,

and for
a = b = 1, c = d.

Case 1: a = b, c = d = 1. We need to show that

2a+ e = 6, 0≤ a ≤ 1, e ≥ 4,

implies
2a2 + 2+ e2 + 3a2e ≤ 38,

which is equivalent to
2a2 + e2 + 3a2e ≤ 36,

a2 + 2(3− a)2 + 3a2(3− a)≤ 18,

3a(a− 2)2 ≥ 0.

The equality holds for

a = b = 0, c = d = 1, e = 6.

Case 2: a = b = 1, c = d. We need to show that

2c + e = 6, 1≤ c ≤ 2≤ e ≤ 4,
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implies
2+ 2c2 + e2 + 3c2e ≤ 38,

which is equivalent to
2c2 + e2 + 3c2e ≤ 36,

c2 + 2(3− c)2 + 3c2(3− c)≤ 18,

3c(c − 2)2 ≥ 0.

The equality holds for
a = b = 1, c = d = e = 2.
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Chapter 2

Noncyclic Inequalities

2.1 Applications

2.1. If a, b are positive real numbers, then

1
4a2 + b2

+
3

b2 + 4ab
≥

16
5(a+ b)2

.

2.2. If a, b are positive real numbers, then

3a
p

3a+ 3b
p

6a+ 3b ≥ 5(a+ b)
p

a+ b.

2.3. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

(ab+ c)(ac + b)≤ 4.

2.4. If a, b, c are nonnegative real numbers, then

a3 + b3 + c3 − 3abc ≥
1
4
(b+ c − 2a)3.

2.5. Let a, b, c be nonnegative real numbers such that a ≥ b ≥ c. Prove that

(a) a3 + b3 + c3 − 3abc ≥ 2(2b− a− c)3;

(b) a3 + b3 + c3 − 3abc ≥ (a− 2b+ c)3.

363
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2.6. Let a, b, c be nonnegative real numbers such that a ≥ b ≥ c. Prove that

(a) a3 + b3 + c3 − 3abc ≥ 3(a2 − b2)(b− c);

(b) a3 + b3 + c3 − 3abc ≥
9
2
(a− b)(b2 − c2).

2.7. If a, b, c are nonnegative real numbers such that

c =min{a, b, c}, a2 + b2 + c2 = 3,

then

(a) 5b+ 2c ≤ 9;

(b) 5(b+ c)≤ 9+ 3a.

2.8. Let a, b, c be nonnegative real numbers such that a =max{a, b, c}. Prove that

a6 + b6 + c6 − 3a2 b2c2 ≥ 2(b4 + c4 + 4b2c2)(b− c)2.

2.9. Let a, b, c be nonnegative real numbers such that a =max{a, b, c}. Prove that

a2 + b2 + c2 ≥
9abc

a+ b+ c
+

5
3
(b− c)2.

2.10. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
(a+ b)2

+
1

(a+ c)2
+

16
(b+ c)2

≥
6

ab+ bc + ca
.

2.11. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
(a+ b)2

+
1

(a+ c)2
+

2
(b+ c)2

≥
5

2(ab+ bc + ca)
.

2.12. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
(a+ b)2

+
1

(a+ c)2
+

25
(b+ c)2

≥
8

ab+ bc + ca
.
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2.13. If a, b, c are positive real numbers, then

(a+ b)3(a+ c)3 ≥ 4a2 bc(2a+ b+ c)2.

2.14. If a, b, c are positive real numbers such that abc = 1, then

(a)
a
b
+

b
c
+

1
a
≥ a+ b+ 1;

(b)
a
b
+

b
c
+

1
a
≥
p

3(a2 + b2 + 1).

2.15. If a, b, c are positive real numbers such that abc ≥ 1, then

a
a
b b

b
c cc ≥ 1.

2.16. If a, b, c are positive real numbers such that ab+ bc + ca = 3, then

ab2c3 < 4.

2.17. If a, b, c are positive real numbers such that ab+ bc + ca =
5
3

, then

ab2c2 ≤
1
3

.

2.18. Let a, b, c be positive real numbers such that

a ≤ b ≤ c, ab+ bc + ca = 3.

Prove that

(a) ab2c ≤
9
8

;

(b) ab4c ≤ 2;

(c) a2 b3c ≤ 2.
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2.19. Let a, b, c be positive real numbers such that

a ≤ b ≤ c, a+ b+ c =
1
a
+

1
b
+

1
c

.

Prove that

b ≥
1

a+ c − 1
.

2.20. Let a, b, c be positive real numbers such that

a ≤ b ≤ c, a+ b+ c =
1
a
+

1
b
+

1
c

.

Prove that
ab2c3 ≥ 1.

2.21. Let a, b, c be positive real numbers such that

a ≤ b ≤ c, a+ b+ c = abc + 2.

Prove that
(1− b)(1− ab3c)≥ 0.

2.22. Let a, b, c be real numbers, no two of which are zero. Prove that

(a)
(a− b)2

a2 + b2
+
(a− c)2

a2 + c2
≥
(b− c)2

2(b2 + c2)
;

(b)
(a+ b)2

a2 + b2
+
(a+ c)2

a2 + c2
≥
(b− c)2

2(b2 + c2)
.

2.23. Let a, b, c be real numbers, no two of which are zero. If bc ≥ 0, then

(a)
(a− b)2

a2 + b2
+
(a− c)2

a2 + c2
≥
(b− c)2

(b+ c)2
;

(b)
(a+ b)2

a2 + b2
+
(a+ c)2

a2 + c2
≥
(b− c)2

(b+ c)2
.
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2.24. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

|a− b|3

a3 + b3
+
|a− c|3

a3 + c3
≥
|b− c|3

(b+ c)3
.

2.25. Let a, b, c be positive real numbers, b 6= c. Prove that

ab
(a+ b)2

+
ac

(a+ c)2
≤
(b+ c)2

4(b− c)2
.

2.26. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

3bc + a2

b2 + c2
≥

3ab− c2

a2 + b2
+

3ac − b2

a2 + c2
.

2.27. Let a, b, c be nonnegative real numbers such that a+ b > 0. Prove that

abc ≥ (b+ c − a)(c + a− b)(a+ b− c) +
ab(a− b)2

a+ b
.

2.28. Let a, b, c be nonnegative real numbers such that a ≥ b ≥ c. Prove that

(a) abc ≥ (b+ c − a)(c + a− b)(a+ b− c) +
2ab(a− b)2

a+ b
;

(b) abc ≥ (b+ c − a)(c + a− b)(a+ b− c) +
27b(a− b)4

4a2
.

2.29. Let a, b, c be nonnegative real numbers such that a+ b > 0. Prove that

∑

a2(a− b)(a− c)≥ a2 b2
�

a− b
a+ b

�2

.

2.30. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

ab2 + bc2 + 2ca2 ≤ 8.

2.31. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

ab2 + bc2 +
3
2

abc ≤ 4.
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2.32. Let a, b, c be nonnegative real numbers such that a+ b+ c = 5. Prove that

ab2 + bc2 + 2abc ≤ 20.

2.33. If a, b, c are nonnegative real numbers, then

a3 + b3 + c3 − a2 b− b2c − c2a ≥
8
9
(a− b)(b− c)2.

2.34. Let a, b, c be nonnegative real numbers such that a ≥ b ≥ c. Prove that

(a)
∑

a2(a− b)(a− c)≥ 4a2 b2
�

a− b
a+ b

�2

;

(b)
∑

a2(a− b)(a− c)≥
27b(a− b)4

4a
.

2.35. If a, b, c are real numbers such that

a ≥ b ≥ 1≥ c, a2 + b2 + c2 = 3,

then

(a) 1− abc ≤ 2(b− c)2;

(b) 1− abc ≥ 2(a− b)2;

(c) 1− abc ≥
1
2
(a− c)2;

(d) 1− abc ≤
3
4
(a− c)2.

2.36. If a, b, c are real numbers such that

a ≥ 1≥ b ≥ c, a2 + b2 + c2 = 3,

then
1− abc ≤

2
3
(a− c)2.

2.37. If a ≥ 1≥ b ≥ c ≥ 0 and a2 + b2 + c2 = 3, then

1− abc ≤
1
p

2
(a− c).
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2.38. If a ≥ 1≥ b ≥ c ≥ 0 and a2 + b2 + c2 = 3, then

1− abc ≤ (1+
p

2)(a− b).

2.39. If a ≥ 1≥ b ≥ c ≥ 0 and a2 + b2 + c2 = 3, then

1− abc ≤ (3+ 2
p

2)(a− b)2.

2.40. If a, b, c are positive real numbers, then

a
b
+

b
c
+

c
a
≥ 3+

(a− c)2

ab+ bc + ca
.

2.41. If a, b, c are positive real numbers, then

(a)
a
b
+

b
c
+

c
a
≥ 3+

4(a− c)2

(a+ b+ c)2
;

(b)
a
b
+

b
c
+

c
a
≥ 3+

5(a− c)2

(a+ b+ c)2
.

2.42. If a ≥ b ≥ c > 0, then

a
b
+

b
c
+

c
a
≥ 3+

3(b− c)2

ab+ bc + ca
.

2.43. Let a, b, c be positive real numbers such that abc = 1. Prove that

(a) if a ≥ b ≥ 1≥ c, then

a
b
+

b
c
+

c
a
≥ 3+

2(a− b)2

ab
;

(b) if a ≥ 1≥ b ≥ c, then

a
b
+

b
c
+

c
a
≥ 3+

2(b− c)2

bc
.
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2.44. Let a, b, c be positive real numbers such that

a ≥ 1≥ b ≥ c, abc = 1.

prove that
a
b
+

b
c
+

c
a
≥ 3+

9(b− c)2

ab+ bc + ca
.

2.45. Let a, b, c be positive real numbers such that

a ≥ 1≥ b ≥ c, a+ b+ c = 3.

prove that
a
b
+

b
c
+

c
a
≥ 3+

4(b− c)2

b2 + c2
.

2.46. Let a, b, c be positive real numbers such that

a ≥ b ≥ 1≥ c, a+ b+ c = 3.

Prove that
a
b
+

b
c
+

c
a
≥ 3+

3(a− b)2

ab
.

2.47. If a, b, c are positive real numbers, then

a
b
+

b
c
+

c
a
≥ 3+

2(a− c)2

(a+ c)2
.

2.48. If a, b, c are positive real numbers, then

a2

b
+

b2

c
+

c2

a
≥ a+ b+ c +

4(a− c)2

a+ b+ c
.

2.49. If a ≥ b ≥ c > 0, then

a2

b
+

b2

c
+

c2

a
≥ a+ b+ c +

6(b− c)2

a+ b+ c
.
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2.50. If a ≥ b ≥ c > 0, then

a2

b
+

b2

c
+

c2

a
> 5(a− b).

2.51. Let a, b, c be positive real numbers such that

a ≥ b ≥ 1≥ c, a+ b+ c = 3.

Prove that
a2

b
+

b2

c
+

c2

a
≥ 3+

11(a− c)2

4(a+ c)
.

2.52. If a, b, c are positive real numbers, then

a
b+ c

+
b

c + a
+

c
a+ b

≥
3
2
+

27(b− c)2

16(a+ b+ c)2
.

2.53. Let a, b, c be positive real numbers such that a =min{a, b, c}. Prove that

a
b+ c

+
b

c + a
+

c
a+ b

≥
3
2
+

9(b− c)2

4(a+ b+ c)2
.

2.54. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a
b+ c

+
b

c + a
+

c
a+ b

≥
3
2
+
(b− c)2

2(b+ c)2
.

2.55. Let a, b, c be positive real numbers such that a =min{a, b, c}. Prove that

a
b+ c

+
b

c + a
+

c
a+ b

≥
3
2
+
(b− c)2

4bc
.

2.56. Let a, b, c be positive real numbers such that

a ≤ 1≤ b ≤ c, a+ b+ c = 3,

then
a

b+ c
+

b
c + a

+
c

a+ b
≥

3
2
+

3(b− c)2

4bc
.
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2.57. Let a, b, c be nonnegative real numbers such that

a ≥ 1≥ b ≥ c, a+ b+ c = 3,

then
a

b+ c
+

b
c + a

+
c

a+ b
≥

3
2
+
(b− c)2

(b+ c)2
.

2.58. Let a, b, c be positive real numbers such that a =min{a, b, c}. Prove that

(a)
ab+ bc + ca
a2 + b2 + c2

+
2(b− c)2

3(b2 + c2)
≤ 1;

(b)
ab+ bc + ca
a2 + b2 + c2

+
(b− c)2

b2 + bc + c2
≤ 1;

(c)
ab+ bc + ca
a2 + b2 + c2

+
(a− b)2

2(a2 + b2)
≤ 1.

2.59. Let a, b, c be positive real numbers such that

a ≤ 1≤ b ≤ c, a+ b+ c = 3,

then
ab+ bc + ca
a2 + b2 + c2

+
(b− c)2

bc
≤ 1.

2.60. Let a, b, c be nonnegative real numbers such that a =max{a, b, c} and b+c >
0. Prove that

(a)
ab+ bc + ca
a2 + b2 + c2

+
(b− c)2

2(ab+ bc + ca)
≤ 1;

(b)
ab+ bc + ca
a2 + b2 + c2

+
2(b− c)2

(a+ b+ c)2
≤ 1.

2.61. Let a, b, c be positive real numbers. Prove that

(a) if a ≥ b ≥ c, then

ab+ bc + ca
a2 + b2 + c2

+
(a− c)2

a2 − ac + c2
≥ 1;

(b) if a ≥ 1≥ b ≥ c and abc = 1, then

ab+ bc + ca
a2 + b2 + c2

+
(b− c)2

b2 − bc + c2
≤ 1.
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2.62. Let a, b, c be positive real numbers such that a =min{a, b, c}. Prove that

(a)
a2 + b2 + c2

ab+ bc + ca
≥ 1+

4(b− c)2

3(b+ c)2
;

(b)
a2 + b2 + c2

ab+ bc + ca
≥ 1+

(a− b)2

(a+ b)2
.

2.63. If a, b, c are positive real numbers, then

a2 + b2 + c2

ab+ bc + ca
≥ 1+

9(a− c)2

4(a+ b+ c)2
.

2.64. Let a, b, c be nonnegative real numbers, no two of which are zero. If a =
min{a, b, c}, then

1
p

a2 − ab+ b2
+

1
p

b2 − bc + c2
+

1
p

c2 − ca+ a2
≥

6
b+ c

.

2.65. If a ≥ 1≥ b ≥ c ≥ 0 such that

ab+ bc + ca = abc + 2,

then
ac ≤ 4− 2

p
2.

2.66. If a, b, c are nonnegative real numbers such that

ab+ bc + ca = 3, a ≤ 1≤ b ≤ c,

then

(a) a+ b+ c ≤ 4;

(b) 2a+ b+ c ≤ 4.

2.67. Let a, b, c be nonnegative real numbers such that a ≤ b ≤ c. Prove that

(a) if a+ b+ c = 3, then

a4(b4 + c4)≤ 2;

(b) if a+ b+ c = 2, then

c4(a4 + b4)≤ 1.
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2.68. If a, b, c are nonnegative real numbers such that ab+ bc + ca = 3, then

(a) a2 + b2 + c2 − a− b− c ≥
5
8
(a− c)2;

(b) a2 + b2 + c2 − a− b− c ≥
5
2

min{(a− b)2, (b− c)2, (c − a)2}.

2.69. If a, b, c are nonnegative real numbers such that ab+ bc + ca = 3, then

a3 + b3 + c3

a+ b+ c
≥ 1+

5
9
(a− c)2.

2.70. If a, b, c are nonnegative real numbers such that

a ≥ b ≥ c, ab+ bc + ca = 3,

then

(a)
a3 + b3 + c3

a+ b+ c
≥ 1+

7
9
(a− b)2;

(b)
a3 + b3 + c3

a+ b+ c
≥ 1+

2
3
(b− c)2.

(c)
a3 + b3 + c3

a+ b+ c
≥ 1+

7
3

min{(a− b)2, (b− c)2}.

2.71. If a, b, c are nonnegative real numbers such that ab+ bc + ca = 3, then

a4 + b4 + c4 − a2 − b2 − c2 ≥
11
4
(a− c)2.

2.72. If a, b, c are nonnegative real numbers such that

a ≥ b ≥ c, ab+ bc + ca = 3,

then

(a) a4 + b4 + c4 − a2 − b2 − c2 ≥
11
3
(a− b)2;

(b) a4 + b4 + c4 − a2 − b2 − c2 ≥
10
3
(b− c)2.
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2.73. Let a, b, c be nonnegative real numbers such that

a ≤ b ≤ c, a+ b+ c = 3.

Find the greatest real number k such that
Æ

(56b2 + 25)(56c2 + 25) + k(b− c)2 ≤ 14(b+ c)2 + 25.

2.74. If a ≥ b ≥ c > 0 such that abc = 1, then

3(a+ b+ c)≤ 8+
a
c

.

2.75. If a ≥ b ≥ c > 0, then

(a+ b− c)(a2 b− b2c + c2a)≥ (ab− bc + ca)2.

2.76. If a ≥ b ≥ c ≥ 0, then

(a− c)2

2(a+ c)
≤ a+ b+ c − 3

3
p

abc ≤
2(a− c)2

a+ 5c
.

2.77. If a ≥ b ≥ c ≥ d ≥ 0, then

(a− d)2

a+ 3d
≤ a+ b+ c + d − 4

4
p

abcd ≤
3(a− d)2

a+ 5d
.

2.78. If a ≥ b ≥ c > 0, then

(a) a+ b+ c − 3
3pabc ≥

3(a− b)2

5a+ 4b
;

(b) a+ b+ c − 3
3pabc ≥

64(a− b)2

7(11a+ 24b)
.

2.79. If a ≥ b ≥ c > 0, then

(a) a+ b+ c − 3
3pabc ≥

3(b− c)2

4b+ 5c
;

(b) a+ b+ c − 3
3pabc ≥

25(b− c)2

7(3b+ 11c)
.
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2.80. If a ≥ b ≥ c > 0, then

a+ b+ c − 3
3
p

abc ≥
3(a− c)2

4(a+ b+ c)
.

2.81. If a ≥ b ≥ c > 0, then

(a) a6 + b6 + c6 − 3a2 b2c2 ≥ 12a2c2(b− c)2;

(b) a6 + b6 + c6 − 3a2 b2c2 ≥ 10a3c(b− c)2.

2.82. If a ≥ b ≥ c > 0, then

ab+ bc
a2 + b2 + c2

≤
1+
p

3
4

.

2.83. If a ≥ b ≥ c ≥ d > 0, then

ab+ bc + cd
a2 + b2 + c2 + d2

≤
2+
p

7
6

.

2.84. If
a ≥ 1≥ b ≥ c ≥ d ≥ 0, a+ b+ c + d = 4,

then
ab+ bc + cd ≤ 3.

2.85. Let k and a, b, c be positive real numbers, and let

E = (ka+ b+ c)
�

k
a
+

1
b
+

1
c

�

, F = (ka2 + b2 + c2)
�

k
a2
+

1
b2
+

1
c2

�

.

(a) If k ≥ 1, then
√

√ F − (k− 2)2

2k
+ 2≥

E − (k− 2)2

2k
;

(b) If 0< k ≤ 1, then
√

√ F − k2

k+ 1
+ 2≥

E − k2

k+ 1
.
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2.86. If a, b, c are positive real numbers, then

a
2b+ 6c

+
b

7c + a
+

25c
9a+ 8b

> 1.

2.87. If a, b, c are positive real numbers such that

1
a
≥

1
b
+

1
c

,

then
1

a+ b
+

1
b+ c

+
1

c + a
≥

55
12(a+ b+ c)

.

2.88. If a, b, c are positive real numbers such that

1
a
≥

1
b
+

1
c

,

then
1

a2 + b2
+

1
b2 + c2

+
1

c2 + a2
≥

189
40(a2 + b2 + c2)

.

2.89. Find the best real numbers k, m, n such that

(
p

a+
p

b+
p

c)
p

a+ b+ c ≥ ka+mb+ nc

for all a ≥ b ≥ c ≥ 0.

2.90. Let a, b ∈ (0, 1] , a ≤ b.

(a) If a ≤
1
e

, then

2aa ≥ ab + ba;

(b) If b ≥
1
e

, then

2bb ≥ ab + ba.

2.91. If 0≤ a ≤ b and b ≥
1
2

, then

2b2b ≥ a2b + b2a.
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2.92. If a ≥ b ≥ 0, then

(a) ab−a ≤ 1+
a− b
p

a
;

(b) aa−b ≥ 1−
3(a− b)

4
p

a
.

2.93. If a, b, c are positive real numbers such that

a ≥ b ≥ c, ab2c3 = 1,

then
a+ 2b+ 3c ≥

1
a
+

2
b
+

3
c

.

2.94. If a, b, c are positive real numbers such that

a+ b+ c = 3, a ≤ b ≤ c,

then
1
a
+

2
b
≥ a2 + b2 + c2.

2.95. If a, b, c are positive real numbers such that

a+ b+ c = 3, a ≤ b ≤ c,

then
2
a
+

3
b
+

1
c
≥ 2(a2 + b2 + c2).

2.96. If a, b, c are positive real numbers such that

a+ b+ c = 3, a ≤ b ≤ c,

then
31
a
+

25
b
+

25
c
≥ 27(a2 + b2 + c2).

2.97. If a, b, c are the lengths of the sides of a triangle, then

a3(b+ c) + bc(b2 + c2)≥ a(b3 + c3).
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2.98. If a, b, c are the lengths of the sides of a triangle, then

(a+ b)2

2ab+ c2
+
(a+ c)2

2ac + b2
≥
(b+ c)2

2bc + a2
.

2.99. If a, b, c are the lengths of the sides of a triangle, then

a+ b
ab+ c2

+
a+ c

ac + b2
≥

b+ c
bc + a2

.

2.100. If a, b, c are the lengths of the sides of a triangle, then

b(a+ c)
ac + b2

+
c(a+ b)
ab+ c2

≥
a(b+ c)
bc + a2

.

2.101. If a, b, c, d are positive real numbers such that

a ≥ b ≥ c ≥ d, ab2c3d6 = 1,

then

a+ 2b+ 3c + 6d ≥
1
a
+

2
b
+

3
c
+

6
d

.

2.102. If a, b, c, d are positive real numbers such that

a ≥ b ≥ c ≥ d, abc2d4 ≥ 1,

then

a+ b+ 2c + 4d ≥
1
a
+

1
b
+

2
c
+

4
d

.

2.103. If a, b, c, d are positive real numbers such that

abcd ≥ 1, a ≥ b ≥ c ≥ d, ad ≥ bc,

then

a+ b+ c + d ≥
1
a
+

1
b
+

1
c
+

1
d

.
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2.104. If a, b, c, d, e, f are positive real numbers such that

abcde f ≥ 1, a ≥ b ≥ c ≥ d ≥ e ≥ f , a f ≥ be ≥ cd,

then
a+ b+ c + d + e+ f ≥

1
a
+

1
b
+

1
c
+

1
d
+

1
e
+

1
f

.

2.105. Let a, b, c, d be nonnegative real numbers such that

a2 − ab+ b2 = c2 − cd + d2.

Prove that
(a+ b)(c + d)≥ 2(ab+ cd).

2.106. Let a, b, c, d be nonnegative real numbers such that

a2 − ab+ b2 = c2 − cd + d2.

Prove that
1

a2 + ab+ b2
+

1
c2 + cd + d2

≤
8

3(a+ b)(c + d)
.

2.107. Let a, b, c, d be nonnegative real numbers such that

a2 − ab+ b2 = c2 − cd + d2.

Prove that
1

a2 + ab+ b2
+

1
c2 + cd + d2

≤
8

3(a+ b)(c + d)
.

2.108. Let a, b, c, d be nonnegative real numbers such that

a2 − ab+ b2 = c2 − cd + d2.

Prove that
1

(ac + bd)4
+

1
(ad + bc)4

≤
2

(ab+ cd)4
.

2.109. Let a, b, c, d be nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c + d = 13, a2 + b2 + c2 + d2 = 43.

Prove that
ab ≥ cd + 3.
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2.110. Let a, b, c, d be nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c + d = 13, a2 + b2 + c2 + d2 = 43.

Prove that

ab− cd ≥
7
2

(a) for a ≤
39
10

;

(b) for d ≤
31
11

.

2.111. Let a, b, c, d be nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c + d = 13, a2 + b2 + c2 + d2 = 43.

Prove that
83
4
≤ ac + bd ≤

169
8

.

2.112. If a, b, c, d are positive real numbers such that

a+ b+ c + d = 4, a ≤ b ≤ 1≤ c ≤ d,

then

9
�

1
a
+

1
b
+

1
c
+

1
d

�

≥ 4+ 8(a2 + b2 + c2 + d2).

2.113. If a, b, c, d are positive real numbers such that

a2 + b2 + c2 + d2 = 4, a ≤ b ≤ c ≤ d,

then
1
a
+ a+ b+ c + d ≥ 5.

2.114. If a, b, c, d are real numbers, then

6(a2 + b2 + c2 + d2) + (a+ b+ c + d)2 ≥ 12(ab+ bc + cd).
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2.115. If a, b, c, d are positive real numbers, then

1
a2 + ab

+
1

b2 + bc
+

1
c2 + cd

+
1

d2 + da
≥

4
ac + bd

.

2.116. If a, b, c, d are positive real numbers, then

1
a(1+ b)

+
1

b(1+ a)
+

1
c(1+ d)

+
1

d(1+ c)
≥

16

1+ 8
p

abcd
.

2.117. If a, b, c, d are positive real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c + d = 4,

then
ac + bd ≤ 2.

2.118. If a, b, c, d are positive real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c + d = 4,

then

2
�

1
b
+

1
d

�

≥ a2 + b2 + c2 + d2.

2.119. Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d and

ab+ bc + cd + da = 3.

Prove that
a3 bcd < 4.

2.120. Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d and

ab+ bc + cd + da = 6.

Prove that
acd ≤ 2.
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2.121. Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d and

ab+ bc + cd + da = 9.

Prove that
abd ≤ 4.

2.122. Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d and

a2 + b2 + c2 + d2 = 10.

Prove that
2b+ 4d ≤ 3c + 5.

2.123. Let a, b, c, d be positive real numbers such that a ≤ b ≤ c ≤ d and

abcd = 1.

Prove that

4+
a
b
+

b
c
+

c
d
+

d
a
≥ 2(a+ b)(c + d).

2.124. Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d and

3(a2 + b2 + c2 + d2) = (a+ b+ c + d)2.

Prove that

(a)
a+ d
b+ c

≤ 2;

(b)
a+ c
b+ d

≤
7+ 2

p
6

5
;

(c)
a+ c
c + d

≤
3+
p

5
2

.

2.125. Let a, b, c, d be nonnegative real numbers such that a ≥ b ≥ c ≥ d and

2(a2 + b2 + c2 + d2) = (a+ b+ c + d)2.

Prove that
a ≥ b+ 3c + (2

p
3− 1)d.
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2.126. If a ≥ b ≥ c ≥ d ≥ 0, then

(a) a+ b+ c + d − 4
4pabcd ≥

3
2

�p
b− 2

p
c +
p

d
�2

;

(b) a+ b+ c + d − 4
4pabcd ≥

2
9

�

3
p

b− 2
p

c −
p

d
�2

;

(c) a+ b+ c + d − 4
4pabcd ≥

4
19

�

3
p

b−
p

c − 2
p

d
�2

;

(d) a+ b+ c + d − 4
4pabcd ≥

3
8

�p
b− 3

p
c + 2

p
d
�2

;

(e) a+ b+ c + d − 4
4pabcd ≥

1
2

�

2
p

b− 3
p

c +
p

d
�2

;

(f) a+ b+ c + d − 4
4pabcd ≥

1
6

�

2
p

b+
p

c − 3
p

d
�2

.

2.127. If a ≥ b ≥ c ≥ d ≥ 0, then

(a) a+ b+ c + d − 4
4pabcd ≥

�p
a−
p

d
�2

;

(b) a+ b+ c + d − 4
4pabcd ≥ 2

�p
b−
p

c
�2

;

(c) a+ b+ c + d − 4
4pabcd ≥

4
3

�p
b−
p

d
�2

;

(d) a+ b+ c + d − 4
4pabcd ≥

3
2

�p
c −
p

d
�2

.

2.128. If a ≥ b ≥ c ≥ d ≥ e ≥ 0, then

a+ b+ c + d + e− 5
5
p

abcde ≥ 2
�p

b−
p

d
�2

.

2.129. If a, b, c, d, e are real numbers, then

ab+ bc + cd + de
a2 + b2 + c2 + d2 + e2

≤
p

3
2

.

2.130. If a, b, c, d, e are positive real numbers, then

a2 b2

bd + ce
+

b2c2

cd + ae
+

c2a2

ad + be
≥

3abc
d + e

.
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2.131. If a, b, c, d, e, f are nonnegative real numbers such that

a ≥ b ≥ c ≥ d ≥ e ≥ f ,

then
(a+ b+ c + d + e+ f )2 ≥ 8(ac + bd + ce+ d f ).

2.132. If a ≥ b ≥ c ≥ d ≥ e ≥ f ≥ 0, then

a+ b+ c + d + e+ f − 6 6
p

abcde f ≥ 2
�p

b−
p

e
�2

.

2.133. Let a, b, c and x , y, z be positive real numbers such that

x + y + z = a+ b+ c.

Prove that
ax2 + b y2 + cz2 + x yz ≥ 4abc.

2.134. Let a, b, c and x , y, z be positive real numbers such that

x + y + z = a+ b+ c.

Prove that
x(3x + a)

bc
+

y(3y + b)
ca

+
z(3z + c)

ab
≥ 12.

2.135. Let a, b, c be given positive numbers. Find the minimum value F(a, b, c) of

E(x , y, z) =
ax

y + z
+

b y
z + x

+
cz

x + y
,

where x , y, z are nonnegative real numbers, no two of which are zero.

2.136. Let a, b, c and x , y, z be real numbers.

(a) If ab+ bc + ca > 0, then

[(b+ c)x + (c + a)y + (a+ b)z]2 ≥ 4(ab+ bc + ca)(x y + yz + zx);

(b) If a, b, c ≥ 0, then

[(b+ c)x + (c + a)y + (a+ b)z]2 ≥ 4(a+ b+ c)(a yz + bzx + cx y).
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2.137. Let a, b, c and x , y, z be positive real numbers such that

a
yz
+

b
zx
+

c
x y
= 1.

Prove that

(a) x + y + z ≥
Æ

4(a+ b+ c +
p

ab+
p

bc +
p

ca ) + 3
3pabc;

(b) x + y + z >
p

a+ b+
p

b+ c +
p

c + a.

2.138. If a, b, c and x , y, z are nonnegative real numbers, then

2
(a+ b)(x + y)

+
2

(b+ c)(y + z)
+

2
(c + a)(z + x)

≥
9

(b+ c)x + (c + a)y + (a+ b)z
.

2.139. Let a, b, c be the lengths of the sides of a triangle. If x , y, z are real numbers,
then

(ya2 + zb2 + xc2)(za2 + x b2 + yc2)≥ (x y + yz + zx)(a2 b2 + b2c2 + c2a2).

2.140. If a1 ≥ a2 ≥ · · · ≥ a8 ≥ 0, then

a1 + a2 + · · ·+ a8 − 8 8
p

a1a2 · · · a8 ≥ 3
�
p

a6 −
p

a7

�2
.

2.141. Let a1, a2, . . . , an and b1, b2, . . . , bn be real numbers. Prove that

a1 b1+ · · ·+ an bn+
q

(a2
1 + · · ·+ a2

n)(b
2
1 + · · ·+ b2

n)≥
2
n
(a1+ · · ·+ an)(b1+ · · ·+ bn).

2.142. Let a1, a2, . . . , an be positive real numbers such that a1 ≥ 2a2. Prove that

(5n− 1)(a2
1 + a2

2 + · · ·+ a2
n)≥ 5(a1 + a2 + · · ·+ an)

2.

2.143. If a1, a2, . . . , an are positive real numbers such that a1 ≥ 4a2, then

(a1 + a2 + · · ·+ an)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

≥
�

n+
1
2

�2

.
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2.144. If a1 ≥ a2 ≥ · · · ≥ an > 0 such that a1 + a2 + · · ·+ an = n, then

1
a1
+

1
a2
+ · · ·+

1
an
− n≥

4(n− 1)2

n3
(a1 − a2)

2.

2.145. If a1, a2, . . . , an (n≥ 3) are real numbers such that

a1 ≤ a2 ≤ · · · ≤ an, a1 + a2 + · · ·+ an = 0,

then
a2

1 + a2
2 + · · ·+ a2

n + na1an ≤ 0.

2.146. Let a1, a2, . . . , an (n≥ 4) be nonnegative real numbers such that

a1 ≥ a2 ≥ · · · ≥ an

and
(a1 + a2 + · · ·+ an)

2 = 4(a2
1 + a2

2 + · · ·+ a2
n).

Prove that

1≤
a1 + a2

a3 + a4 + · · ·+ an
≤ 1+

√

√2n− 8
n− 2

.

2.147. If a1 ≥ a2 ≥ · · · ≥ an ≥ 0, then

(a) a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an ≥
1
3

�p
a1 +

p
a2 − 2

p
an

�2
;

(b) a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an ≥
1
4

�

2
p

a1 −
p

an−1 −
p

an

�2
.

2.148. If a1 ≥ a2 ≥ · · · ≥ an ≥ 0, n≥ 3, then

a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an ≥
n− 1
2n

�
p

an−2 +
p

an−1 − 2
p

an

�2
.

2.149. Let a1 ≥ a2 ≥ · · · ≥ an ≥ 0. If

n
2
≤ k ≤ n− 1,

then

a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an ≥
2k(n− k)

n

�p
ak −

p

ak+1

�2
.
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2.150. Let a1 ≥ a2 ≥ · · · ≥ an ≥ 0. If

1≤ k < j ≤ n, k+ j ≥ n+ 1,

then

a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an ≥
2k(n− j + 1)
n+ k− j + 1

�p
ak −

p

a j

�2
.

2.151. If a1 ≥ a2 ≥ · · · ≥ an ≥ 0, n≥ 4, then

(a) a1+ a2+ · · ·+ an− n n
p

a1a2 · · · an ≥
1
2

�

1−
1
n

�

�p
an−2 − 3

p
an−1 + 2

p
an

�2
;

(b) a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an ≥
�

1−
2
n

�

�

2
p

an−2 − 3
p

an−1 +
p

an

�2
.
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2.2 Solutions

P 2.1. If a, b are positive real numbers, then

1
4a2 + b2

+
3

b2 + 4ab
≥

16
5(a+ b)2

.

Solution. Using the Cauchy-Schwarz inequality gives

1
4a2 + b2

+
3

b2 + 4ab
≥

(1+ 3)2

(4a2 + b2) + 3(b2 + 4ab)
=

4
a2 + b2 + 3ab

.

Thus, we only need to show that

1
a2 + b2 + 3ab

≥
4

5(a+ b)2
,

which reduces to (a− b)2 ≥ 0. The equality holds for a = b.

P 2.2. If a, b are positive real numbers, then

3a
p

3a+ 3b
p

6a+ 3b ≥ 5(a+ b)
p

a+ b.

Solution. Due to homogeneity, we may assume that a + b = 3. Thus, we need to
show that

a
p

a+ (3− a)
p

3+ a ≥ 5

for 0< a < 3. Substituting
p

a = x , 0< x <
p

3,

the inequality becomes
(3− x2)

p

3+ x2 ≥ 5− x3.

For 3p5 ≤ x <
p

3, the inequality is trivial. For 0 < x < 3p5, squaring both sides of
the inequality gives

(3− x2)(9− x4)≥ (5− x3)2,

3x4 − 10x3 + 9x2 − 2≤ 0,

(x − 1)2(3x2 − 4x − 2)≤ 0.

Since 3x2 − 4x − 2≤ 0 for
2−
p

10
3

≤ x ≤
2+
p

10
3

, we only need to prove that

3p
5≤

2+
p

10
3

.
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Indeed, we have
�

2+
p

10
3

�3

− 5=
22
p

10− 67
27

> 0.

The equality holds for a = b/2.

P 2.3. If a, b, c are nonnegative real numbers such that a+ b+ c = 3, then

(ab+ c)(ac + b)≤ 4.

Solution. By the AM-GM inequality, we have

(ab+ c)(ac + b)≤
�

(ab+ c) + (ac + b)
2

�2

=
(a+ 1)2(b+ c)2

4
.

Therefore, it suffices to show that

(a+ 1)(b+ c)≤ 4.

Indeed,

(a+ 1)(b+ c)≤
�

(a+ 1) + (b+ c)
2

�2

= 4.

The equality holds for a = b = c = 1, for a = 1, b = 0, c = 2, and for a = 1, b = 2,
c = 0.

P 2.4. If a, b, c are nonnegative real numbers, then

a3 + b3 + c3 − 3abc ≥
1
4
(b+ c − 2a)3.

Solution. Write the inequality as

2(a+ b+ c)[(a− b)2 + (b− c)2 + (c − a)2]≥ (b+ c − 2a)3.

Consider the non-trivial case b+ c − 2a ≥ 0. Since (b− c)2 ≥ 0 and

a+ b+ c ≥ b+ c − a,

it suffices to show that

2(a− b)2 + 2(c − a)2 ≥ (b+ c − 2a)2.

Indeed, we have

2(a− b)2 + 2(c − a)2 − (b+ c − 2a)2 = (b− c)2 ≥ 0.

The equality holds for a = b = c, and also for a = 0 and b = c.
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P 2.5. Let a, b, c be nonnegative real numbers such that a ≥ b ≥ c. Prove that

(a) a3 + b3 + c3 − 3abc ≥ 2(2b− a− c)3;

(b) a3 + b3 + c3 − 3abc ≥ (a− 2b+ c)3.

Solution. (a) Write the inequality as

(a+ b+ c)(a2 + b2 + c2 − ab− bc − ca)≥ 2(2b− a− c)3.

For the non-trivial case 2b− a− c ≥ 0, since

a+ b+ c ≥ 2(2b− a− c),

it suffices to show that

a2 + b2 + c2 − ab− bc − ca ≥ (2b− a− c)2.

This is equivalent to the obvious inequality

3(a− b)(b− c)≥ 0.

The equality holds for a = b = c, and also for a = b and c = 0.

(b) Write the inequality as

(a+ b+ c)(a2 + b2 + c2 − ab− bc − ca)≥ (a− 2b+ c)3.

For the non-trivial case a− 2b+ c ≥ 0, since

a+ b+ c ≥ a− 2b+ c,

it suffices to show that

a2 + b2 + c2 − ab− bc − ca ≥ (a− 2b+ c)2,

which is equivalent to
3(a− b)(b− c)≥ 0.

The equality holds for a = b = c, and also for b = c = 0.

P 2.6. Let a, b, c be nonnegative real numbers such that a ≥ b ≥ c. Prove that

(a) a3 + b3 + c3 − 3abc ≥ 3(a2 − b2)(b− c);

(b) a3 + b3 + c3 − 3abc ≥
9
2
(a− b)(b2 − c2).
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Solution. (a) Write the inequality as

(a+ b+ c)(a2 + b2 + c2 − ab− bc − ca)≥ 3(a+ b)(a− b)(b− c)).

Since
a+ b+ c ≥ a+ b,

it suffices to show that

a2 + b2 + c2 − ab− bc − ca ≥ 3(a− b)(b− c).

Indeed,

a2 + b2 + c2 − ab− bc − ca− 3(a− b)(b− c) = (a− 2b+ c)2 ≥ 0.

The equality holds for a = b = c, and also for a = 2b and c = 0.

(b) Write the inequality as

(a+ b+ c)(a2 + b2 + c2 − ab− bc − ca)≥
9
2
(a− b)(b− c)(b+ c).

Since

a+ b+ c ≥
3
2
(b+ c),

it suffices to show that

a2 + b2 + c2 − ab− bc − ca ≥ 3(a− b)(b− c).

This is equivalent to the obvious inequality

(a− 2b+ c)2 ≥ 0.

The equality holds for a = b = c.

P 2.7. If a, b, c are nonnegative real numbers such that

c =min{a, b, c}, a2 + b2 + c2 = 3,

then

(a) 5b+ 2c ≤ 9;

(b) 5(b+ c)≤ 9+ 3a.
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Solution. (a) It suffices to show that

5b+ 2c + (a− c)≤ 9;

that is,
9≥ a+ 5b+ c.

This follows from the Cauchy-Schwarz inequality

(1+ 25+ 1)(a2 + b2 + c2)≥ (a+ 5b+ c)2.

The equality holds for a = c =
1
3

and b =
5
3

.

(b) It suffices to show that

5(b+ c) + 4(a− c)≤ 9+ 3a;

that is,
9≥ a+ 5b+ c.

As we have shown at (a), this follows from the Cauchy-Schwarz inequality

(1+ 25+ 1)(a2 + b2 + c2)≥ (a+ 5b+ c)2.

The equality holds for a = c =
1
3

and b =
5
3

.

P 2.8. Let a, b, c be nonnegative real numbers such that a =max{a, b, c}. Prove that

a6 + b6 + c6 − 3a2 b2c2 ≥ 2(b4 + c4 + 4b2c2)(b− c)2.

Solution. Because the inequality is symmetric in b and c, we may assume that
b ≥ c; that is,

a ≥ b ≥ c.

We will show that

a6 + b6 + c6 − 3a2 b2c2 ≥ 2b6 + c6 − 3b4c2 ≥ 2(b4 + c4 + 4b2c2)(b− c)2.

The left inequality is equivalent to the obvious inequality

(a2 − b2)(a4 + a2 b2 + b4 − 3b2c2)≥ 0.

The right inequality is equivalent to

(b2 − c2)2(2b2 + c2)≥ 2(b4 + c4 + 4b2c2)(b− c)2,

(b− c)2[(b+ c)2(2b2 + c2)− 2(b4 + c4 + 4b2c2)]≥ 0,

c(b− c)3(4b2 − bc + c2)≥ 0.

The equality holds for a = b = c, for a = b and c = 0, and for a = c and b = 0.
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P 2.9. Let a, b, c be nonnegative real numbers such that a =max{a, b, c}. Prove that

a2 + b2 + c2 ≥
9abc

a+ b+ c
+

5
3
(b− c)2.

Solution. Because the inequality is symmetric in b and c, we may assume that
b ≥ c, hence

a ≥ b ≥ c.

Write the inequality as follows:

(a2 + b2 + c2)(a+ b+ c)− 9abc ≥
5
3
(a+ b+ c)(b− c)2;

a3 + b3 + c3 − 3abc +
∑

a(b− c)2 ≥
5
3
(a+ b+ c)(b− c)2;

(a+ b+ c)
∑

(b− c)2 + 2
∑

a(b− c)2 ≥
10
3
(a+ b+ c)(b− c)2.

It suffices to show that

(a+ b+ c)[(a− c)2 + (b− c)2] + 2a(b− c)2 + 2b(a− c)2 ≥
10
3
(a+ b+ c)(b− c)2.

This inequality is true if

(a+ b+ c)[(b− c)2 + (b− c)2] + 2a(b− c)2 + 2b(b− c)2 ≥
10
3
(a+ b+ c)(b− c)2.

Thus, we only need to show that

2(a+ b+ c) + 2a+ 2b ≥
10
3
(a+ b+ c),

which reduces to a+ b− 2c ≥ 0. The equality holds for a = b = c.

P 2.10. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
(a+ b)2

+
1

(a+ c)2
+

16
(b+ c)2

≥
6

ab+ bc + ca
.

(Vasile C., 2014)
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Solution (by Nguyen Van Quy). Since the equality holds for a = 0 and b = c, we
write the desired inequality in the form

16
(b+ c)2

+
�

1
a+ b

+
1

a+ c

�2

≥
6

ab+ bc + ca
+

2
(a+ b)(a+ c)

and apply then the AM-GM inequality

16
(b+ c)2

+
�

1
a+ b

+
1

a+ c

�2

≥
8

b+ c

�

1
a+ b

+
1

a+ c

�

.

Therefore, it suffices to show that

8
b+ c

�

1
a+ b

+
1

a+ c

�

≥
6

ab+ bc + ca
+

2
(a+ b)(a+ c)

.

Since (a+ b)(a+ c)≥ ab+ bc + ca, it is enough to show that

8
b+ c

�

1
a+ b

+
1

a+ c

�

≥
8

ab+ bc + ca
,

which is equivalent to

(2a+ b+ c)(ab+ bc + ca)≥ (a+ b)(b+ c)(c + a).

We have

(2a+ b+ c)(ab+ bc + ca)≥ (a+ b+ c)(ab+ bc + ca)
≥ (a+ b)(b+ c)(c + a).

This completes the proof. The equality holds for a = 0 and b = c.

P 2.11. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
(a+ b)2

+
1

(a+ c)2
+

2
(b+ c)2

≥
5

2(ab+ bc + ca)
.

Solution. This inequality follows from Iran 1996 inequality (see P 1.72 in Volume
2, for k = 2), namely

1
(a+ b)2

+
1

(a+ c)2
+

1
(b+ c)2

≥
9

4(ab+ bc + ca)
,

and the inequality in P 2.10, namely

1
(a+ b)2

+
1

(a+ c)2
+

16
(b+ c)2

≥
6

ab+ bc + ca
.

Indeed, summing the first inequality multiplied by 14 and the second inequality,
we get the desired inequality. The equality holds for a = 0 and b = c.
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P 2.12. If a, b, c are nonnegative real numbers, no two of which are zero, then

1
(a+ b)2

+
1

(a+ c)2
+

25
(b+ c)2

≥
8

ab+ bc + ca
.

(Vasile C., 2014)

Solution. Write the inequality as

�

1
a+ b

+
1

a+ c

�2

+
25

(b+ c)2
≥

8
ab+ bc + ca

+
2

(a+ b)(a+ c)
.

By the AM-GM inequality, we have

�

1
a+ b

+
1

a+ c

�2

+
25

(b+ c)2
≥

10
b+ c

�

1
a+ b

+
1

a+ c

�

.

Therefore, it suffices to show that

10
b+ c

�

1
a+ b

+
1

a+ c

�

≥
8

ab+ bc + ca
+

2
(a+ b)(a+ c)

.

Since (a+ b)(a+ c)≥ ab+ bc + ca, it is enough to show that

10
b+ c

�

1
a+ b

+
1

a+ c

�

≥
10

ab+ bc + ca
,

which is equivalent to

(2a+ b+ c)(ab+ bc + ca)≥ (a+ b)(b+ c)(c + a).

Indeed,

(2a+ b+ c)(ab+ bc + ca)≥ (a+ b+ c)(ab+ bc + ca)
≥ (a+ b)(b+ c)(c + a).

This completes the proof. The equality holds for a = 0 and
b
c
+

c
b
= 3.

P 2.13. If a, b, c are positive real numbers, then

(a+ b)3(a+ c)3 ≥ 4a2 bc(2a+ b+ c)2.

(XZLBQ, 2014)
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Solution (by Nguyen Van Quy). Write the inequality as

(a+ b)2(a+ c)2

4a2 bc
≥
(2a+ b+ c)2

(a+ b)(a+ c)
.

Since

(a+ b)2(a+ c)2 = [(a− b)2 + 4ab][(a− c)2 + 4ac]

≥ 4ac(a− b)2 + 4ab(a− c)2 + 16a2 bc,

it suffices to show that

(a− b)2

ab
+
(a− c)2

ac
+ 4≥

(2a+ b+ c)2

(a+ b)(a+ c)
,

which is equivalent to

(a− b)2

ab
+
(a− c)2

ac
≥

(b− c)2

(a+ b)(a+ c)
.

Indeed, by the Cauchy-Schwarz inequality, we have

(a− b)2

ab
+
(a− c)2

ac
≥
(a− b− a+ c)2

ab+ ac
≥

(b− c)2

(a+ b)(a+ c)
.

The equality holds for a = b = c.

P 2.14. If a, b, c are positive real numbers such that abc = 1, then

(a)
a
b
+

b
c
+

1
a
≥ a+ b+ 1;

(b)
a
b
+

b
c
+

1
a
≥
p

3(a2 + b2 + 1).

(Vasile C., 2007)

Solution. (a) First Solution. Write the inequality as
�

2
a
b
+

b
c

�

+
�

b
c
+

1
a

�

+
�

1
a
+ a

�

≥ 3a+ 2b+ 2.

By the AM-GM inequality, we have

�

2
a
b
+

b
c

�

+
�

b
c
+

1
a

�

+
�

1
a
+ a

�

≥ 3
3

√

√ a2

bc
+ 2

√

√ b
ca
+ 2= 3a+ 2b+ 2.

The equality holds for a = b = c = 1.
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Second Solution. Since c =
1

ab
, the inequality becomes as follows:

a
b
+ ab2 +

1
a
≥ a+ b+ 1,

1
b
+ b2 +

1
a2
≥ 1+

b
a
+

1
a

,

1
a2
− (b+ 1)

1
a
+ b2 +

1
b
− 1≥ 0,

�

1
a
−

b+ 1
2

�2

+
(b− 1)2(3b+ 4)

4b
≥ 0.

(b) Write the inequality as

a
�

1
b
+ b2

�

+
1
a
≥
Æ

3(a2 + b2 + 1).

By squaring, this inequality becomes

a2
�

b4 + 2b− 3+
1
b2

�

+
1
a2
≥ b2 + 3−

2
b

.

Since

b4 + 2b− 3+
1
b2
> 2b− 3+

1
b2
=
(b− 1)2(2b+ 1)

b2
≥ 0,

by the AM-GM inequality, we have

a2
�

b4 + 2b− 3+
1
b2

�

+
1
a2
≥ 2

√

√

b4 + 2b− 3+
1
b2

.

Thus, it suffices to prove that

2

√

√

b4 + 2b− 3+
1
b2
≥ b2 + 3−

2
b

.

Squaring again, we get the inequality

b5 − 2b3 + 4b2 − 7b+ 4≥ 0,

which is equivalent to the obvious inequality

b(b2 − 1)2 + 4(b− 1)2 ≥ 0.

The equality holds for a = b = c = 1.
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P 2.15. If a, b, c are positive real numbers such that abc ≥ 1, then

a
a
b b

b
c cc ≥ 1.

(Vasile C., 2011)

Solution. Write the inequality as

a
b

ln a+
b
c

ln b+ c ln c ≥ 0.

Since f (x) = x ln x is a convex function on (0,∞), apply Jensen’s inequality to get

pa ln a+ qb ln b+ rc ln c ≥ (p+ q+ r)
�

pa+ qb+ rc
p+ q+ r

�

ln
�

pa+ qb+ rc
p+ q+ r

�

= (pa+ qb+ rc) ln
�

pa+ qb+ rc
p+ q+ r

�

,

where p, q, r > 0. Choosing

p =
1
b

, q =
1
c

, r = 1,

we get

a
b

ln a+
b
c

ln b+ c ln c ≥ (
a
b
+

b
c
+ c) ln







a
b
+

b
c
+ c

1
b
+

1
c
+ 1






.

Thus, it suffices to show that

a
b
+

b
c
+ c ≥

1
b
+

1
c
+ 1.

Since a ≥
1
bc

, we need to show that

1
b2c
+

b
c
+ c ≥

1
b
+

1
c
+ 1.

This is equivalent to
1
b2
+ b+ c2 ≥

c
b
+ 1+ c,

c2 −
�

1+
1
b

�

c + b− 1+
1
b2
≥ 0,

�

c −
b+ 1
2b

�2

+
(b− 1)2(4b+ 3)

4b2
≥ 0.

The equality holds for a = b = c = 1.
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P 2.16. If a, b, c are positive real numbers such that ab+ bc + ca = 3, then

ab2c3 < 4.

(Vasile C., 2012)

Solution. From ab+ bc + ca = 3, we get

c =
3− ab
a+ b

<
3

a+ b
.

Therefore,

(a+ b)3(4− ab2c3)> 4(a+ b)3 − 27ab2

= 4a3 + 12a2 b− 15ab2 + 4b3

= (a+ 4b)(2a− b)2 ≥ 0.

P 2.17. If a, b, c are positive real numbers such that ab+ bc + ca =
5
3

, then

ab2c2 ≤
1
3

.

(Vasile C., 2012)

Solution. By the AM-GM inequality, we have

ab+ ca ≥ 2a
p

bc.

Thus, from ab+ bc + ca =
5
3

, we get

2a
p

bc + bc ≤
5
3

.

Therefore, it suffices to show that

(5− 3bc)b2c2

6
p

bc
≤

1
3

.

Setting
p

bc = t, this inequality becomes

3t5 − 5t3 + 2≥ 0.

Indeed, be the AM-GM inequality, we have

3t5 + 2= t5 + t5 + t5 + 1+ 1≥ 5
5
p

t5 · t5 · t5 · 1 · 1= 5t3.

The equality holds for a =
1
3

and b = c = 1.
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P 2.18. Let a, b, c be positive real numbers such that

a ≤ b ≤ c, ab+ bc + ca = 3.

Prove that

(a) ab2c ≤
9
8

;

(b) ab4c ≤ 2;

(c) ab3c2 ≤ 2.

(Vasile C., 2012)

Solution. From (b− a)(b− c)≤ 0, we get

b2 + ac ≤ b(a+ c),

b2 + ac ≤ 3− ac,

b2 + 2ac ≤ 3.

(a) We have

9− 8ab2c ≥ 9− 4b2(3− b2) = (2b2 − 3)2 ≥ 0.

The equality holds for a =
1
2

s

3
2

and b = c =
s

3
2

.

(b) We have

4− 2ab4c ≥ 4− b4(3− b2) = (b2 − 2)2(b2 + 1)≥ 0.

The equality holds for a =
p

2
4

and b = c =
p

2.

(c) Write the desired inequality as follows:

2(ab+ bc + ca)3 ≥ 27ab3c2,

2
�

a+ c +
ca
b

�3
≥ 27ac2.

Since ca/b ≥ a, it suffices to show that

2(2a+ c)3 ≥ 27ac2,

which is equivalent to the obvious inequality

(a+ 2c)(4a− c)2 ≥ 0.

The equality holds for a =
p

2
4

and b = c =
p

2.
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P 2.19. Let a, b, c be positive real numbers such that

a ≤ b ≤ c, a+ b+ c =
1
a
+

1
b
+

1
c

.

Prove that
b ≥

1
a+ c − 1

.

(Vasile C., 2007)

Solution. Let us show that
a ≤ 1, c ≥ 1.

From a+ b+ c =
1
a
+

1
b
+

1
c

and

a+ b+ c +
1
a
+

1
b
+

1
c
− 6=

(a− 1)2

a
+
(b− 1)2

b
+
(c − 1)2

c
≥ 0,

we get

a+ b+ c =
1
a
+

1
b
+

1
c
≥ 3.

Then,
1
a
≥

1
3

�

1
a
+

1
b
+

1
c

�

≥ 1, c ≥
a+ b+ c

3
≥ 1.

Further, consider the following two cases.

Case 1: abc ≥ 1. Write the desired inequality as

a+ c − 1−
1
b
≥ 0.

We have

a+ c − 1−
1
b
= (1− a)(c − 1) +

abc − 1
b

≥ 0.

Case 2: abc ≤ 1. Since

a+ c − 1−
1
b
=

1
a
+

1
c
− 1− b,

the desired inequality is equivalent to

1
a
+

1
c
− 1− b ≥ 0.

We have
1
a
+

1
c
− 1− b =

�

1
a
− 1

��

1−
1
c

�

+
1− abc

ac
≥ 0.

This completes the proof. The equality holds for a = b = c = 1.
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P 2.20. Let a, b, c be positive real numbers such that

a ≤ b ≤ c, a+ b+ c =
1
a
+

1
b
+

1
c

.

Prove that
ab2c3 ≥ 1.

(Vasile C., 1998)

First Solution. Write the inequality in the homogeneous form

ab2c3 ≥
�

abc(a+ b+ c)
ab+ bc + ca

�3

,

which is equivalent to

(ab+ bc + ca)3 ≥ a2 b(a+ b+ c)3.

Since
(ab+ bc + ca)2 ≥ 3abc(a+ b+ c),

it suffices to show that

3c(ab+ bc + ca)≥ a(a+ b+ c)2.

Indeed,

3c(ab+ bc + ca)− a(a+ b+ c)2 ≥ (a+ b+ c)(ab+ bc + ca)− a(a+ b+ c)2

= (a+ b+ c)(bc − a2)≥ 0.

The equality holds for a = b = c = 1.

Second Solution. Let us show that

a ≤ 1, bc ≥ 1.

Indeed, if a > 1, then 1< a ≤ b ≤ c and

a+ b+ c −
1
a
−

1
b
−

1
c
=

1− a2

a
+

1− b2

b
+

1− c2

c
< 0,

which is false. On the other hand, from a ≤ 1 and

a−
1
a
= (b+ c)

�

1
bc
− 1

�

,

we get bc ≥ 1. Similarly, we can prove that

c ≥ 1, ab ≤ 1.
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Since bc ≥ 1, it suffices to show that

abc2 ≥ 1.

Taking account of ab ≤ 1, we have

c −
1
c
= (a+ b)

�

1
ab
− 1

�

≥ 2
p

ab
�

1
ab
− 1

�

= 2
�

1
p

ab
−
p

ab
�

≥
1
p

ab
−
p

ab,

hence
�

c −
1
p

ab

�

�

1+
p

ab
c

�

≥ 0.

The last inequality involves
abc2 ≥ 0.

P 2.21. Let a, b, c be positive real numbers such that

a ≤ b ≤ c, a+ b+ c = abc + 2.

Prove that
(1− b)(1− ab3c)≥ 0.

(Vasile C., 1999)

Solution. Let us show that
a ≤ 1, c ≥ 1.

To do this, we write the hypothesis a+ b+ c = abc + 2 in the equivalent form

(1− a)(1− c) + (1− b)(1− ac) = 0, (*)

If a > 1, then 1 < a ≤ b ≤ c, which contradicts (*). Similarly, if c < 1, then
a ≤ b ≤ c < 1, which also contradicts (*). Therefore, we have a ≤ 1 and c ≥ 1.
According to (*), we get

(1− b)(1− ac) = (1− a)(c − 1)≥ 0. (**)

There are two cases to consider.

Case 1: b ≥ 1. According to (**), we have ac ≥ 1. Therefore,

ab3c = ac · b3 ≥ 1,

hence (1− b)(1− ab3c)≥ 0.

Case 2: b ≤ 1. According to (**), we have ac ≤ 1. Therefore,

ab3c = ac · b3 ≤ 1,

and hence
(1− b)(1− ab3c)≥ 0.

This completes the proof. The equality holds for a = b = 1≤ c or a ≤ 1= b = c.



Noncyclic Inequalities 405

P 2.22. Let a, b, c be real numbers, no two of which are zero. Prove that

(a)
(a− b)2

a2 + b2
+
(a− c)2

a2 + c2
≥
(b− c)2

2(b2 + c2)
;

(b)
(a+ b)2

a2 + b2
+
(a+ c)2

a2 + c2
≥
(b− c)2

2(b2 + c2)
.

Solution. (a) Consider two cases.
Case 1: 2a2 ≤ b2 + c2. By the Cauchy-Schwarz inequality, we have

(a− b)2

a2 + b2
+
(a− c)2)
a2 + c2

≥
[(b− a) + (a− c)]2

(a2 + b2) + (a2 + c2)
=

(b− c)2

2a2 + b2 + c2
.

Thus, it suffices to show that

1
2a2 + b2 + c2

≥
1

2(b2 + c2)
,

which reduces to b2 + c2 ≥ 2a2.
Case 2: 2a2 ≥ b2 + c2. By the Cauchy-Schwarz inequality, we have

(a− b)2

a2 + b2
+
(a− c)2

a2 + c2
≥
[c(b− a) + b(a− c)]2

c2(a2 + b2) + b2(a2 + c2)
=

a2(b− c)2

a2(b2 + c2) + 2b2c2
.

Therefore, it suffices to prove that

a2

a2(b2 + c2) + 2b2c2
≥

1
2(b2 + c2)

,

which reduces to a2(b2 + c2)≥ 2b2c2. This is true since

2a2(b2 + c2)− 4b2c2 ≥ (b2 + c2)2 − 4b2c2 = (b2 − c2)2.

The equality holds for a = b = c.

(b) The inequality follows from the inequality in (a) by replacing a with −a.
The equality holds for −a = b = c.

P 2.23. Let a, b, c be real numbers, no two of which are zero. If bc ≥ 0, then

(a)
(a− b)2

a2 + b2
+
(a− c)2

a2 + c2
≥
(b− c)2

(b+ c)2
;

(b)
(a+ b)2

a2 + b2
+
(a+ c)2

a2 + c2
≥
(b− c)2

(b+ c)2
.

(Vasile C., 2011)
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Solution. (a) Consider two cases: a2 ≤ bc and a2 ≥ bc.
Case 1: a2 ≤ bc. By the Cauchy-Schwarz inequality, we have

(a− b)2

a2 + b2
+
(a− c)2)
a2 + c2

≥
[(b− a) + (a− c)]2

(a2 + b2) + (a2 + c2)
=

(b− c)2

2a2 + b2 + c2
.

Thus, it suffices to show that

1
2a2 + b2 + c2

≥
1

(b+ c)2
,

which is equivalent to a2 ≤ bc.
Case 2: a2 ≥ bc. By the Cauchy-Schwarz inequality, we have

(a− b)2

a2 + b2
+
(a− c)2

a2 + c2
≥
[c(b− a) + b(a− c)]2

c2(a2 + b2) + b2(a2 + c2)
=

a2(b− c)2

a2(b2 + c2) + 2b2c2
.

Therefore, it suffices to prove that

a2

a2(b2 + c2) + 2b2c2
≥

1
(b+ c)2

,

which reduces to bc(a2 − bc) ≥ 0. The equality holds for a = b = c, for b = 0 and
a = c, and for c = 0 and a = b.

(b) The inequality follows from the inequality in (a) by replacing a with −a.
The equality holds for −a = b = c, for b = 0 and a + c = 0, and for c = 0 and
a+ b = 0.

P 2.24. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

|a− b|3

a3 + b3
+
|a− c|3

a3 + c3
≥
|b− c|3

(b+ c)3
.

(Vasile C., 2013)

Solution. Without loss of generality, assume that b ≥ c. Thus, we have three cases
to consider: a ≥ b ≥ c, b ≥ c ≥ a and b ≥ a ≥ c.
Case 1: a ≥ b ≥ c. It suffices to show that

|a− c|3

(a+ c)3
≥
|b− c|)3

(b+ c)3
,

which is equivalent to
a− c
a+ c

≥
b− c
b+ c

.



Noncyclic Inequalities 407

Indeed,
a− c
a+ c

−
b− c
b+ c

=
2c(a− b)
(a+ c)(b+ c)

≥ 0.

Case 2: b ≥ c ≥ a. It suffices to show that

(b− a)3

a3 + b3
≥
(b− c)3

(b+ c)3
.

Indeed,
(b− a)3

a3 + b3
≥
(b− c)3

a3 + b3
≥
(b− c)3

b3 + c3
≥

b− c)3

(b+ c)3
.

Case 3: b ≥ a ≥ c. We need to prove that

(b− a)3

a3 + b3
+
(a− c)3

a3 + c3
≥
(b− c)3

(b+ c)3
.

Using the substitution

x =
b− a
a+ b

, y =
a− c
a+ c

, 0≤ x < 1, 0≤ y ≤ 1,

we have

b =
1+ x
1− x

a, c =
1− y
1+ y

a,

(b− a)3 =
8x3

(1− x)3
a3, (a− c)3 =

8y3

(1+ y)3
a3,

a3 + b3 =
2(1+ 3x3)
(1− x)3

, a3 + c3 =
2(1+ 3y2)
(1+ y)3

,

b− c
b+ c

=
x + y

1+ x y
.

Thus, the desired inequality becomes

4x3

1+ 3x2
+

4y3

1+ 3y2
≥
(x + y)3

(1+ x y)3
,

x2 + y2 − x y + 3x2 y2

(1+ 3x2)(1+ 3y2)
≥
(x + y)2

4(1+ x y)3
,

s− p+ 3p2

1+ 3s+ 9p2
≥

s+ 2p
4(1+ p)3

,

where
s = x2 + y2, p = x y, 0≤ p < 1, 2p ≤ s ≤ 1+ p2.

Therefore, we need to show that f (s)≥ 0, where

f (s) = 4(1+ p)3(s− p+ 3p2)− (s+ 2p)(3s+ 1+ 9p2).
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Since f is a concave function, it suffices to show that f (2p)≥ 0 and f (1+ p2)≥ 0.
Indeed, we have

f (2p) = 4p3(3p+ 1)(p+ 3)≥ 0,

f (1+ p2) = 16p3(p+ 1)2 ≥ 0.

Thus, the proof is completed. The equality holds for a = b = c, for b = 0 and a = c,
and for c = 0 and a = b.

P 2.25. Let a, b, c be positive real numbers, b 6= c. Prove that

ab
(a+ b)2

+
ac

(a+ c)2
≤
(b+ c)2

4(b− c)2
.

(Vasile C., 2010)

Solution. Write the inequality in the form

(a− b)2

(a+ b)2
+
(a− c)2

(a+ c)2
+
(b+ c)2

(b− c)2
≥ 2.

Replacing a be −a, the inequality becomes

(a+ b)2

(a− b)2
+
(a+ c)2

(a− c)2
+
(b+ c)2

(b− c)2
≥ 2. (*)

Making the substitution

x =
a+ b
a− b

, y =
b+ c
b− c

, z =
c + a
c − a

,

we can write the inequality as

x2 + y2 + z2 ≥ 2.

From

x + 1=
2a

a− b
, y + 1=

2b
b− c

, z + 1=
2c

c − a
and

x − 1=
2b

a− b
, y − 1=

2c
b− c

, z − 1=
2a

c − a
,

we get
(x + 1)(y + 1)(z + 1) = (x − 1)(y − 1)(z − 1),

x y + yz + zx + 1= 0.

Therefore, we have

x2 + y2 + z2 − 2= x2 + y2 + z2 + 2(x y + yz + zx) = (x + y + z)2 ≥ 0.
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The inequality (*) is an equality for x + y + z = 0; that is,

(a+ b+ c)(ab+ bc + ca)− 9abc = 0.

Therefore, the original inequality is an equality for

(b+ c − a)(bc − ab− ac) + 9abc = 0.

P 2.26. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

3bc + a2

b2 + c2
≥

3ab− c2

a2 + b2
+

3ac − b2

a2 + c2
.

(Vasile C., 2014)

Solution (by Nguyen Van Quy). Write the inequality as

a2

b2 + c2
+

b2

a2 + c2
+

c2

a2 + b2
+

3bc
b2 + c2

≥
3ab

a2 + b2
+

3ac
a2 + c2

.

By the Cauchy-Schwarz inequality, we have

b2

a2 + c2
+

c2

a2 + b2
≥

(b2 + c2)2

b2(a2 + c2) + c2(a2 + b2)
=

(b2 + c2)2

a2(b2 + c2) + 2b2c2

≥ 2−
a2(b2 + c2) + 2b2c2

(b2 + c2)2
= 2−

a2

b2 + c2
−

2b2c2

(b2 + c2)2
,

hence
a2

b2 + c2
+

b2

a2 + c2
+

c2

a2 + b2
≥ 2−

2b2c2

(b2 + c2)2
.

Therefore, it suffices to show that

2−
2b2c2

(b2 + c2)2
+

3bc
b2 + c2

≥
3ab

a2 + b2
+

3ac
a2 + c2

.

This inequality is equivalent to
�

1
2
−

2b2c2

(b2 + c2)2

�

+
�

3
2
−

3ab
a2 + b2

�

+
�

3
2
−

3ac
a2 + c2

�

≥
�

3
2
−

3bc
b2 + c2

�

,

(b2 − c2)2

3(b2 + c2)2
+
(a− b)2

a2 + b2
+
(a− c)2

a2 + c2
≥
(b− c)2

b2 + c2
.

Using the inequality in P 2.23-(a), namely

(a− b)2

a2 + b2
+
(a− c)2

a2 + c2
≥
(b− c)2

(b+ c)2
,
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it is enough to prove that

(b+ c)2

3(b2 + c2)2
+

1
(b+ c)2

≥
1

b2 + c2
,

which is equivalent to
1

(b+ c)2
≥

2(b2 − bc + c2)
3(b2 + c2)2

.

We have

3(b2 + c2)2 − 2(b+ c)2(b2 − bc + c2) = 3(b2 + c2)2 − 2(b+ c)(b3 + c3)

= b4 + c4 + 6b2c2 − 2bc(b2 + c2)

≥ (b2 + c2)2 − 2bc(b2 + c2)

= (b2 + c2)(b− c)2 ≥ 0.

The equality holds for a = b = c.

P 2.27. Let a, b, c be nonnegative real numbers such that a+ b > 0. Prove that

abc ≥ (b+ c − a)(c + a− b)(a+ b− c) +
ab(a− b)2

a+ b
.

(Vasile C., 2011)

Solution. Since

(b+ c − a)(c + a− b)(a+ b− c) =
2(a2 b2 + b2c2 + c2a2)− a4 − b4 − c4

a+ b+ c
,

we can rewrite the inequality as

a4 + b4 + c4 + abc(a+ b+ c)≥ 2(a2 b2 + b2c2 + c2a2) +
ab(a+ b+ c)(a− b)2

a+ b
.

By Schur’s inequality of fourth degree, we have

a4 + b4 + c4 + abc(a+ b+ c)≥
∑

ab(a2 + b2).

Therefore, it suffices to prove that

∑

ab(a2 + b2)≥ 2(a2 b2 + b2c2 + c2a2) +
ab(a+ b+ c)(a− b)2

a+ b
,

which is equivalent to

∑

ab(a− b)2 ≥
ab(a+ b+ c)(a− b)2

a+ b
,
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or

bc(b− c)2 + ca(c − a)2 ≥
abc(a− b)2

a+ b
.

This inequality follows immediately from the Cauchy-Schwarz inequality

(a+ b)[bc(b− c)2 + ca(c − a)2]≥ [
p

abc(b− c) +
p

abc(c − a)]2.

The equality holds for a = b = c, and for a = 0 and b = c (or any cyclic permuta-
tion).

P 2.28. Let a, b, c be nonnegative real numbers such that a ≥ b ≥ c. Prove that

(a) abc ≥ (b+ c − a)(c + a− b)(a+ b− c) +
2ab(a− b)2

a+ b
;

(b) abc ≥ (b+ c − a)(c + a− b)(a+ b− c) +
27b(a− b)4

4a2
.

(Vasile C., 2011)

Solution. (a) Write the inequality as

∑

a(a− b)(a− c)≥
2ab(a− b)2

a+ b
.

Since
c(c − a)(c − b)≥ 0,

it suffices to show that

a(a− b)(a− c) + b(b− c)(c − a)≥
2ab(a− b)2

a+ b
.

Since

a(a− b)(a− c) = a(a− b)[(a− b) + (b− c)] = a(a− b)2 + a(a− b)(b− c)

≥
2ab(a− b)2

a+ b
+ a(a− b)(b− c),

it suffices to show that

a(a− b)(b− c) + b(b− c)(b− a)≥ 0.

This inequality is equivalent to

(a− b)2(b− c)≥ 0.

The equality holds for a = b = c, and for a = b and c = 0.
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(b) Write the inequality as

∑

a(a− b)(a− c)≥
27b(a− b)4

4a2
.

Since
c(c − a)(c − b)≥ 0,

it suffices to show that

a(a− b)(a− c) + b(b− c)(c − a)≥
27b(a− b)4

4a2
,

which is equivalent to

a(a− b)2 + a(a− b)(b− c) + b(b− c)(c − a)≥
27b(a− b)4

4a2
.

Since

a(a− b)2 −
27b(a− b)4

4a2
=
(a− b)2(a− 3b)2

4a2
,

it suffices to show that

a(a− b)(b− c) + b(b− c)(b− a)≥ 0.

This inequality is equivalent to

(a− b)2(b− c)≥ 0.

The equality holds for a = b = c, and for a/3= b = c.

P 2.29. Let a, b, c be nonnegative real numbers such that a+ b > 0. Prove that

∑

a2(a− b)(a− c)≥ a2 b2
�

a− b
a+ b

�2

.

(Vasile C., 2011)

Solution. Without loss of generality, assume that a ≥ b. There three cases to
consider.

Case 1. c ≥ a ≥ b. Since

a2(a− b)(a− c) + c2(c − a)(c − b)≥ a2(a− b)(a− c) + c2(c − a)(a− b)

= (a− b)(c − a)2(c + a)≥ 0,
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it suffices to show that

b2(a− b)(c − b)≥ a2 b2
�

a− b
a+ b

�2

.

Since c − b ≥ a− b, this is true if

1≥
� a

a+ b

�2
,

which is true.

Case 2. a ≥ b ≥ c. Since
c2(c − a)(c − b)≥ 0

and

a2(a− b)(a− c) + b2(b− c)(b− a) = (a− b)2[a2 + ab+ b2 − c(a+ b)]

≥ (a− b)2[a2 + ab+ b2 − b(a+ b)] = a2(a− b)2,

it suffices to show that

1≥
�

b
a+ b

�2

,

which is true.

Case 3. a ≥ c ≥ b. Since

b2(b− c)(b− a)≥ b2(c − b)2

and

a2(a− b)(a− c) + c2(c − a)(c − b) = (a− c)2[a2 + ac + c2 − b(a+ c)]

≥ (a− c)2[a2 + ac + c2 − c(a+ c)] = a2(a− c)2,

it suffices to show that

b2(c − b)2 + a2(a− c)2 ≥ a2 b2
�

a− b
a+ b

�2

.

By the Cauchy-Schwarz inequality, we have
�

1
b2
+

1
a2

�

�

b2(c − b)2 + a2(a− c)2
�

≥ [(c − b) + (a− c)]2 = (a− b)2.

Therefore, it suffices to prove that

a2 b2(a− b)2

a2 + b2
≥ a2 b2

�

a− b
a+ b

�2

,

which is clearly true.
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This completes the proof. The equality holds for a = b = c, and for a = 0 and b = c
(or any cyclic permutation).

Remark. Similarly, we can prove the following generalization.

• Let a, b, c be nonnegative real numbers such that a + b > 0. If k is a positive
natural number, then

∑

ak(a− b)(a− c)≥
�

ab
a+ b

�k

(a− b)2.

P 2.30. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

ab2 + bc2 + 2ca2 ≤ 8.

Solution. Since the equality holds for a = 2, b = 0, c = 1, we apply the AM-GM
inequality to get

ca2

4
= c ·

a
2
·

a
2
≤

1
27

�

c +
a
2
+

a
2

�3
=

1
27
(c + a)3 ≤

1
27
(a+ b+ c)3 = 1.

Therefore, it suffices to show that

ab2 + bc2 + ca2 ≤ 4,

which is the inequality in P 1.1.

P 2.31. Let a, b, c be nonnegative real numbers such that a+ b+ c = 3. Prove that

ab2 + bc2 +
3
2

abc ≤ 4.

(Vasile Cîrtoaje and Vo Quoc Ba Can, 2007)

Solution. Consider two cases.

Case 1: c ≥ 2b. We have

ab2 + bc2 +
3
2

abc = b(a+ c)2 − ab
�

a− b+
c
2

�

≤ b(a+ c)2

= 4b
�a+ c

2

��a+ c
2

�

≤ 4





b+
a+ c

2
+

a+ c
2

3





3

= 4.
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Case 2: 2b > c. Write the desired inequality as f (a)≥ 0, where

f (a) = 4
�

a+ b+ c
3

�3

− ab2 − bc2 −
3
2

abc,

with the derivative

f ′(a) = 4
�

a+ b+ c
3

�2

− b2 −
3
2

bc.

The equation f ′(a) = 0 has the positive root

a1 =
3
2

√

√ b(2b+ 3c)
2

− b− c =
(2b− c)(5b+ 8c)

6
p

2b(2b+ c) + 8(b+ c)
.

Since f ′(a) < 0 for 0 ≤ a < a1 and f ′(a) > 0 for a > a1, f (a) is decreasing on
[0, a1] and increasing on [a1,∞); consequently, f (a) ≥ f (a1). To complete the
proof, it suffices to show that f (a1)≥ 0. Indeed, since

4
�

a1 + b+ c
3

�2

= b2 +
3
2

bc,

we have

f (a1) = 4
�

a1 + b+ c
3

�3

− a1

�

b2 +
3
2

bc
�

− bc2

=
a1 + b+ c

3

�

b2 +
3
2

bc
�

− a1

�

b2 +
3
2

bc
�

− bc2

=
b+ c − 2a1

3

�

b2 +
3
2

bc
�

− bc2

=

�

b+ c −

√

√2b2 + 3bc
2

�

�

b2 +
3
2

bc
�

− bc2

=
b
4

�

4b2 + 10bc + 2c2 − (2b+ 3c)
Æ

2b(2b+ 3c)
�

=
bc(2b− c)2(b+ 2c)

2[4b2 + 10bc + 2c2 + (2b+ 3c)
p

2b(2b+ 3c)]
≥ 0.

Thus, the proof is completed. The equality holds for a = 0, b = 1, c = 2, and for
a = 1, b = 2, c = 0.

P 2.32. Let a, b, c be nonnegative real numbers such that a+ b+ c = 5. Prove that

ab2 + bc2 + 2abc ≤ 20.

(Vo Quoc Ba Can, 2011)
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Solution. Write the inequality as

b(ab+ c2 + 2ac)≤ 20.

We see that the equality holds for a = 1 and b = c = 2. From (a − b/2)2 ≥ 0, it
follows that

ab ≤ a2 +
b2

4
.

Therefore, for b ≤ 4, we have

b(ab+ c2 + 2ac)− 20≤ b
�

a2 +
b2

4
+ c2 + 2ac

�

− 20= b
�

(a+ c)2 +
b2

4

�

− 20

= b
�

(5− b)2 +
b2

4

�

− 20=
5
4
(b− 4)(b− 2)2 ≤ 0.

Consider now that b > 4. Since

a = 5− b− c ≤ 5− b,

We have

ab2 + bc2 + 2abc − 20= ab2 + b(5− a− b)2 + 2ab(5− a− b)− 20

= b3 + ab2 − 10b2 − a2 b+ 25b− 20

≤ b3 + ab2 − 10b2 + 25b− 20

≤ b3 + (5− b)b2 − 10b2 + 25b− 20

= −5(b− 4)(b− 1)< 0.

P 2.33. If a, b, c are nonnegative real numbers, then

a3 + b3 + c3 − a2 b− b2c − c2a ≥
8
9
(a− b)(b− c)2.

Solution. Since

3(a3 + b3 + c3 − a2 b− b2c − c2a) =
∑

(2a3 − 3a2 b+ b3) =
∑

(2a+ b)(a− b)2,

we can write the inequality as

(2a+ b)(a− b)2 + (2b+ c)(b− c)2 + (2c + a)(c − a)2 ≥
8
3
(a− b)(b− c)2.

If a ≤ b, then

(2a+ b)(a− b)2 + (2b+ c)(b− c)2 + (2c + a)(c − a)2 ≥ 0≥
8
3
(a− b)(b− c)2.
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If a ≥ b, then there are two cases to consider: b ≥ c and b ≤ c.
Case 1: a ≥ b ≥ c. It suffices to show that

(2c + a)(a− c)2 ≥
8
3
(a− b)(b− c)2.

By the AM-GM inequality, we have

(a− b)(b− c)2 = 4(a− b)
�

b− c
2

��

b− c
2

�

≤ 4
�

(a− b) + (b− c)/2+ (b− c)/2
3

�3

=
4

27
(a− c)3.

Therefore, it suffices to show that

(2c + a)(a− c)2 ≥
32
81
(a− c)3,

which is obvious.
Case 2: a ≥ b, c ≥ b. Making the substitution

a = b+ p, c = b+ q, p, q ≥ 0,

the inequality becomes

(3b+ 2p)p2 + (3b+ q)q2 + (3b+ p+ 2q)(p− q)2 ≥
8
3

pq2,

3[p2 + q2 + (p− q)2]b+ 2p3 + q3 + (p+ 2q)(p− q)2 ≥
8
3

pq2.

It suffices to show that

2p3 + q3 + (p+ 2q)(p− q)2 ≥
8
3

pq2,

which is equivalent to

2p3 + 2q3 ≥
34
9

pq2.

By the AM-GM inequality, we have

2p3 + 2q3 = 2p3 + q3 + q3 ≥ 3 3
Æ

2p3q6 ≥
34
9

pq2,

because
3

3p
2>

34
9

.

The equality holds for a = b = c.
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P 2.34. Let a, b, c be nonnegative real numbers such that a ≥ b ≥ c. Prove that

(a)
∑

a2(a− b)(a− c)≥ 4a2 b2
�

a− b
a+ b

�2

;

(b)
∑

a2(a− b)(a− c)≥
27b(a− b)4

4a
.

(Vasile C., 2011)

Solution. (a) Since c2(c − a)(c − b)≥ 0, it suffices to show that

a2(a− b)(a− c) + b2(b− c)(b− a)≥ 4a2 b2
�

a− b
a+ b

�2

.

Since
a2(a− b)(a− c) = a2(a− b)[(a− b) + (b− c)]

= a2(a− b)2 + a2(a− b)(b− c)≥ 4a2 b2
�

a− b
a+ b

�2

+ a2(a− b)(b− c),

it suffices to show that

a2(a− b)(b− c) + b2(b− c)(b− a)≥ 0.

This inequality is equivalent to

(a− b)2(a+ b)(b− c)≥ 0.

The equality holds for a = b = c, and for a = b and c = 0.

(b) Since c2(c − a)(c − b)≥ 0, it suffices to show that

a2(a− b)(a− c) + b2(b− c)(c − a)≥
27b(a− b)4

4a
,

which is equivalent to

a2(a− b)2 + a(a− b)(b− c) + b2(b− c)(c − a)≥
27b(a− b)4

4a
.

Since

a2(a− b)2 −
27b(a− b)4

4a
=
(a− b)2(a− 3b)2(4a− 3b)

4a
≥ 0,

it suffices to show that

a2(a− b)(b− c) + b2(b− c)(b− a)≥ 0.

This inequality is equivalent to

(a− b)2(a+ b)(b− c)≥ 0.

The equality holds for a = b = c, and for a/3= b = c.
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P 2.35. If a, b, c are real numbers such that

a ≥ b ≥ 1≥ c, a2 + b2 + c2 = 3,

then

(a) 1− abc ≤ 2(b− c)2;

(b) 1− abc ≥ 2(a− b)2;

(c) 1− abc ≥
1
2
(a− c)2;

(d) 1− abc ≤
3
4
(a− c)2.

(Vasile Cîrtoaje, 2020)

Solution. (a) Write the inequality as follows:

1− abc ≤ 2(3− a2 − 2bc),

5− 2a2 ≥ (4− a)bc.

From (b2 − 1)(c2 − 1)≤ 0, we get

b2c2 ≤ b2 + c2 − 1= 2− a2, bc ≤
p

2− a2, a ≤
p

2.

Thus, it is enough to show that

5− 2a2 ≥ (4− a)
p

2− a2,

which, by squaring, becomes

5a4 − 8a3 − 6a2 + 16a− 7≥ 0,

(a− 1)3(5a+ 7)≥ 0.

The equality occurs for a = b = c = 1.

(b) From
3= a2 + b2 + c2 ≥ 1+ 1+ c2,

it follows that c ∈ [−1,1]. Write the required inequality as follows:

1− abc ≥ 2(3− c2 − 2ab),

(4− c)ab ≥ 5− 2c2.

From (a2 − 1)(b2 − 1)≥ 0, we get

ab ≥
p

a2 + b2 − 1=
p

2− c2.
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Thus, it is enough to show that

(4− c)
p

2− c2 ≥ 5− 2c2,

which, by squaring, becomes

5c4 − 8c3 − 6c2 + 16c − 7≤ 0,

(c − 1)3(5c + 7)≤ 0.

(c) Write the inequality as follows:

2− 2abc ≥ 3− b2 − 2ac,

b2 − 1≥ 2ac(b− 1),

which is true if
b+ 1≥ 2ac.

It is enough to show that
b+ 1≥ a2 + c2,

which is equivalent to
b+ 1≥ 3− b2,

(b− 1)(b+ 2)≥ 0.

The equality occurs for a = b = c = 1.

(d) Write the inequality as follows:

4− 4abc ≤ 3(3− b2)− 6ac,

2(3− 2b)ac ≤ 5− 3b2.

From
(a2 − b2)(b2 − c2)≥ 0,

it follows that

ac ≤
Æ

b2(a2 + c2)− b4 = b
p

3− 2b2, 1≤ b ≤

√

√3
2

.

Thus, it suffices to show that

2b(3− 2b)
p

3− 2b2 ≤ 5− 3b2.

By squaring, the inequality becomes

32b6 − 96b5 + 33b4 + 144b3 − 138b2 + 25≥ 0,

(b− 1)2(32b4 − 32b3 − 63b2 + 50b+ 25)≥ 0.
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It is true because

32b4 − 32b3 − 63b2 + 50b+ 25> 32b4 − 32b3 − 64b2 + 48b+ 24

= 8(3− 2b2)(1+ 2b− 2b2)≥ 0.

The equality occurs for a = b = c = 1.

P 2.36. If a, b, c are real numbers such that

a ≥ 1≥ b ≥ c, a2 + b2 + c2 = 3,

then
1− abc ≤

2
3
(a− c)2.

First Solution. There are two cases to consider: b ≤ 0 and b ≥ 0.

Case 1: b ≤ 0. Since 0≥ b ≥ c, hence c2 ≥ b2, we have

3abc + 2(a− c)2 − 3≥ 2(a− c)2 − 3

> a2 + 2c2 − 3≥ a2 + b2 + c2 − 3= 0.

Case 2: b ≥ 0. Write the inequality as follows:

3abc + 2(3− b2 − 2ac)≥ 3,

3− 2b2 ≥ (4− 3b)ac.

From (b2 − c2)(b2 − a2)≤ 0, we get

a2c2 ≤ b2(a2 + c2)− b4 = b2(3− b2)− b4, ac ≤ b
p

3− 2b2.

Thus, it is enough to show that

3− 2b2 ≥ b(4− 3b)
p

3− 2b2,

which, by squaring, becomes

6b6 − 16b5 + 3b4 + 24b3 − 20b2 + 3≥ 0,

(1− b)3(3+ 9b− 2b2 − 6b3)≥ 0.

(1− b)3[3+ b+ 2b(1− b) + 6b(1− b2)]≥ 0.

The equality occurs for a = b = c = 1.
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Second Solution ( by Mudok). We will prove the stronger inequality

1− abc ≤
2
3

�

(a− c)2 − (a− b)(b− c)
�

,

which is equivalent to

1− abc ≤
2
3
(3− ab− bc − ca),

3− 3abc ≤ 9− p2,

where
p = a+ b+ c.

From
(a− 1)(b− 1)(c − 1)≥ 0,

we get

abc ≥
p2 − 2p− 1

2
.

Thus it suffices to show that

3−
3(p2 − 2p− 1)

2
≤ 9− p2,

which is equivalent to
(p− 3)2 ≥ 0.

P 2.37. If a ≥ 1≥ b ≥ c ≥ 0 and a2 + b2 + c2 = 3, then

1− abc ≤
1
p

2
(a− c).

(Vasile Cîrtoaje, 2020)

Solution. Denoting x = ac, we need to show that f (x)≥ 0, where

f (x) = bx +

√

√3− b2 − 2x
2

− 1.

For fixed b, we have x ∈ [0, M], where

M = b
p

3− 2b2.

Indeed, (b2 − a2)(b2 − c2)≤ 0 yields

a2c2 ≤ b2(a2 + c2)− b4 = 3b2 − 2b4, x ≤ b
p

3− 2b2 = M .
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We have x = 0 for c = 0, and x = M for a = b = 1 or b = c. Since

f ′′(x) = −
1
p

2
·

1
(3− b2 − 2x)3/2

≤ 0,

f is a concave function, therefore it suffices to show that f (0) ≥ 0 and f (M) ≥ 0.
We have

f (0) =

√

√3− b2

2
− 1≥ 0.

Since
p

3− b2 − 2M =
q

3− b2 − 2b
p

3− 2b2 =
p

3− 2b2 − b,

we have

f (M)≥ bM +
2
3
·
p

3− b2 − 2M − 1=
2
3
·
p

3− b2 − 2M − (1− bM)

=
2
3
·
�p

3− 2b2 − b
�

− (1− b2
p

3− 2b2)

=
�

b2 +
2
3

�

p

3− 2b2 −
2b
3
− 1.

So, we need to show that

(3b2 + 2)
p

3− 2b2 ≥ 2b+ 3.

By squaring, the inequality becomes

6b6 − b4 − 8b2 + 4b− 1≤ 0,

(b− 1)(6b5 + 6b4 + 5b3 + 5b2 − 3b+ 1)≤ 0.

It is true because
5b2 − 3b+ 1= b2 + b+ (2b− 1)2 > 0.

The equality occurs for a = b = c = 1, and also for a =
p

2, b = 1, c = 0.

P 2.38. If a ≥ 1≥ b ≥ c ≥ 0 and a2 + b2 + c2 = 3, then

1− abc ≤ (1+
p

2)(a− b).

(Vasile Cîrtoaje, 2020)



424 Vasile Cîrtoaje

Solution. Denoting x = ab, we need to show that f (x)≥ 0, where

f (x) = cx + k
p

3− c2 − 2x − 1, k = 1+
p

2.

For fixed c, we have x ∈ [m, M], where

m= c
p

3− 2c2, M =
p

2− c2.

Indeed, (a2 − c2)(b2 − c2)≥ 0 yields

a2 b2 ≥ c2(a2 + b2)− c4 = 3c2 − 2c4, x ≥ c
p

3− 2c2 = m,

and (a2 − 1)(b2 − 1)≤ 0 yields

ab ≤
p

a2 + b2 − 1=
p

2− c2 = M .

We have x = m for b = c, and x = M for b = 1. Since

f ′′(x) =
−k

(3− c2 − 2x)3/2
≤ 0,

f is a concave function, therefore it suffices to show that f (m)≥ 0 and f (M)≥ 0.
We have

f (m) = c2
p

3− 2c2 + k
q

3− c2 − 2c
p

3− 2c2 − 1

= c2
p

3− 2c2 + k
�p

3− 2c2 − c
�

− 1

≥ c2
p

3− 2c2 + 2
�p

3− 2c2 − c
�

− 1

= (c2 + 2)
p

3− 2c2 − 2c − 1≥ (2c + 1)
�p

3− 2c2 − 1
�

≥ 0.

Also,

f (M) = c
p

2− c2 + k
q

3− c2 − 2
p

2− c2 − 1

= c
p

2− c2 − 1+ k
�p

2− c2 − 1
�

=
−(1− c2)2

c
p

2− c2 + 1
+

k(1− c2)
p

2− c2 + 1
.

So, we need to show that

k
p

2− c2 + 1
≥

1− c2

c
p

2− c2 + 1
.

It is true because
k

p
2− c2 + 1

≥ 1≥
1− c2

1+ c
p

2− c2
.

The equality occurs for a = b = c = 1, and also for a =
p

2, b = 1, c = 0.
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P 2.39. If a ≥ 1≥ b ≥ c ≥ 0 and a2 + b2 + c2 = 3, then

1− abc ≤ (3+ 2
p

2)(a− b)2.

(Vasile Cîrtoaje, 2020)

Solution. Write the inequality as follows:

abc + k(3− c2 − 2ab)≥ 1,

3k− 1− kc2 ≥ (2k− c)ab, k = 3+ 2
p

2.

From (a2 − 1)(b2 − 1)≤ 0, we get

ab ≤
p

a2 + b2 − 1=
p

2− c2.

Thus, it is enough to show that

3k− 1− kc2 ≥ (2k− c)
p

2− c2.

Write this inequality as follows:

k
�

3− c2 − 2
p

2− c2
�

≥ 1− c
p

2− c2,

k(1− c2)2

3− c2 + 2
p

2− c2
≥

(1− c2)2

1+ c
p

2− c2
,

which is true if
k
�

1+ c
p

2− c2
�

≥ 3− c2 + 2
p

2− c2,

k− 3+ c2 ≥ (2− kc)
p

2− c2.

For the nontrivial case 2− kc ≥ 0, we have

k− 3+ c2 ≥ k− 3= 2
p

2≥ (2− kc)
p

2− c2.

The equality occurs for a = b = c = 1, and also for a =
p

2, b = 1, c = 0.

P 2.40. If a, b, c are positive real numbers, then

a
b
+

b
c
+

c
a
≥ 3+

(a− c)2

ab+ bc + ca
.

(Vasile Cîrtoaje and Vo Quoc Ba Can, 2008)
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First Solution. By expanding, the inequality can be written as

b2 +
bc2

a
+

ca2

b
+

ab2

c
≥ 2ab+ 2bc.

We can get this inequality by summing the AM-GM inequalities

ab+
bc2

a
≥ 2bc,

b2 +
ca2

b
+

ab2

c
≥ 3ab.

The equality holds for a = b = c.

Second Solution. From

(a+ b+ c)
�

a
b
+

b
c
+

c
a
− 3

�

=
∑ a2

b
+
∑ bc

a
− 2

∑

a

=
∑

�

a2

b
− 2a+ b

�

+
∑

�

bc
a
− b

�

=
∑

�

a2

b
− 2a+ b

�

+
1
2

∑

�

ab
c
+

ac
b
− 2a

�

=
∑ (a− b)2

b
+

1
2

∑ a(b− c)2

bc
,

we get

(a+ b+ c)
�

a
b
+

b
c
+

c
a
− 3

�

≥
(a− b)2

b
+
(b− c)2

c
+
(c − a)2

a
.

By the Cauchy-Schwarz inequality, we have

(a− b)2

b
+
(b− c)2

c
≥
(a− c)2

b+ c
.

Therefore,

(a+ b+ c)
�

a
b
+

b
c
+

c
a
− 3

�

≥
(a− c)2

b+ c
+
(c − a)2

a
,

which is equivalent to
a
b
+

b
c
+

c
a
− 3≥

(a− c)2

a(b+ c)
.

From this result, the desired inequality follows immediately.
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P 2.41. If a, b, c are positive real numbers, then

(a)
a
b
+

b
c
+

c
a
≥ 3+

4(a− c)2

(a+ b+ c)2
;

(b)
a
b
+

b
c
+

c
a
≥ 3+

5(a− c)2

(a+ b+ c)2
.

(Vo Quoc Ba Can and Vasile Cîrtoaje, 2009)

Solution. As we have shown at the second solution of the preceding problem P
2.40:

(a+ b+ c)
�

a
b
+

b
c
+

c
a
− 3

�

=
∑ (a− b)2

b
+

1
2

∑ a(b− c)2

bc
,

a
b
+

b
c
+

c
a
− 3≥

(a− c)2

a(b+ c)
.

(a) According to the upper inequality, it suffices to show that

1
a(b+ c)

≥
4

(a+ b+ c)2
.

Indeed,
1

a(b+ c)
−

4
(a+ b+ c)2

=
(a− b− c)2

a(b+ c)(a+ b+ c)2
≥ 0.

The equality holds for a = b = c.

(b) According to the upper identity, write the inequality as

(a+ b+ c)
�

a
b
+

b
c
+

c
a
− 3

�

≥
5(a− c)2

a+ b+ c
,

∑ (a− b)2

b
+

1
2

∑ a(b− c)2

bc
≥

5(a− c)2

a+ b+ c
,

(a− b)2

b
+
(b− c)2

c
+

c(a− b)2

2ab
+

a(b− c)2

2bc
≥
�

5
a+ b+ c

−
1
a
−

b
2ac

�

(a− c)2.

By the Cauchy-Schwarz inequality, we have

(a− b)2

b
+
(b− c)2

c
≥
[(a− b) + (b− c)]2

b+ c
,

c(a− b)2

2ab
+

a(b− c)2

2bc
≥
[(a− b) + (b− c)]2

2ab
c +

2bc
a

=
ac(a− c)2

2b(a2 + c2)
.

Thus, we only need to show that

1
b+ c

+
ac

2b(a2 + c2)
≥

5
a+ b+ c

−
1
a
−

b
2ac

,
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which is equivalent to
�

1
a
+

1
b+ c

�

+
ac

2b(a2 + c2)
+

b
2ac
≥

5
a+ b+ c

.

This inequality is true because, by the Cauchy-Schwarz inequality and the AM-GM
inequality, we have

1
a
+

1
b+ c

≥
4

a+ (b+ c)
and

ac
2b(a2 + c2)

+
b

2ac
≥

1
p

a2 + c2
>

1
a+ c

>
1

a+ b+ c
.

The equality holds for a = b = c.

P 2.42. If a ≥ b ≥ c > 0, then

a
b
+

b
c
+

c
a
≥ 3+

3(b− c)2

ab+ bc + ca
.

First Solution. Since

a
b
+

c
a
− 1−

c
b
=
(a− b)(a− c)

ab
≥ 0,

it suffices to show that
b
c
+

c
b
− 2≥

3(b− c)2

ab+ bc + ca
.

Indeed, we have

b
c
+

c
b
− 2−

3(b− c)2

ab+ bc + ca
=
(b− c)2(ab+ ac − 2bc)

bc(ab+ bc + ca)
.

The equality holds for a = b = c.

Second Solution. Since
ab+ bc + ca ≥ 3bc,

it suffices to show that
a
b
+

b
c
+

c
a
≥ 3+

(b− c)2

bc
,

which is equivalent to
a
b
+

c
a
≥ 1+

c
b

,

(a− b)(a− c)
ab

≥ 0.
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P 2.43. Let a, b, c be positive real numbers such that abc = 1. Prove that

(a) if a ≥ b ≥ 1≥ c, then

a
b
+

b
c
+

c
a
≥ 3+

2(a− b)2

ab
;

(b) if a ≥ 1≥ b ≥ c, then

a
b
+

b
c
+

c
a
≥ 3+

2(b− c)2

bc
.

(Vasile C., 2010)

Solution. (a) Write the inequality as

f (c)≥
a
b
+ 2

b
a
− 1,

where

f (c) =
b
c
+

c
a

.

From
b3 ≥ 1= abc,

we find
b2 ≥ ac.

We will show that

f (c)≥ f
�

b2

a

�

≥
a
b
+ 2

b
a
− 1.

The left inequality is equivalent to

b
c
+

c
a
≥

a
b
+

b2

a2
,

b2 − ac
bc

≥
b2 − ac

a2
≥ 0,

(a2 − bc)(b2 − ac)≥ 0.

The right inequality reduces to

�

b
a
− 1

�2

≥ 0.

The equality holds for a = b = c = 1.
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(b) Write the inequality as

f (a)≥
b
c
+ 2

c
b
− 1,

where
f (a) =

a
b
+

c
a

.

From
b3 ≤ 1= abc,

we find
b2 ≤ ac.

We will show that

f (a)≥ f
�

b2

c

�

≥
b
c
+ 2

c
b
− 1

The left inequality is equivalent to

a
b
+

c
a
≥

b
c
+

c2

b2
,

ac − b2

bc
≥

c(ac − b2

ab2
≥ 0,

(ab− c2)(ac − b2)≥ 0.

The right inequality reduces to

� c
b
− 1

�2
≥ 0.

The equality holds for a = b = c = 1.

P 2.44. Let a, b, c be positive real numbers such that

a ≥ 1≥ b ≥ c, abc = 1.

prove that
a
b
+

b
c
+

c
a
≥ 3+

9(b− c)2

ab+ bc + ca
.

(Vasile C., 2010)
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Solution. From b3 ≤ 1= abc, we find b2 ≤ ac. We will show that

a
b
+

b
c
+

c
a
≥

2b
c
+

c2

b2
≥ 3+

9(b− c)2

ab+ bc + ca
.

The left inequality is equivalent to

a
b
+

c
a
≥

b
c
+

c2

b2
,

a
b
−

b
c
+
�

c
a
−

c2

b2

�

≥ 0,

ac − b2

bc
+

c(b2 − ac)
ab2

≥ 0,

(ac − b2)(ab− c2)
ab2c

≥ 0.

The right inequality is equivalent to

2b
c
+

c2

b2
− 3≥

9(b− c)2

ab+ bc + ca
.

(b− c)2(2b+ c)
b2c

≥
9(b− c)2

ab+ bc + ca
.

We need to show that
(2b+ c)

b2c
≥

9
a(b+ c) + bc

.

This is true if
(2b+ c)

b2c
≥

9
b(b+ c) + bc

,

which is equivalent to
2(b− c)2

b2c(b+ 2c)
≥ 0.

The equality holds for a = b = c = 1.

P 2.45. Let a, b, c be positive real numbers such that

a ≥ 1≥ b ≥ c, a+ b+ c = 3.

prove that
a
b
+

b
c
+

c
a
≥ 3+

4(b− c)2

b2 + c2
.

(Vasile C., 2010)
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Solution. From
3b ≤ 3= a+ b+ c,

we find
2b ≤ a+ c, a ≥ 2b− c.

We will show that

a
b
+

b
c
+

c
a
≥

2b− c
b
+

b
c
+

c
2b− c

≥ 3+
4(b− c)2

b2 + c2
.

The left inequality is equivalent to

a
b
+

c
a
≥

2b− c
b
+

c
2b− c

,

a+ c − 2b
b

−
c(a+ c − 2b)

a(2b− c)
≥ 0,

(a+ c − 2b)[a(b− c) + b(a− c)]
ab(2b− c)

≥ 0.

The right inequality is equivalent to

(b− c)2(2b+ c)
bc(2b− c)

≥
4(b− c)2

b2 + c2
.

We need to show that
(2b+ c)

bc(2b− c)
≥

4
b2 + c2

,

which is equivalent to
2b3 − 7b2c + 6bc2 + c3 ≥ 0,

2b(b− 2c)2 + (b− c)2c ≥ 0.

The equality holds for a = b = c = 1.

P 2.46. Let a, b, c be positive real numbers such that

a ≥ b ≥ 1≥ c, a+ b+ c = 3.

Prove that
a
b
+

b
c
+

c
a
≥ 3+

3(a− b)2

ab
.

(Vasile C., 2008)
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Solution. From
3b ≥ 3= a+ b+ c,

we get
2b ≥ a+ c, c ≤ 2b− a.

We will show that

a
b
+

b
c
+

c
a
≥

a
b
+

b
2b− a

+
2b− a

a
≥ 3+

3(a− b)2

ab
.

The left inequality is equivalent to

b
c
+

c
a
≥

b
2b− a

+
2b− a

a
,

(2b− a− c)[b(a− c) + c(a− b)]≥ 0.

The right inequality is equivalent to

a
b
+

b
2b− a

+
2b− a

a
− 3≥

3(a− b)2

ab
,

(a− b)2(4b− a)
ab(2b− a)

≥
3(a− b)2

ab
,

2(a− b)3

ab(2b− a)
≥ 0.

The equality holds for a = b = c = 1.

P 2.47. If a, b, c are positive real numbers, then

a
b
+

b
c
+

c
a
≥ 3+

2(a− c)2

(a+ c)2
.

Solution. Since
a
b
+

b
c
≥ 2

s

a
c

,

it suffices to show that
c
a
+ 2

s

a
c
≥ 3+

2(a− c)2

(a+ c)2
.

Using the substitution x =
s

a
c

, this inequality becomes as follows:

1
x2
+ 2x ≥ 3+

2(x2 − 1)2

(x2 + 1)2
,
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(x − 1)2(2x + 1)
x2

≥
2(x2 − 1)2

(x2 + 1)2
.

We need to show that
2x + 1

x2
≥

2(x + 1)2

(x2 + 1)2
,

which is equivalent to
2x5 − 3x4 + 2x + 1≥ 0.

For 0< x ≤ 1, we have

2x5 − 3x4 + 2x + 1> −3x4 + 2x + 1≥ −3x + 2x + 1≥ 0.

Also, for x ≥ 1, we have

2x5 − 3x4 + 2x + 1> 2x5 − 3x4 + 2x − 1= (x − 1)2(2x3 + x2 − 1)≥ 0.

The equality holds for a = b = c.

P 2.48. If a, b, c are positive real numbers, then

a2

b
+

b2

c
+

c2

a
≥ a+ b+ c +

4(a− c)2

a+ b+ c
.

(Balkan MO, 2005, 2008)

Solution. Write the inequality as follows:
�

a2

b
+ b− 2a

�

+
�

b2

c
+ c − 2b

�

+
�

c2

a
+ a− 2c

�

≥
4(a− c)2

a+ b+ c
,

(a− b)2

b
+
(b− c)2

c
+
(a− c)2

a
≥

4(a− c)2

a+ b+ c
.

By the Cauchy-Schwarz inequality, we have

(a− b)2

b
+
(b− c)2

c
+
(a− c)2

a
≥
[(a− b) + (b− c) + (a− c)]2

b+ c + a
=

4(a− c)2

a+ b+ c
.

The equality holds for a = b = c, and also for a = b+ c and
b
c
=

1+
p

5
2

.

P 2.49. If a ≥ b ≥ c > 0, then

a2

b
+

b2

c
+

c2

a
≥ a+ b+ c +

6(b− c)2

a+ b+ c
.

(Vasile C., 2014)
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Solution. Write the inequality as follows:

�

a2

b
+ b− 2a

�

+
�

b2

c
+ c − 2b

�

+
�

c2

a
+ a− 2c

�

≥
6(b− c)2

a+ b+ c
,

(a− b)2

b
+
(b− c)2

c
+
(a− c)2

a
≥

6(b− c)2

a+ b+ c
,

(a− b)2

b
+
(a− c)2

a
+
(a+ b− 5c)(b− c)2

c(a+ b+ c)
≥ 0.

Since

(a− c)2 = [(a− b) + (b− c)]2 = (a− b)2 + 2(a− b)(b− c) + (b− c)2,

we have

(a− b)2

b
+
(a− c)2

a
≥
(a− c)2

a
≥

2(a− b)(b− c) + (b− c)2

a
.

Therefore, it suffices to show that

2(a− b)(b− c) + (b− c)2

a
+
(a+ b− 5c)(b− c)2

c(a+ b+ c)
≥ 0,

which can be written as

2(a− b)(b− c)
a

+
(a− c)2 + ab+ bc − 2ca

ac(a+ b+ c)
(b− c)2 ≥ 0.

Since

(a− c)2 + ab+ bc − 2ca = (a− c)2 + a(b− c)− c(a− b)≥ −c(a− b),

it is enough to prove that

2(a− b)(b− c)
a

−
a− b

a(a+ b+ c)
(b− c)2 ≥ 0.

Indeed,

2(a− b)(b− c)
a

−
a− b

a(a+ b+ c)
(b− c)2 =

(a− b)(b− c)
a

�

2−
b− c

a+ b+ c

�

≥ 0.

The equality holds for a = b = c.
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P 2.50. If a ≥ b ≥ c > 0, then

a2

b
+

b2

c
+

c2

a
> 5(a− b).

(Vasile C., 2014)

Solution. Consider two cases: a ≤ 2b and a ≥ 2b.

Case 1: a ≤ 2b. It suffices to show that

a2

b
+

b2

b
≥ 5(a− b),

which is equivalent to the obvious inequality

(2b− a)(3b− a)≥ 0.

Case 2: a ≥ 2b. Since

b2

c
+

c2

a
− b−

b2

a
= (b− c)

�

b
c
−

b+ c
a

�

≥ (b− c)
�

b
c
−

b+ c
2b

�

=
(b− c)2(2b+ c)

2bc
≥ 0,

it suffices to show that
a2

b
+ b+

b2

a
≥ 5(a− b),

which is equivalent to
x(x − 2)(3− x)< 1,

where x = a/b ≥ 2. For the non-trivial case 2≤ x ≤ 3, we have

x(x − 2)(3− x)≥ x
�

(x − 2) + (3− x)
2

�2

=
x
4
< 1.

P 2.51. Let a, b, c be positive real numbers such that

a ≥ b ≥ 1≥ c, a+ b+ c = 3.

Prove that
a2

b
+

b2

c
+

c2

a
≥ 3+

11(a− c)2

4(a+ c)
.

(Vasile C., 2010)
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Solution. We have
a+ b+ c = 3≤ b, 2b ≥ a+ c.

Thus, we need to prove the homogeneous inequality

a2

b
+

b2

c
+

c2

a
≥ a+ b+ c +

11(a− c)2

4(a+ c)

for
a ≥ b ≥

a+ c
2

.

Denote

f (a, b, c) =
a2

b
+

b2

c
+

c2

a
− a− b− c.

We will show that

f (a, b, c)≥ f
�

a,
a+ c

2
, c
�

≥
11(a− c)2

4(a+ c)
.

Write the left inequality as follows:
�

a2

b
−

2a2

a+ c

�

+
�

b2

c
−
(a+ c)2

4c

�

−
�

b−
a+ c

2

�

≥ 0,

(2b− a− c)
�

−
a2

b(a+ c)
+

2b+ a+ c
4c

−
1
2

�

≥ 0.

Since 2b− a− c ≥ 0, we only need to show that

2b+ a+ c
4c

≥
a2

b(a+ c)
+

1
2

.

It suffices to prove this inequality for b =
a+ c

2
. Making this, the inequality be-

comes
a(a− c)2

2c(a+ c)2
≥ 0.

To prove the right inequality, we find

f
�

a,
a+ c

2
, c
�

=
(a− c)2(a2 + 7ac + 4c2)

4ac(a+ c)
,

hence

f
�

a,
a+ c

2
, c
�

−
11(a− c)2

4(a+ c)
=
(a− c)2(a− 2c)2

4ac(a+ c)
≥ 0.

The equality holds for a = b = c = 1, and also for
a
4
=

b
3
=

c
2

(that is, for a =
4
3

,

b = 1, c =
2
3

).
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P 2.52. If a, b, c are positive real numbers, then

a
b+ c

+
b

c + a
+

c
a+ b

≥
3
2
+

27(b− c)2

16(a+ b+ c)2
.

(Vasile C., 2014)

Solution. Write the inequality as follows:

∑
� a

b+ c
+ 1

�

≥
9
2
+

27(b− c)2

16(a+ b+ c)2
,

�∑

(b+ c)
�

�

∑ 1
b+ c

�

≥ 9+
27(b− c)2

2
�∑

(b+ c)
�2 .

Replacing b+ c, c + a, a+ b by a, b, c, respectively, we need to show that

(a+ b+ c)
�

1
a
+

1
b
+

1
c

�

≥ 9+
27(b− c)2

2(a+ b+ c)2
,

where a, b, c are the side-lengths of a non-degenerate triangle. Write this inequality
in the form

a+ b+ c
a

+ (a+ b+ c)
�

1
b
+

1
c

�

+
54bc

(a+ b+ c)2
≥ 9+

27(b+ c)2

2(a+ b+ c)2
.

Applying the AM-GM inequality gives

(a+ b+ c)
�

1
b
+

1
c

�

+
54bc

(a+ b+ c)2
≥ 6

√

√ 6(b+ c)
a+ b+ c

.

Therefore, it suffices to show that

a+ b+ c
a

+ 6

√

√ 6(b+ c)
a+ b+ c

≥ 9+
27(b+ c)2

2(a+ b+ c)2
,

which can be rewritten as

1

1−
b+ c

a+ b+ c

+ 6

√

√ 6(b+ c)
a+ b+ c

≥ 9+
27(b+ c)2

2(a+ b+ c)2
.

Using the substitution
b+ c

a+ b+ c
=

2
3

t2, t2 >
3
4

,

this inequality becomes
1

3− 2t2
+ 4t ≥ 3+ 2t4,
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2t6 − 3t4 − 4t3 + 3t2 + 6t − 4≥ 0,

(t − 1)2(2t4 + 4t3 + 3t2 − 2t − 4)≥ 0,

(t − 1)2
�

(4t2 − 3)(t2 + 2t + 2) + t2 + 2t − 2
�

≥ 0.

Clearly, the last inequality is true for t2 > 3/4. The original inequality is an equality
for a = b = c.

P 2.53. Let a, b, c be positive real numbers such that a =min{a, b, c}. Prove that

a
b+ c

+
b

c + a
+

c
a+ b

≥
3
2
+

9(b− c)2

4(a+ b+ c)2
.

(Vasile C., 2014)

Solution. Write the inequality as

∑
� a

b+ c
+ 1

�

≥
9
2
+

9(b− c)2

4(a+ b+ c)2
,

�∑

(b+ c)
�

�

∑ 1
b+ c

�

≥ 9+
18(b− c)2

[(b+ c) + (c + a) + (a+ b)]2
.

Replacing b+ c, c + a, a+ b by a, b, c, respectively, we need to show that

(a+ b+ c)
�

1
a
+

1
b
+

1
c

�

≥ 9+
18(b− c)2

(a+ b+ c)2
,

where a, b, c are the side-lengths of a non-degenerate triangle, a = max{a, b, c}.
Since

(a+ b+ c)2 ≥
9
4
(b+ c)2 ≥ 9bc,

it suffices to show that

(a+ b+ c)
�

1
a
+

1
b
+

1
c

�

≥ 9+
2(b− c)2

bc
.

Write the inequality as follows:

(a− b)2

ab
+
(a− c)2

ac
+
(b− c)2

bc
≥

2(b− c)2

bc
,

c(a− b)2 + b(a− c)2 ≥ a(b− c)2,

(b+ c)a2 − (b+ c)2a+ bc(b+ c)≥ 0,

(b+ c)(a− b)(a− c)≥ 0.

Clearly, the last inequality is true. The original inequality is an equality for a = b =
c.
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P 2.54. Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that

a
b+ c

+
b

c + a
+

c
a+ b

≥
3
2
+
(b− c)2

2(b+ c)2
.

(Vasile C., 2014)

First Solution. Write the inequality as follows:

2bc
(b+ c)2

+
a

b+ c
+

b
c + a

+
c

a+ b
≥ 2,

a(b+ c) + 2bc
(b+ c)2

+
b

c + a
+

c
a+ b

≥ 2,

By the Cauchy-Schwarz inequality, we have

b
c + a

+
c

a+ b
≥

(b+ c)2

b(c + a) + c(a+ b)
=

(b+ c)2

a(b+ c) + 2bc
.

Therefore, it suffices to prove that

a(b+ c) + 2bc
(b+ c)2

+
(b+ c)2

a(b+ c) + 2bc
≥ 2,

which is obvious. The original inequality is an equality for a = b = c, for a = b
and c = 0, and for a = c and b = 0.

Second Solution. Write the inequality as follows:
∑

� a
b+ c

+ 1
�

≥
9
2
+
(b− c)2

2(b+ c)2
,

�∑

(b+ c)
�

�

∑ 1
b+ c

�

≥ 9+
(b− c)2

(b+ c)2
.

Replacing b+ c, c + a, a+ b by a, b, c, respectively, we need to show that

(a+ b+ c)
�

1
a
+

1
b
+

1
c

�

≥ 9+
(b− c)2

a2
,

where a, b, c are the lengths of the sides of a triangle. Write this inequality as

(a− b)2

ab
+
(a− c)2

ac
+
(b− c)2

bc
≥
(b− c)2

a2
,

a[c(a− b)2 + b(a− c)2]≥ (bc − a2)(b− c)2.

Without loss of generality, assume that b ≥ c. Since a ≥ b − c, it suffices to show
that

c(a− b)2 + b(a− c)2 ≥ (bc − a2)(b− c).

Indeed, we have

c(a− b)2 + b(a− c)2 − (bc − a2)(b− c) = 2b(a− c)2 ≥ 0.
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P 2.55. Let a, b, c be positive real numbers such that a =min{a, b, c}. Prove that

a
b+ c

+
b

c + a
+

c
a+ b

≥
3
2
+
(b− c)2

4bc
.

(Vasile C., 2014)

First Solution (by Nguyen Van Quy). Notice that for a =min{a, b, c}, we have

4bc = (2b)(2c)≥ (a+ b)(a+ c)≥ 2a(b+ c),

hence
a

b+ c
≥

2a2

(a+ b)(a+ c)
,
(b− c)2

4bc
≤

(b− c)2

(a+ b)(a+ c)
.

So, it suffices to show that

2a2

(a+ b)(a+ c)
+

b
c + a

+
c

a+ b
≥

3
2
+

(b− c)2

(a+ b)(a+ c)
,

which is equivalent to the obvious inequality

(a− b)(a− c)≥ 0.

The proof is completed. The original inequality is an equality for a = b = c.

Second Solution. Let

E(a, b, c) =
a

b+ c
+

b
c + a

+
c

a+ b
.

Without loss of generality, assume that b ≤ c, hence a ≤ b ≤ c. We will show that

E(a, b, c)≥ E(b, b, c)≥
3
2
+
(b− c)2

4bc
.

We have

E(a, b, c)− E(b, b, c) =
a− b
b+ c

+
b(b− a)

(a+ c)(b+ c)
+

c(b− a)
2b(a+ b)

= (b− a)
�

(b− a)− c
(a+ c)(b+ c)

+
c

2b(a+ b)

�

=
(b− a)[2b(b2 − a2) + c(c − b)(a+ 2b+ c)]

2b(a+ b)(a+ c)(b+ c)
≥ 0

and

E(b, b, c)−
3
2
−
(b− c)2

4bc
=
�

2b
b+ c

+
c

2b
−

3
2

�

−
(b− c)2

4bc

=
(b− c)2

2b(b+ c)
−
(b− c)2

4bc

=
(c − b)3

4bc(b+ c)
≥ 0.
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P 2.56. Let a, b, c be positive real numbers such that

a ≤ 1≤ b ≤ c, a+ b+ c = 3,

then
a

b+ c
+

b
c + a

+
c

a+ b
≥

3
2
+

3(b− c)2

4bc
.

(Vasile C., 2014)

Solution. From
3b ≥ 3= a+ b+ c,

we get
a ≤ 2b− c, 2b > c.

Let

E(a, b, c) =
a

b+ c
+

b
c + a

+
c

a+ b
.

We will show that

E(a, b, c)≥ E(2b− c, b, c)≥
3
2
+

3(b− c)2

4bc
.

We have
E(a, b, c)− E(2b− c, b, c) = (2b− a− c)F,

where
F =

−1
b+ c

+
1

2(c + a)
+

c
(a+ b)(3b− c)

.

Since 2b− a− c ≥ 0, we need to show that F ≥ 0. This is true because

F =
1
2

�

−
1

b+ c
+

1
c + a

�

−
1

2(b+ c)
+

c
(a+ b)(3b− c)

≥ −
1

2(b+ c)
+

c
(a+ b)(3b− c)

≥ −
1

2(a+ b)
+

c
(a+ b)(3b− c)

=
3(c − b)

2(a+ b)(3b− c)
≥ 0.

In what concerns the right inequality, we have

E(2b− c, b, c)−
3
2
−

3(b− c)2

4bc
= 3(b− c)2

�

1
(b+ c)(3b− c)

−
1

4bc

�

=
−3(b− c)3(3b+ c)
4bc(b+ c)(3b− c)

≥ 0.

The proof is completed. The original inequality is an equality for a = b = c = 1.
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P 2.57. Let a, b, c be nonnegative real numbers such that

a ≥ 1≥ b ≥ c, a+ b+ c = 3,

then
a

b+ c
+

b
c + a

+
c

a+ b
≥

3
2
+
(b− c)2

(b+ c)2
.

(Vasile C., 2014)

Solution. From
3b ≤ 3= a+ b+ c,

we get
a ≥ 2b− c.

Let

E(a, b, c) =
a

b+ c
+

b
c + a

+
c

a+ b
.

We will show that

E(a, b, c)≥ E(2b− c, b, c)≥
3
2
+
(b− c)2

(b+ c)2
.

We have
E(a, b, c)− E(2b− c, b, c) = (a− 2b+ c)F,

where
F =

1
b+ c

−
1

2(c + a)
−

c
(a+ b)(3b− c)

.

Since a− 2b+ c ≥ 0, we need to show that F ≥ 0. This is true because

F =
1
2

�

1
b+ c

−
1

c + a

�

+
1

2(b+ c)
−

c
(a+ b)(3b− c)

≥
1

2(b+ c)
−

c
(a+ b)(3b− c)

≥
1

2(a+ b)
−

c
(a+ b)(3b− c)

=
3(b− c)

2(a+ b)(3b− c)
≥ 0.

The right inequality is also true because

E(2b− c, b, c)−
3
2
−
(b− c)2

(b+ c)2
=
(b− c)2

b+ c

�

3
3b− c

−
1

b+ c

�

=
4c(b− c)2

(b+ c)2(3b− c)
≥ 0.

The proof is completed. The original inequality is an equality for a = b = c = 1,
and also for a = 2, b = 1, c = 0.
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P 2.58. Let a, b, c be positive real numbers such that a =min{a, b, c}. Prove that

(a)
ab+ bc + ca
a2 + b2 + c2

+
2(b− c)2

3(b2 + c2)
≤ 1;

(b)
ab+ bc + ca
a2 + b2 + c2

+
(b− c)2

b2 + bc + c2
≤ 1;

(c)
ab+ bc + ca
a2 + b2 + c2

+
(a− b)2

2(a2 + b2)
≤ 1.

(Vasile C., 2014)

Solution. (a) First Solution. Since

3(b2 + c2)≥ 2(a2 + b2 + c2),

it suffices to show that

ab+ bc + ca
a2 + b2 + c2

+
(b− c)2

a2 + b2 + c2
≤ 1.

This inequality is equivalent to

(a− b)(a− c)≥ 0,

which is clearly true. The equality holds for a = b = c.

Second Solution. Write the inequality as follows:

4(b− c)2

3(b2 + c2)
≤
(b− c)2 + (a− b)2 + (a− c)2

a2 + b2 + c2
,

3(b2 + c2)[(a− b)2 + (a− c)2]≥ (b− c)2(4a2 + b2 + c2),

3(b2 + c2)[(b− c)2 + 2(a− b)(a− c)]≥ (b− c)2(4a2 + b2 + c2),

6(b2 + c2)(a− b)(a− c) + 2(b− c)2(b2 + c2 − 2a2)≥ 0.

The last inequality is true because (a− b)(a− c)≥ 0 and b2 + c2 − 2a2 ≥ 0.

(b) Without loss of generality, assume that

a ≤ b ≤ c.

Write the inequality as

ab+ bc + ca
a2 + b2 + c2

≤
3bc

b2 + bc + c2
;

that is,
E(a, b, c)≥ 0,
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where

E(a, b, c) = 3bca2 − (b+ c)(b2 + c2 + bc)a+ bc(2b2 + 2c2 − bc).

We will show that
E(a, b, c)≥ E(b, b, c)≥ 0.

We have

E(a, b, c)− E(b, b, c) = 3bc(a2 − b2)− (b+ c)(b2 + c2 + bc)(a− b)

= (b− a)[(b+ c)(b2 + c2 + bc)− 3bc(a+ b)]

≥ (b− a)[(b+ c)(b2 + c2 + bc)− 3bc(c + b)]

= (b− a)(b+ c)(b− c)2 ≥ 0.

Also,
E(b, b, c) = b(c − b)3 ≥ 0.

The equality holds for a = b = c, and also for a = b = 0 or a = c = 0.

(c) Write the inequality as follows:

ab+ (a+ b)c
a2 + b2 + c2

≤
(a+ b)2

2(a2 + b2)
,

(a+ b)2c2 − 2(a+ b)(a2 + b2)c + (a2 + b2)2 ≥ 0,

[(a+ b)c − (a2 + b2)]2 ≥ 0.

The equality holds for c =
a2 + b2

a+ b
.

P 2.59. Let a, b, c be positive real numbers such that

a ≤ 1≤ b ≤ c, a+ b+ c = 3,

then
ab+ bc + ca
a2 + b2 + c2

+
(b− c)2

bc
≤ 1.

(Vasile C., 2014)

Solution. From
3b ≥ 3= a+ b+ c,

we get
a ≤ 2b− c.
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Write the inequality as follows:

2(b− c)2

bc
≤
(b− c)2 + (a− b)2 + (a− c)2

a2 + b2 + c2
,

(b− a)2 + (c − a)2 ≥
�

2a2 + 2b2 + 2c2

bc
− 1

�

(c − b)2,

(c − b)2 + 2(b− a)(c − a)≥
�

2a2 + 2b2 + 2c2

bc
− 1

�

(c − b)2,

(b− a)(c − a)≥
�

a2 + b2 + c2

bc
− 1

�

(c − b)2.

Since

b− a ≥ b− (2b− c) = c − b ≥ 0, c − a ≥ c − (2b− c) = 2(c − b)≥ 0,

it suffices to show that

2≥
a2 + b2 + c2

bc
− 1,

which is equivalent to
3bc ≥ a2 + b2 + c2.

This is true if
3bc ≥ (2b− c)2 + b2 + c2,

which reduces to
7bc ≥ 5b2 + 2c2,

(c − b)(5b− 2c)≥ 0.

Thus, we only need to show that 5b− 2c ≥ 0. Indeed, we have

5b− 2c > 2(2b− c)≥ 2a > 0.

The equality holds for a = b = c = 1.

P 2.60. Let a, b, c be nonnegative real numbers such that a =max{a, b, c} and b+c >
0. Prove that

(a)
ab+ bc + ca
a2 + b2 + c2

+
(b− c)2

2(ab+ bc + ca)
≤ 1;

(b)
ab+ bc + ca
a2 + b2 + c2

+
2(b− c)2

(a+ b+ c)2
≤ 1.

(Vasile C., 2014)
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Solution. Without loss of generality, assume that a ≥ b ≥ c.
(a) Write the inequality as follows:

(b− c)2

ab+ bc + ca
≤
(b− c)2 + (a− b)2 + (a− c)2

a2 + b2 + c2
,

(ab+ bc + ca)[(a− b)2 + (a− c)2]≥ (b− c)2(a2 + b2 + c2 − ab− bc − ca).

Since
ab+ bc + ca ≥ ab ≥ b2 ≥ (b− c)2,

it suffices to show that

(a− b)2 + (a− c)2 ≥ a2 + b2 + c2 − ab− bc − ca.

Indeed,

(a− b)2 + (a− c)2 − (a2 + b2 + c2 − ab− bc − ca) = (a− b)(a− c)≥ 0.

The equality holds for a = b = c, for a = b and c = 0, and for a = c and b = 0.

(b) Write the inequality as follows:

4(b− c)2

(a+ b+ c)2
≤
(b− c)2 + (a− b)2 + (a− c)2

a2 + b2 + c2
,

(a+ b+ c)2[(a− b)2 + (a− c)2]≥ (b− c)2[3(a2 + b2 + c2)− 2(ab+ bc + ca)],

(a+ b+ c)2[(b− c)2+2(a− b)(a− c)]≥ (b− c)2[3(a2+ b2+ c2)−2(ab+ bc+ ca)],

(a+ b+ c)2(a− b)(a− c)≥ (b− c)2[a2 + b2 + c2 − 2(ab+ bc + ca)].

Since

a2 + b2 + c2 − 2(ab+ bc + ca) = (a− b)2 − c(2a+ 2b− c)≤ (a− b)2,

it suffices to show that

(a+ b+ c)2(a− c)≥ (b− c)2(a− b).

This inequality is true because

(a+ b+ c)2 ≥ (b− c)2

and
a− c ≥ a− b.

The equality holds for a = b = c, for a = b and c = 0, and for a = c and b = 0.
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P 2.61. Let a, b, c be positive real numbers. Prove that

(a) if a ≥ b ≥ c, then

ab+ bc + ca
a2 + b2 + c2

+
(a− c)2

a2 − ac + c2
≥ 1;

(b) if a ≥ 1≥ b ≥ c and abc = 1, then

ab+ bc + ca
a2 + b2 + c2

+
(b− c)2

b2 − bc + c2
≤ 1.

(Vasile C., 2014)

Solution. (a) Write the inequality as follows:

ab+ bc + ca
a2 + b2 + c2

≥
ac

a2 − ac + c2
,

acb2 − (a+ c)(a2 − ac + c2)b+ a2c2 ≤ 0,

acb2 − (a3 + c3)b+ a2c2 ≤ 0,

(ab− c2)(bc − a2)≤ 0.

Because ab − c2 ≥ 0 and bc − a2 ≤ 0, the conclusion follows. The equality holds
for a = b = c.

(b) From
b3 ≤ 1= abc,

it follows that
b2 ≤ ac.

Write the inequality as follows:

ab+ bc + ca
a2 + b2 + c2

≤
bc

b2 − bc + c2
,

bca2 − (b+ c)(b2 − bc + c2)a+ b2c2 ≥ 0,

bca2 − (b3 + c3)a+ b2c2 ≥ 0,

(ab− c2)(ac − b2)≥ 0.

The inequality is true because ab− c2 ≥ 0 and ac − b2 ≥ 0. The equality holds for
a = b = c = 1.
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P 2.62. Let a, b, c be positive real numbers such that a =min{a, b, c}. Prove that

(a)
a2 + b2 + c2

ab+ bc + ca
≥ 1+

4(b− c)2

3(b+ c)2
;

(b)
a2 + b2 + c2

ab+ bc + ca
≥ 1+

(a− b)2

(a+ b)2
.

(Vasile C., 2014)

Solution. (a) First Solution. Since

3(b+ c)2 ≥ 12bc ≥ 4(ab+ bc + ca),

it suffices to prove that

a2 + b2 + c2

ab+ bc + ca
≥ 1+

(b− c)2

ab+ bc + ca
,

which is equivalent to the obvious inequality

(a− b)(a− c)≥ 0.

The equality holds for a = b = c.

Second Solution. Since (b+ c)2 ≥ 4bc, it suffices to prove that

a2 + b2 + c2

ab+ bc + ca
≥ 1+

(b− c)2

3bc
.

Write this inequality as follows:

(a− b)2 + (a− c)2 + (b− c)2

ab+ bc + ca
≥

2(b− c)2

3bc
,

3bc[(a− b)2 + (a− c)2]≥ (b− c)2(2ab+ 2ac − bc),

3bc[(b− c)2 + 2(a− b)(a− c)]≥ (b− c)2(2ab+ 2ac − bc),

6bc(a− b)(a− c) + 2(b− c)2(2bc − ab− ac)≥ 0.

The last inequality is true because (a− b)(a− c)≥ 0 and

2bc − ab− ac = b(c − a) + c(b− a)≥ 0.

(b) Write the inequality as follows:

a2 + b2 + c2

ab+ (a+ b)c
≥

2(a2 + b2)
(a+ b)2

,

(a+ b)2c2 − 2(a+ b)(a2 + b2)c + (a2 + b2)2 ≥ 0,

[(a+ b)c − (a2 + b2)]2 ≥ 0.

The equality holds for c =
a2 + b2

a+ b
.
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P 2.63. If a, b, c are positive real numbers, then

a2 + b2 + c2

ab+ bc + ca
≥ 1+

9(a− c)2

4(a+ b+ c)2
.

(Vasile C., 2014)

Solution. Write the inequality as follows:

(b− c)2 + (a− b)2 + (a− c)2

ab+ bc + ca
≥

9(a− c)2

2(a+ b+ c)2
,

2(a+ b+ c)2[(b− c)2 + (a− b)2]≥ (a− c)2[5(ab+ bc + ca)− 2(a2 + b2 + c2)],

2(a+ b+ c)2[(a− c)2−2(a− b)(b− c)]≥ (a− c)2[5(ab+ bc+ ca)−2(a2+ b2+ c2)],

(a− c)2[4(a2 + b2 + c2)− (ab+ bc + ca)]≥ 4(a+ b+ c)2(a− b)(a− c).

Consider further the nontrivial case (a− b)(a− c)≥ 0. Since

(a− c)2 = [(a− b) + (b− c)]2 ≥ 4(a− b)(b− c),

it suffices to show that

4(a2 + b2 + c2)− (ab+ bc + ca)≥ (a+ b+ c)2.

Indeed,

4(a2+ b2+ c2)− (ab+ bc+ ca)− (a+ b+ c)2 = 3(a2+ b2+ c2− ab− bc− ca)≥ 0.

The equality holds for a = b = c.

P 2.64. Let a, b, c be nonnegative real numbers, no two of which are zero. If a =
min{a, b, c}, then

1
p

a2 − ab+ b2
+

1
p

b2 − bc + c2
+

1
p

c2 − ca+ a2
≥

6
b+ c

.

Solution. Since

1
p

a2 − ab+ b2
+

1
p

b2 − bc + c2
+

1
p

c2 − ca+ a2
≥

1
b
+

1
p

b2 − bc + c2
+

1
c

,

it suffices to show that

1
b
+

1
p

b2 − bc + c2
+

1
c
≥

6
b+ c

.
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Write this inequality as

b
c
+

c
b
+

√

√ b2 + c2 + 2bc
b2 + c2 − bc

≥ 4,

which is equivalent to
√

√ x + 2
x − 1

≥ 4− x ,

where x =
b
c
+

c
b

, x ≥ 2. Consider the non-trivial case 2 ≤ x ≤ 4. The inequality

is true if
x + 2
x − 1

≥ (4− x)2,

which is equivalent to
(x − 2)(x2 − 7x + 9)≤ 0.

This inequality is true because

x2 − 7x + 9< x2 − 7x + 10= (x − 2)(x − 5)≤ 0.

The equality holds for a = b = c, and also a = 0 and b = c.

P 2.65. If a ≥ 1≥ b ≥ c ≥ 0 such that

ab+ bc + ca = abc + 2,

then
ac ≤ 4− 2

p
2.

(Vasile C., 2012)

Solution. By hypothesis, we have

a =
2− bc

b+ c − bc
.

Since

ac ≤
1
2

a(b+ c) =
(2− bc)(b+ c)
2(b+ c − bc)

=
2− bc

2− 2bc
b+c

≤
2− bc

2−
p

bc
,

it suffices to show that
2− bc

2−
p

bc
≤ 4− 2

p
2,

which is equivalent to
(
p

bc − 2+
p

2)2 ≥ 0.

The equality holds for a = 2 and b = c = 2−
p

2.
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P 2.66. If a, b, c are nonnegative real numbers such that

ab+ bc + ca = 3, a ≤ 1≤ b ≤ c,

then

(a) a+ b+ c ≤ 4;

(b) 2a+ b+ c ≤ 4.

Solution. From
(1− b)(1− c)≥ 0,

we get
bc ≥ b+ c − 1.

Therefore, we have

3= a(b+ c) + bc ≥ a(b+ c) + b+ c − 1= (a+ 1)(b+ c)− 1,

b+ c ≤
4

a+ 1
,

hence

a+ b+ c − 4≤ a+
4

a+ 1
− 4=

a(a− 3)
a+ 1

≤ 0,

2a+ b+ c − 4≤ 2a+
4

a+ 1
− 4=

2a(a− 1)
a+ 1

≤ 0.

The equality holds for a = 0, b = 1 and c = 3. In addition, the inequality (b) is
also an equality for a = b = c = 1.

P 2.67. Let a, b, c be nonnegative real numbers such that a ≤ b ≤ c. Prove that

(a) if a+ b+ c = 3, then

a4(b4 + c4)≤ 2;

(b) if a+ b+ c = 2, then

c4(a4 + b4)≤ 1.

(Vasile C., 2012)
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Solution. (a) Let x , y be nonnegative real numbers. We claim that

x4 − y4 ≥ 4y3(x − y).

Indeed, this inequality follows from

x4 − y4 − 4y3(x − y) = (x − y)(x3 + x2 y + x y2 − 3y3)

= (x − y)[(x3 − y3) + y(x2 − y2) + y2(x − y)].

Using this inequality, we can show that

b4 + c4 ≤ a4 + (b+ c − a)4.

Indeed, we have

a4 + (b+ c − a)4 − b4 − c4 = (a4 − b4) + (b+ c − a)4 − c4

≥ 4b3(a− b) + 4c3(b+ c − a− c)

= 4(a− b)(b3 − c3)≥ 0.

Thus, it suffices to show that

a4[a4 + (b+ c − a)4]≤ 2,

which is equivalent to f (a)≤ 2, where

f (a) = a8 + a4(3− 2a)4, 0≤ a ≤ 1.

If f ′(a) ≥ 0 for 0 ≤ a ≤ 1, then f (a) is increasing, hence f (a) ≤ f (1) = 2. From
the derivative

f ′(a) = 4a3[2a4 − (4a− 3)(3− 2a)3],

we need to show that
2a4 ≥ (4a− 3)(3− 2a)3.

This inequality is true for the trivial case 0≤ a ≤ 3/4. Consider further that 3/4<
a ≤ 1. We need to show that h(a)≥ 0, where

h(a) = ln2+ 4 ln a− ln(4a− 3)− 3 ln(3− 2a), 3/4< a ≤ 1.

From

h′(a) =
4
a
−

4
4a− 3

+
6

3− 2a
=

6(7a− 6)
a(4a− 3)(3− 2a)

,

it follows that h(a) is decreasing on (3/4,6/7] and increasing on [6/7, 1]. Thus,

h(a)≥ h
�

6
7

�

= ln2+ 4 ln
6
7
− ln

3
7
− 3 ln

9
7
= ln

32
27
> 0.

The equality holds for a = b = c = 1.
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(b) Since a4 + b4 ≤ (a+ b)4, it suffices to show that

c4(a+ b)4 ≤ 1,

which is true if
c(a+ b)≤ 1.

Indeed, we have

1− c(a+ b) = 1− c(2− c) = (c − 1)2 ≥ 0.

The equality holds for a = 0 and b = c = 1.

P 2.68. If a, b, c are nonnegative real numbers such that ab+ bc + ca = 3, then

(a) a2 + b2 + c2 − a− b− c ≥
5
8
(a− c)2;

(b) a2 + b2 + c2 − a− b− c ≥
5
2

min{(a− b)2, (b− c)2, (c − a)2}.

(Vasile C., 2014)

Solution. Denote

E = a2 + b2 + c2 − a− b− c, S = a2 + b2 + c2 − ab− bc − ca.

From
(a+ b+ c)2 ≥ 3(ab+ bc + ca),

it follows that
a+ b+ c ≥ 3.

We have

a+ b+ c −
Æ

3(ab+ bc + ca) =
S

a+ b+ c +
p

3(ab+ bc + ca)
,

a+ b+ c − 3=
S

a+ b+ c + 3
,

(a+ b+ c)2 − 3(a+ b+ c) =
(a+ b+ c)S
a+ b+ c + 3

,

−3(a+ b+ c) = −(a+ b+ c)2 +
S

1+
3

a+ b+ c

,

−3(a+ b+ c)≥ −(a+ b+ c)2 +
S
2

,
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therefore

E ≥ a2 + b2 + c2 −
1
3
(a+ b+ c)2 +

S
6

,

which is equivalent to

E ≥
5S
6

.

(a) It suffices to show that

5S
6
≥

5
8
(a− c)2,

which is equivalent to
S
3
≥
(a− c)2

4
,

(a− b)2 + (b− c)2 + (c − a)2

3
≥
(a− c)2

2
,

2(a− b)2 + 2(b− c)2 ≥ (a− c)2,

2(a− b)2 + 2(b− c)2 ≥ [(a− b) + (b− c)]2,

(a− b)2 + (b− c)2 ≥ 2(a− b)(b− c),

(a− 2b+ c)2 ≥ 0.

The equality holds for a = b = c = 1.

(b) Due to symmetry, without loss of generality, assume that

a ≥ b ≥ c.

It suffices to show that

5S
6
≥

5
2

min{(a− b)2, (b− c)2},

which is equivalent to

S ≥ 3min{(a− b)2, (b− c)2},

(a− b)2 + (b− c)2 + (a− c)2 ≥ 6 min{(a− b)2, (b− c)2},

(a− b)2 + (b− c)2 + [(a− b) + (b− c)]2 ≥ 6 min{(a− b)2, (b− c)2},

(a− b)2 + (b− c)2 + (a− b)(b− c)≥ 3min{(a− b)2, (b− c)2}.

The last inequality is clearly true. The equality holds for a = b = c = 1.
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P 2.69. If a, b, c are nonnegative real numbers such that ab+ bc + ca = 3, then

a3 + b3 + c3

a+ b+ c
≥ 1+

5
9
(a− c)2.

(Vasile C., 2014)

Solution. It suffices to consider the case

a ≥ b ≥ c.

Write the inequality as

E ≥
5
9
(a− c)2,

where

E =
a3 + b3 + c3

a+ b+ c
− 1.

We have

E =
a3 + b3 + c3

a+ b+ c
−

ab+ bc + ca
3

=
3(a3 + b3 + c3)− (a+ b+ c)(ab+ bc + ca)

3(a+ b+ c)

=
A+ B

3(a+ b+ c)
,

where
A=

∑

[a3 + b3 − ab(a+ b)], B =
∑

a3 − 3abc.

Since
A=

∑

(a+ b)(a− b)2,

B =
1
2
(a+ b+ c)

∑

(a− b)2,

we get

E =

∑

(3a+ 3b+ c)(a− b)2

6(a+ b+ c)
.

Thus, we need to show that
∑

(3a+ 3b+ c)(a− b)2 ≥
10
3
(a+ b+ c)(a− c)2,

which is equivalent to

3(3a+ 3b+ c)(a− b)2 + 3(a+ 3b+ 3c)(b− c)2 ≥ (a+ 7b+ c)(a− c)2.

Using the substitution

a = c + x , b = c + y, x ≥ y ≥ 0,
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the inequality becomes

3(7c + 3x + 3y)(x − y)2 + 3(7c + x + 3y)y2 ≥ (9c + x + 7y)x2,

which is equivalent to

6c(2x2 − 7x y + 7y2) + 2(x + y)(2x − 3y)2 ≥ 0.

This inequality is true since

2x2 − 7x y + 7y2 = (2x2 + 7y2)− 7x y ≥ (2
p

14− 7)x y ≥ 0.

The equality holds for a = b = c = 1, and also for a = 3/
p

2, b =
p

2, c = 0.

P 2.70. If a, b, c are nonnegative real numbers such that

a ≥ b ≥ c, ab+ bc + ca = 3,

then

(a)
a3 + b3 + c3

a+ b+ c
≥ 1+

7
9
(a− b)2;

(b)
a3 + b3 + c3

a+ b+ c
≥ 1+

2
3
(b− c)2.

(c)
a3 + b3 + c3

a+ b+ c
≥ 1+

7
3

min{(a− b)2, (b− c)2}.

(Vasile C., 2014)

Solution. As we have shown in the proof of the preceding problem P 2.69,

a3 + b3 + c3

a+ b+ c
− 1=

∑

(3a+ 3b+ c)(a− b)2

6(a+ b+ c)
.

(a) Write the inequality as

∑

(3a+ 3b+ c)(a− b)2 ≥
14
3
(a+ b+ c)(a− b)2,

3(a+ 3b+ 3c)(b− c)2 + 3(3a+ b+ 3c)(a− c)2 ≥ (5a+ 5b+ 11c)(a− b)2.

It suffices to show that

3(3a+ b+ 3c)(a− c)2 ≥ (5a+ 5b+ 11c)(a− b)2.
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This is true since
(a− c)2 ≥ (a− b)2

and
3(3a+ b+ 3c)− (5a+ 5b+ 11c) = 2(2a− b− c)≥ 0.

The equality holds for a = b = c = 1.

(b) Write the desired inequality as
∑

(3a+ 3b+ c)(a− b)2 ≥ 4(a+ b+ c)(b− c)2,

(3a+ 3b+ c)(a− b)2 + (3a+ b+ 3c)(a− c)2 ≥ (3a+ b+ c)(b− c)2.

It suffices to show that

(3a+ b+ 3c)(a− c)2 ≥ (3a+ b+ c)(b− c)2.

This is true since
(a− c)2 ≥ (a− b)2

and
(3a+ b+ 3c)− (3a+ b+ c) = 2c ≥ 0.

The equality holds for a = b = c = 1, and also for a = b =
p

3, c = 0.

(c) Denote
m=min{(a− b)2, (b− c)2},

then write the desired inequality as
∑

(3a+ 3b+ c)(a− b)2

6(a+ b+ c)
≥

7
3

m,

∑

(3a+ 3b+ c)(a− b)2 ≥ 14(a+ b+ c)m,

(3a+3b+c)(a−b)2+(a+3b+3c)(b−c)2+(3a+b+3c)[(a−b)+(b−c)]2 ≥ 14(a+b+c)m,

(3a+2b+2c)(a−b)2+(2a+2b+3c)(b−c)2+(3a+b+3c)(a−b)(b−c)≥ 7(a+b+c)m.

Case 1: a− 2b+ c ≥ 0. The inequality is true if

(3a+ 2b+ 2c) + (2a+ 2b+ 3c) + (3a+ b+ 3c)≥ 7(a+ b+ c),

which is equivalent to a− 2b+ c ≥ 0.

Case 2: a− 2b+ c ≤ 0. Since a− b ≤ b− c, we need to show that

(3a+2b+2c)(a−b)2+(2a+2b+3c)(b−c)2+(3a+b+3c)(a−b)(b−c)≥ 7(a+b+c)(a−b)2,

which is equivalent to

(2a+ 2b+ 3c)(b− c)2 + (3a+ b+ 3c)(a− b)(b− c)≥ (4a+ 5b+ 5c)(a− b)2.
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Since b− c ≥ a− b ≥ 0, it suffices to show that

(2a+2b+3c)(a− b)(b− c)+ (3a+ b+3c)(a− b)(b− c)≥ (4a+5b+5c)(a− b)2.

This is true if

(2a+ 2b+ 3c)(b− c) + (3a+ b+ 3c)(b− c)≥ (4a+ 5b+ 5c)(a− b),

which is equivalent to

(5a+ 3b+ 6c)(b− c)≥ (4a+ 5b+ 5c)(a− b),

2(2b− a− c)(2b+ 2a+ 3c)≥ 0.

The equality holds for 2b = a+ c and a2 + 4ac + c2 = 6.

P 2.71. If a, b, c are nonnegative real numbers such that ab+ bc + ca = 3, then

a4 + b4 + c4 − a2 − b2 − c2 ≥
11
4
(a− c)2.

(Vasile C., 2014)

Solution. It suffices to consider the case a ≥ b ≥ c. Denote

S = a2 + b2 + c2, q = ab+ bc + ca.

Summing the identities

a4 + b4 + c4 −
1
3

S2 =
(a2 − b2)2 + (b2 − c2)2 + (c2 − a2)2

3

and
1
3

S2 −
1
3

Sq = S ·
(a− b)2 + (b− c)2 + (c − a)2

6
,

we get

a4 + b4 + c4 − a2 − b2 − c2 =
(a2 − b2)2 + (b2 − c2)2 + (c2 − a2)2

3

+ S ·
(a− b)2 + (b− c)2 + (c − a)2

6
.

Therefore, we can write the desired inequality in the homogeneous form

(a2 − b2)2 + (b2 − c2)2 + (c2 − a2)2

3
+S·
(a− b)2 + (b− c)2 + (c − a)2

6
≥

11
12

q(a−c)2.
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Since
(a− b)2 + (b− c)2 ≥

1
2
[(a− b) + (b− c)]2 =

1
2
(a− c)2,

it suffices to prove that

(a2 − b2)2 + (b2 − c2)2 + (c2 − a2)2

3
+

S(a− c)2

4
≥

11
12

q(a− c)2,

which is equivalent to

4(a+ b)2(a− b)2 + 4(b+ c)2(b− c)2 + E(a− c)2 ≥ 0,

where
E = 4(a+ c)2 + 3S − 11q.

Using the substitution

b = c + x , a = c + x + y, x , y ≥ 0,

the inequality becomes

4(2c + 2x + y)2 y2 + 4(2c + x)2 x2 + E(x + y)2 ≥ 0,

where
E = −8c2 − 16xc − x2 + 7y2 + 3x y.

Write this inequality as
Ac2 + D ≥ 2Bc,

where

A= 8(x − y)2, B = 8y(x − y)(2x + y), D = 3x4+11y4+28x2 y2+33x y3+ x3 y.

Since Ac2 + D ≥ 2c
p

AD, it suffices to show that AD ≥ B2. Indeed,

AD− B2 = 8(x − y)2[3x4 + 11y4 + 28x2 y2 + 33x y3 + x3 y − 8y2(2x + y)2]

= 8(x − y)2[x4 + y4 + 2(x2 − y2)2 + x y(x2 + y2)]≥ 0.

This completes the proof. The equality holds for a = b = c = 1.

P 2.72. If a, b, c are nonnegative real numbers such that

a ≥ b ≥ c, ab+ bc + ca = 3,

then

(a) a4 + b4 + c4 − a2 − b2 − c2 ≥
11
3
(a− b)2;

(b) a4 + b4 + c4 − a2 − b2 − c2 ≥
10
3
(b− c)2.

(Vasile C., 2014)
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Solution. Denote
S = a2 + b2 + c2, q = ab+ bc + ca.

As we have shown in the proof of the preceding problem,

a4 + b4 + c4 − a2 − b2 − c2 =
(a2 − b2)2 + (b2 − c2)2 + (c2 − a2)2

3

+ S ·
(a− b)2 + (b− c)2 + (c − a)2

6
.

(a) Write the desired inequality in the homogeneous form

(a2− b2)2+(b2− c2)2+(c2−a2)2+S ·
(a− b)2 + (b− c)2 + (c − a)2

2
≥

11
3

q(a− b)2.

Since

(a2 − b2)2 + (b2 − c2)2 + (c2 − a2)2 ≥ (a2 − b2)2 + (a2 − c2)2 ≥ 2(a2 − b2)2

and
(a− b)2 + (b− c)2 + (c − a)2 ≥ (a− b)2 + (a− c)2 ≥ 2(a− b)2,

it suffices to prove that

2(a+ b)2 + a2 + b2 + c2 ≥
11
3
(ab+ bc + ca);

that is,
9(a2 + b2) + ab+ 3c2 ≥ 11c(a+ b).

Since
9(a2 + b2) + ab−

19
4
(a+ b)2 =

17
4
(a− b)2 ≥ 0,

we have

9(a2 + b2) + ab+ 3c2 − 11c(a+ b)≥
19
4
(a+ b)2 + 3c2 − 11c(a+ b)

=
(a+ b− 2c)(19a+ 19b− 6c)

4
≥ 0.

The equality holds for a = b = c = 1.

(b) Write the desired inequality in the homogeneous form

(a2− b2)2+(b2− c2)2+(c2−a2)2+S ·
(a− b)2 + (b− c)2 + (c − a)2

2
≥

10
3

q(b− c)2.

Since
(a2 − b2)2 + (b2 − c2)2 + (c2 − a2)2 ≥ (b2 − c2)2 + (a2 − c2)2

≥ (b+ c)2(b− c)2 + (a+ c)2(b− c)2
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and
(a− b)2 + (b− c)2 + (c − a)2 ≥ (b− c)2 + (a− c)2 ≥ 2(b− c)2,

it suffices to prove that

(b+ c)2 + (a+ c)2 + a2 + b2 + c2 ≥
10
3
(ab+ bc + ca);

that is,
6(a2 + b2)− 10ab+ 9c2 ≥ 4c(a+ b).

Since

6(a2 + b2)− 10ab−
1
2
(a+ b)2 =

11
2
(a− b)2 ≥ 0,

we have

6(a2 + b2)− 10ab+ 9c2 − 4c(a+ b)≥
1
2
(a+ b)2 + 9c2 − 4c(a+ b)

≥ 2

√

√9
2

c(a+ b)− 4c(a+ b)

= (3
p

2− 4)c(a+ b)≥ 0.

The equality holds for a = b = c = 1.

Remark. Similarly, we can prove the following refinement of the inequality in (b):

a4 + b4 + c4 − a2 − b2 − c2 ≥
1+
p

33
2

(b− c)2,

with equality for a = b = c = 1, and also for a = b =
3+
p

33
4

c.

P 2.73. Let a, b, c be nonnegative real numbers such that

a ≤ b ≤ c, a+ b+ c = 3.

Find the greatest real number k such that
Æ

(56b2 + 25)(56c2 + 25) + k(b− c)2 ≤ 14(b+ c)2 + 25.

(Vasile C., 2014)

Solution. For a = b = 0 and c = 3, the inequality becomes

115+ 9k ≤ 126+ 25, k ≤ 4.
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To show that 4 is the greatest possible value of k, we need to prove the inequality
Æ

(56b2 + 25)(56c2 + 25) + 4(b− c)2 ≤ 14(b+ c)2 + 25,

which is equivalent to
Æ

(56b2 + 25)(56c2 + 25)≤ 10(b2 + c2) + 36bc + 25.

By squaring, the inequality becomes as follows:

(10b2 + 10c2 + 36bc)2 − 562 b2c2 ≥ 50[28(b2 + c2)− (10b2 + 10c2 + 36bc)],

20(b− c)2(5b2 + 5c2 + 46bc)≥ 900(b− c)2,

20(b− c)2(5b2 + 5c2 + 46bc − 45)≥ 0.

Therefore, we need to show that

5(b+ c)2 + 36bc − 45≥ 0.

From (a− b)(a− c)≥ 0, we get

bc ≥ a(b+ c)− a2 = a(3− a)− a2 = 3a− 2a2.

Thus,

5(b+ c)2 + 36bc − 45≥ 5(3− a)2 + 36(3a− 2a2)− 45= a(78− 67a)≥ 0.

The proof is completed. If k = 4, then the equality holds for a = b = c = 1 and
also for a = b = 0 and c = 3.

P 2.74. If a ≥ b ≥ c > 0 such that abc = 1, then

3(a+ b+ c)≤ 8+
a
c

.

(Vasile C., 2009)

Solution. Write the inequality in the homogeneous form

3(a+ b+ c)
3pabc

≤ 8+
a
c

,

which is equivalent to

3(x3 + y3 + z3)
x yz

≤ 8+
x3

z3
, x ≥ y ≥ z > 0.
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We show that
x3 + y3 + z3

x yz
≤

x3 + 2z3

xz2
≤

1
3

�

8+
x3

z3

�

.

Write the left inequality as

(y − z)[x3 + z3 − yz(y + z)]≥ 0.

This is true since

x3 + z3 − yz(y + z)≥ y3 + z3 − yz(y + z) = (y + z)(y − z)2 ≥ 0.

Write the right inequality as

(x − z)(x3 − 2x2z − 2xz2 + 6z3)≥ 0.

This is also true since

x3 − 2x2z − 2xz2 + 6z3 = (x − z)3 + z(x2 − 5xz + 7z2)≥ 0.

The equality holds for a = b = c = 1.

P 2.75. If a ≥ b ≥ c > 0, then

(a+ b− c)(a2 b− b2c + c2a)≥ (ab− bc + ca)2.

Solution. Making the substitution

a = (p+ 1)c, b = (q+ 1)c, p ≥ q ≥ 0,

we get
a+ b− c = (p+ q+ 1)c,

a2 b− b2c + c2a = (p2q+ p2 + 2pq− q2 + 3p− q+ 1)c3,

ab− bc + ca = (pq+ 2p+ 1)c2.

Thus, the inequality becomes

(p+ q+ 1)(p2q+ p2 + 2pq− q2 + 3p− q+ 1)≥ (pq+ 2p+ 1)2,

which is equivalent to the obvious inequality

p3(q+ 1) + q2(p− q) + 2q(p− q)≥ 0.

The equality holds for a = b = c.
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P 2.76. If a ≥ b ≥ c ≥ 0, then

(a− c)2

2(a+ c)
≤ a+ b+ c − 3

3
p

abc ≤
2(a− c)2

a+ 5c
.

(Vasile C., 2007)

Solution. (a) To prove the inequality

a+ b+ c − 3
3
p

abc ≥
(a− c)2

2(a+ c)
,

we will show that

a+ b+ c − 3
3
p

abc ≥ a+ c − 2
p

ac ≥
(a− c)2

2(a+ c)
. (*)

The left inequality is equivalent to

b+ 2
p

ac ≥ 3
3
p

abc,

which is a consequence of the AM-GM inequality. The right inequality in (*) can
be written as follows:

a2 + c2 + 6ac ≥ 4(a+ c)
p

ac,
�p

a−
p

b
�4
≥ 0.

The equality holds for a = b = c.
(b) To prove the inequality

a+ b+ c − 3
3
p

abc ≤
2(a− c)2

a+ 5c
,

we will show that

a+ b+ c − 3
3
p

abc ≤ 2a+ c − 3
3
p

a2c ≤
2(a− c)2

a+ 5c
. (**)

Write the left inequality as

a− b− 3 3pac
�

3pa−
3
p

b
�

≥ 0,

�

3pa−
3
p

b
��

3
p

a2 +
3
p

ab+
3
p

b2 − 3 3pac
�

≥ 0.

This is true since
3
p

a2 +
3
p

ab+
3
p

b2 ≥ 3
3
p

ab ≥ 3 3pac.

The right inequality in (**) is an equality for c = 0. For c > 0, due to homogeneity,
we may assume that c = 1. In addition, making the substitution a = x3, x ≥ 1, the
right inequality in (**) becomes in succession

(x3 + 5)(2x3 − 3x2 + 1)≤ 2(x3 − 1)2,
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(x − 1)2(x3 + 2x2 − 2x − 1)≥ 0,

(x − 1)3(x2 + 3x + 1)≥ 0.

The equality holds for a = b = c, and also for a = b and c = 0.

P 2.77. If a ≥ b ≥ c ≥ d ≥ 0, then

(a− d)2

a+ 3d
≤ a+ b+ c + d − 4

4
p

abcd ≤
3(a− d)2

a+ 5d
.

(Vasile C., 2009)

Solution. (a) To prove the inequality

a+ b+ c + d − 4
4
p

abcd ≥
(a− d)2

a+ 3d
,

we will show that

a+ b+ c + d − 4
4
p

abcd ≥ a+ d − 2
p

ad ≤
(a− d)2

a+ 3d
. (*)

The left inequality is equivalent to

b+ c + 2
p

ad ≥ 4
4
p

abcd,

which is a consequence of the AM-GM inequality. The right inequality in (*) can
be written as follows:

(a− d)2 ≥ (a+ 3d)
�p

a−
p

d
�2

,

2
p

d
�p

a−
p

d
�3
≥ 0.

The equality holds for a = b = c = d, and also for b = c = d = 0.
(b) To prove the inequality

a+ b+ c + d − 4
4
p

abcd ≤
3(a− d)2

a+ 5d
,

we will show that

a+ b+ c + d − 4
4
p

abcd ≤ 2a+ c + d − 4
4
p

a2cd ≤
3(a− d)2

a+ 5d
. (**)

Write the left inequality as

a− b− 4
4
p

acd
�

4pa−
4
p

b
�

≥ 0,



Noncyclic Inequalities 467

�

4pa−
4
p

b
��

4
p

a3 +
4
p

a2 b+
4
p

ab2 +
4
p

b3 − 4
4
p

acd
�

≥ 0.

The last inequality follows from the AM-GM inequality:
4
p

a3 +
4
p

a2 b+
4
p

ab2 +
4
p

b3 − 4
4
p

acd ≥
4
p

a3 +
4
p

a2 b+
4
p

b3 − 3
4
p

ab2

≥
4
p

a3 +
4
p

b3 +
4
p

b3 − 3
4
p

ab2 ≥ 0.

Write the right inequality in (**) as

F(c)≥ 0,

where
F(c) = 3(a− d)2 − (a+ 5d)

�

2a+ c + d − 4
4
p

a2cd
�

.

Since F is a concave function and d ≤ c ≤ a, it suffices to show that F(d) ≥ 0 and
F(a)≥ 0. We have

F(d) = 3(a− d)2 − 2(a+ 5d)
�p

a−
p

d
�2
=
�p

a−
p

d
�3 �p

a+ 7
p

d
�

≥ 0

and
F(a) = 3(a− d)2 − (a+ 5d)

�

3a+ d − 4
4
p

a3d
�

.

Setting a = 1 (due to homogeneity) and substituting d = x4, 0 ≤ x ≤ 1, the
inequality F(a)≥ 0 becomes

3(1− x4)2 − (1+ 5x4)(3+ x4 − 4x)≥ 0.

Since 3+ x4 − 4x = (1− x)2(3+ 2x + x2), we need to show that

3(1+ x + x2 + x3)2 − (1+ 5x4)(3+ 2x + x2)≥ 0,

which is equivalent to

x(2+ 4x + 6x2 − 3x3 − 2x4 − x5)≥ 0.

This inequality is true since

2+ 4x + 6x2 − 3x3 − 2x4 − x5 > 6x2 − 3x3 − 2x4 − x5 ≥ 0.

The equality holds for a = b = c = d, and also for a = b = c and d = 0.

Remark. The following generalization holds.
• If a1 ≥ a2 ≥ · · · ≥ an ≥ 0, then

a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an ≤
(n− 1)(a1 − an)2

a1 + knan
,

where

kn =















7−
8

n+ 1
, n odd

7−
8
n

, n even
.
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P 2.78. If a ≥ b ≥ c > 0, then

(a) a+ b+ c − 3
3pabc ≥

3(a− b)2

5a+ 4b
;

(b) a+ b+ c − 3
3pabc ≥

64(a− b)2

7(11a+ 24b)
.

(Vasile C., 2009)

Solution. We use the inequality

a+ b+ c − 3
3
p

abc ≥ a+ 2b− 3
3
p

ab2,

which is equivalent to
3

3
p

ab
�

3
p

b− 3pc
�

≥ b− c,
�

3
p

b− 3pc
��

3
3
p

ab−
3
p

b2 −
3
p

bc −
3
p

c2
�

≥ 0.

Since a ≥ b ≥ c, the inequality is obvious.

(a) It suffices to show that

a+ 2b− 3
3
p

ab2 ≥
3(a− b)2

5a+ 4b
.

Setting b = 1 (due to homogeneity) and a = x3, x ≥ 1, this inequality becomes as
follows:

(5x3 + 4)(x3 − 3x + 2)≥ 3(x3 − 1)2,

(x − 1)2(2x4 + 4x3 − 9x2 − 2x + 5)≥ 0,

(x − 1)4(2x2 + 8x + 5)≥ 0.

The equality holds for a = b = c.

(b) It suffices to show that

a+ 2b− 3
3
p

ab2 ≥
64(a− b)2

7(11a+ 24b)
.

Setting b = 1 and a = x3, x ≥ 1, this inequality becomes in succession:

7(11x3 + 24)(x3 − 3x + 2)≥ 64(x3 − 1)2,

(x − 1)2(13x4 + 26x3 − 192x2 + 40x + 272)≥ 0,

(x − 1)2(x − 2)2(13x3 + 78x + 68)≥ 0.

The equality holds for a = b = c, and for
a
8
= b = c.
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P 2.79. If a ≥ b ≥ c > 0, then

(a) a+ b+ c − 3
3pabc ≥

3(b− c)2

4b+ 5c
;

(b) a+ b+ c − 3
3pabc ≥

25(b− c)2

7(3b+ 11c)
.

(Vasile C., 2009)

Solution. We use the inequality

a+ b+ c − 3
3
p

abc ≥ 2b+ c − 3
3
p

b2c,

which is equivalent to
a− b ≥ 3

3
p

bc
�

3pa−
3
p

b
�

,
�

3pa−
3
p

b
��

3
p

a2 +
3
p

ab+
3
p

b2 − 3
3
p

bc
�

≥ 0.

Since a ≥ b ≥ c, the inequality is obvious.

(a) It suffices to show that

2b+ c − 3
3
p

b2c ≥
3(b− c)2

4b+ 5c
.

Setting c = 1 and b = x3, x ≥ 1, this inequality becomes as follows:

(4x3 + 5)(2x3 − 3x2 + 1)≥ 3(x3 − 1)2,

(x − 1)2(5x4 − 2x3 − 9x2 + 4x + 2)≥ 0,

(x − 1)4(5x2 + 8x + 2)≥ 0.

The equality holds for a = b = c.

(b) It suffices to show that

2b+ c − 3
3
p

b2c ≥
25(b− c)2

7(3b+ 11c)
.

Setting c = 1 and b = x3, x ≥ 1, this inequality becomes in succession:

7(3x3 + 11)(2x3 − 3x2 + 1)≥ 25(x3 − 1)2,

(x − 1)2(17x4 − 29x3 − 75x2 + 104x + 52)≥ 0,

(x − 1)2(x − 2)2(17x3 + 39x + 13)≥ 0.

The equality holds for a = b = c, and for a = b = 8c.

Remark. The following generalization holds.
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• If a1 ≥ a2 ≥ · · · ≥ an ≥ 0, then

a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an ≥
3i(n− j + 1)(ai − a j)2

2(2n+ i − 2 j + 2)ai + 2(n+ 2i − j + 1)a j

for all i < j.

P 2.80. If a ≥ b ≥ c > 0, then

a+ b+ c − 3
3
p

abc ≥
3(a− c)2

4(a+ b+ c)
.

(Vasile C., 2009)

Solution. Due to homogeneity, assume that a+ b+ c = 3. Let

x =
�a+ c

2

�2

, y = ac, x ≥ y.

We have

x =
�

3− b
2

�2

, x − y =
�a− c

2

�2

.

The desired inequality is equivalent to

3− 3 3
p

b y ≥ x − y.

There are two cases to consider.

Case 1: b ≤ 1. By the AM-GM inequality, we have

y + 2
p

b ≥ 3 3
p

b y .

Thus, it suffices to show that
3− 2

p

b ≥ x .

Indeed,

3− 2
p

b− x = 3− 2
p

b−
�

3− b
2

�2

=
1
4

�

1−
p

b
�3 �

3+
p

b
�

≥ 0.

Case 2: b ≥ 1. From

a+ b+ c = b+
a+ c

2
+

a+ c
2
≥ 3

3

√

√

b
�a+ c

2

�2

,
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we get
3≥ 3

3
p

bx .

Therefore, it suffices to prove that

3
3
p

bx − 3 3
p

b y ≥ x − y,

which is equivalent to

�

3px − 3py
�

�

3
3
p

b−
3
p

x2 − 3px y − 3
p

y2
�

≥ 0.

Since

y ≤ x =
�

3− b
2

�2

≤ 1≤ b,

the inequality is clearly true. The equality holds for a = b = c

P 2.81. If a ≥ b ≥ c > 0, then

(a) a6 + b6 + c6 − 3a2 b2c2 ≥ 12a2c2(b− c)2;

(b) a6 + b6 + c6 − 3a2 b2c2 ≥ 10a3c(b− c)2.

(Vasile C., 2014)

Solution. (a) Let us denote

E(a, b, c) = a6 + b6 + c6 − 3a2 b2c2 − 12a2c2(b− c)2.

We will show that
E(a, b, c)≥ E(b, b, c)≥ 0.

We have

E(a, b, c)− E(b, b, c) = (a2 − b2)[a4 + a2 b2 + b4 − 3b2c2 − 12c2(b− c)2]

≥ (a2 − b2)[3b2(b2 − c2)− 12c2(b− c)2]

= 3(a2 − b2)(b− c)[b3 + c(b− 2c)2]≥ 0.

Also,

E(b, b, c) = 2b6 + c6 − 3b4c2 − 12b2c2(b− c)2

= (b2 − c2)2(2b2 + c2)− 12b2c2(b− c)2

= (b− c)2(2b4 + 4b3c − 9b2c2 + 2bc3 + c4)

= (b− c)3(2b3 + 6b2c2 − 3bc2 − c3)≥ 0.

The equality holds for a = b = c.
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(b) Let

E(a, b, c) = a6 + b6 + c6 − 3a2 b2c2 − 12a2c2(b− c)2.

We will show that
E(a, b, c)≥ E(b, b, c)≥ 0.

To prove the left inequality, it suffices to show that for fixed b and c, the function

f (a) = E(a, b, c)

is increasing on [b,∞); that is, f ′a)≥ 0. Indeed, we have the derivative

f ′(a) = 6a[a4 − b2c2 − 5ac(b− c)2]≥ 6a[a4 − a2c2 − 5ac(a− c)2]

= 6a2(a− c)[a(a+ c)− 5c(a− c)] = 6a2(a− c)[(a− 2c)2 + c2]≥ 0.

With regard to the right inequality, we have

E(b, b, c) = 2b6 + c6 − 3b4c2 − 10b3c(b− c)2

= (b2 − c2)2(2b2 + c2)− 10b3c(b− c)2 = (b− c)2 g(b, c),

where
g(b, c) = 2b4 − 6b3c + 3b2c2 + 2bc3 + c4.

Since

g(b, c) = 2b(b− c)(b− 2c)2 + c · h(b, c), h(b, c) = 4b3 − 13b2c + 10bc2 + c3,

it suffices to show that h(b, c)≥ 0. For b ≥ 2c, we have

h(b, c) = b(b− 2c)(4b− 5c) + c3 > 0.

Also, for c ≤ b ≤ 2c, we have

2h(b, c) = (2c − b)(b− c)2 + b(3b− 5c)2 ≥ 0.

Thus, the proof is completed. The equality holds for a = b = c.

P 2.82. If a ≥ b ≥ c > 0, then

ab+ bc
a2 + b2 + c2

≤
1+
p

3
4

.
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Solution. Denote

k =
1+
p

3
4

≈ 0.683,

and write the inequality as E(a, b, c)≥ 0, where

E(a, b, c) = k(a2 + b2 + c2)− ab− bc.

We show that
E(a, b, c)≥ E(b, b, c)≥ 0.

We have

E(a, b, c)− E(b, b, c) = (a− b)[ka− (1− k)b]≥ (2k− 1)(a− b)b ≥ 0

and
E(b, b, c) = (2k− 1)b2 + kc2 − bc ≥ 2

Æ

k(2k− 1)bc − bc = 0.

The equality holds for a = b =
1+
p

3
2

c.

P 2.83. If a ≥ b ≥ c ≥ d > 0, then

ab+ bc + cd
a2 + b2 + c2 + d2

≤
2+
p

7
6

.

Solution. Write the inequality as E(a, b, c, d)≥ 0, where

E(a, b, c, d) = k(a2 + b2 + c2 + d2)− ab− bc − cd, k =
2+
p

7
6

≈ 0.774.

We show that
E(a, b, c, d)≥ E(b, b, c, d)≥ E(c, c, c, d)≥ 0.

We have

E(a, b, c, d)− E(b, b, c, d) = (a− b)[ka− (1− k)b]≥ (2k− 1)(a− b)b ≥ 0,

E(b, b, c, d)− E(c, c, c, d) = (b− c)[(2k− 1)b− (2− 2k)c]≥ (4k− 3)(b− c)c ≥ 0

and
E(c, c, c, d) = (3k− 2)c2 + kd2 − cd ≥ 2

Æ

k(3k− 2)cd − cd = 0.

The equality holds for a = b = c =
2+
p

7
3

d.
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P 2.84. If
a ≥ 1≥ b ≥ c ≥ d ≥ 0, a+ b+ c + d = 4,

then
ab+ bc + cd ≤ 3.

Solution. Write the inequality in the homogeneous form E(a, b, c, d)≥ 0, where

E(a, b, c, d) = 3(a+ b+ c + d)2 − 16(ab+ bc + cd).

From
a+ b+ c + d = 4≥ 4b,

we get
a ≥ 3b− c − d.

We will show that

E(a, b, c, d)≥ E(3b− c − d, b, c, d)≥ 0.

We have

E(a, b, c, d)− E(3b− c − d, b, c, d) = 3[(a+ b+ c + d)2 − (4b)2]− 16b(a− 3b+ c + d)
= (a− 3b+ c + d)(3a− b+ 3c + 3d)≥ 0.

Also,

E(3b− c − d, b, c, d) = 48b2 − 16(3b2 − bd + cd) = 16d(b− c)≥ 0.

The equality holds for

a ∈ [2, 3], b = 1, c = 3− a, d = 0.

P 2.85. Let k and a, b, c be positive real numbers, and let

E = (ka+ b+ c)
�

k
a
+

1
b
+

1
c

�

, F = (ka2 + b2 + c2)
�

k
a2
+

1
b2
+

1
c2

�

.

(a) If k ≥ 1, then
√

√ F − (k− 2)2

2k
+ 2≥

E − (k− 2)2

2k
;

(b) If 0< k ≤ 1, then
√

√ F − k2

k+ 1
+ 2≥

E − k2

k+ 1
.

(Vasile C., 2007)
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Solution. Due to homogeneity, we may assume that bc = 1. Under this assump-
tion, if we denote

x = a+
1
a

, y = b+
1
b
= c +

1
c

(x ≥ 2, y ≥ 2), then

E =
�

ka+ b+
1
b

��

k
a
+ b+

1
b

�

= (ka+ y)
�

k
a
+ y

�

= k2 + kx y + y2

and

F =
�

ka2 + b2 +
1
b2

��

k
a2
+ b2 +

1
b2

�

= (ka2 + y2 − 2)
�

k
a2
+ y2 − 2

�

= k2 + k(x2 − 2)(y2 − 2) + (y2 − 2)2.

(a) Write the inequality as

2kF − 2k(k− 2)2 ≥ (E − k2 − 4)2.

We have
E − k2 − 4= kx y + y2 − 4> 0,

(E − k2 − 4)2 = k2 x2 y2 + 2kx y(y2 − 4) + (y2 − 4)2,

and
F − (k− 2)2 = 4k+ k(x2 − 2)(y2 − 2) + y2(y2 − 4),

2kF − 2k(k− 2)2 = 8k2 + 2k2(x2 − 2)(y2 − 2) + 2k y2(y2 − 4).

Therefore,

2kF − 2k(k− 2)2 − (E − k2 − 4)2 = (y2 − 4)[k2(x2 − 4)− 2k y(x − y)− (y2 − 4)].

Since y2 − 4≥ 0, we still need to show that

k2(x2 − 4)− 2k y(x − y)≥ y2 − 4.

We will show that

k2(x2 − 4)− 2k y(x − y)≥ (x2 − 4)− 2y(x − y)≥ y2 − 4.

The right inequality reduces to (x− y)2 ≥ 0, and the left inequality is equivalent to

(k− 1)[(k+ 1)(x2 − 4)− 2y(x − y)]≥ 0.
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This is true because

(k+ 1)(x2 − 4)− 2y(x − y)≥ 2(x2 − 4)− 2y(x − y) = 2(x − y)2 + 2(x y − 4)≥ 0.

The equality holds for b = c. If k = 1, then the equality holds for a = b or b = c or
c = a.

(b) Write the inequality as

(k+ 1)(F − k2)≥ (E − k2 − 2k− 2)2.

We have
E − k2 − 2k− 2= k(x y − 2) + y2 − 2> 0,

(E − k2 − 2k− 2)2 = k2(x y − 2)2 + 2k(x y − 2)(y2 − 2) + (y2 − 2)2,

and

(k+ 1)(F − k2) = k2(x2 − 2)(y2 − 2) + k(y2 − 2)(x2 + y2 − 4) + (y2 − 2)2.

Thus,
(k+ 1)(F − k2)− (E − k2 − 2k− 2)2 = k(x − y)2(y2 − 2k− 2)

≥ k(x − y)2(y2 − 4)≥ 0.

If 0< k < 1, then the equality holds for a = b or a = c.

P 2.86. If a, b, c are positive real numbers, then

a
2b+ 6c

+
b

7c + a
+

25c
9a+ 8b

> 1.

Solution. By the Cauchy-Schwarz inequality, we have

a
2b+ 6c

+
b

7c + a
+

25c
9a+ 8b

≥
(a+ b+ 5c)2

a(2b+ 6c) + b(7c + a) + c(9a+ 8b)
.

Therefore, it suffices to show that

(a+ b+ 5c)2 ≥ 3ab+ 15bc + 15ca,

which is equivalent to

a2 + b2 + 25c2 − ab− 5bc − 5ca ≥ 0.

Indeed, we have

2(a2 + b2 + 25c2 − ab− 5bc − 5ca) = (a− b)2 + a2 + b2 + 50c2 − 10bc − 10ca

= (a− b)2 + (a− 5c)2 + (b− 5c)2 ≥ 0.
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P 2.87. If a, b, c are positive real numbers such that

1
a
≥

1
b
+

1
c

,

then
1

a+ b
+

1
b+ c

+
1

c + a
≥

55
12(a+ b+ c)

.

(Vasile C., 2014)

Solution. Denote

x =
bc

b+ c
, a ≤ x ,

and write the desired inequality as

∑ a+ b+ c
b+ c

≥
55
12

,

a
b+ c

+
b

c + a
+

c
a+ b

≥
19
12

.

Using the Cauchy-Schwarz inequality

b
c + a

+
c

a+ b
≥

(b+ c)2

b(c + a) + c(a+ b)
,

it suffices to show that
F(a, b, c)≥

19
12

,

where

F(a, b, c) =
a

b+ c
+

(b+ c)2

a(b+ c) + 2bc
.

We will show that
F(a, b, c)≥ F(x , b, c)≥

19
12

.

Since

F(a, b, c)− F(x , b, c) = (x − a)
�

−
1

b+ c
+

(b+ c)3

(a(b+ c) + 2bc)(x(b+ c) + 2bc)

�

,

we need to prove that

(b+ c)4 ≥ [a(b+ c) + 2bc][(x(b+ c) + 2bc].

Since
a(b+ c) + 2bc ≤ x(b+ c) + 2bc,

it is enough to show that

(b+ c)2 ≥ x(b+ c) + 2bc,
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which is equivalent to the obvious inequality

(b+ c)2 ≥ 3bc.

Also, we have

F(x , b, c)−
19
12
=

bc
(b+ c)2

+
(b+ c)2

3bc
−

19
12
=
(b− c)2(4b2 + 5bc + 4c2)

12bc(b+ c)2
≥ 0.

The equality occurs for 2a = b = c.

P 2.88. If a, b, c are positive real numbers such that

1
a
≥

1
b
+

1
c

,

then
1

a2 + b2
+

1
b2 + c2

+
1

c2 + a2
≥

189
40(a2 + b2 + c2)

.

(Vasile C., 2014)

Solution. Denote

x =
bc

b+ c
, a ≤ x ,

and write the desired inequality as

∑ a2 + b2 + c2

b2 + c2
≥

189
40

,

a2

b2 + c2
+

b2

c2 + a2
+

c2

a2 + b2
≥

69
40

.

Using the Cauchy-Schwarz inequality

b2

c2 + a2
+

c2

a2 + b2
≥

(b2 + c2)2

b2(c2 + a2) + c2(a2 + b2)
,

it suffices to show that

F(a, b, c)≥
69
40

,

where

F(a, b, c) =
a2

b2 + c2
+

(b2 + c2)2

a2(b2 + c2) + 2b2c2
.

We will show that

F(a, b, c)≥ F(x , b, c)≥
69
40

.
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Since

F(a, b, c)−F(x , b, c) = (x2−a2)
�

−
1

b2 + c2
+

(b2 + c2)3

(a2(b2 + c2) + 2b2c2) (x2(b2 + c2) + 2b2c2)

�

,

we need to prove that

(b2 + c2)4 ≥ [a2(b2 + c2) + 2b2c2][x2(b2 + c2) + 2b2c2].

Since
a2(b2 + c2) + 2b2c2 ≤ x2(b2 + c2) + 2b2c2,

it is enough to show that

(b2 + c2)2 ≥ x2(b2 + c2) + 2b2c2,

which is equivalent to

(b4 + c4)(b+ c)2 ≥ b2c2(b2 + c2).

This inequality follows from b4 + c4 > b2c2 and (b+ c)2 > b2 + c2. Also, we have

F(x , b, c) =
x2

b2 + c2
+

(b2 + c2)2

x2(b2 + c2) + 2b2c2
.

Since
2b2c2 ≤ 4x2(b2 + c2),

we have

F(x , b, c)≥
x2

b2 + c2
+
(b2 + c2)2

5x2(b2 + c2)
=

1
t
+

t
5

,

where

t =
b2 + c2

x2
≥ 8.

Therefore,

F(x , b, c)−
69
40
≥

1
t
+

t
5
−

69
40
=
(t − 8)(8t − 5)

40t
≥ 0.

The equality occurs for 2a = b = c.

P 2.89. Find the best real numbers k, m, n such that

(
p

a+
p

b+
p

c)
p

a+ b+ c ≥ ka+mb+ nc

for all a ≥ b ≥ c ≥ 0.
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Solution. For a = 1 and b = c = 0, for a = b = 1 and c = 0, and for a = b = c = 1,
we get respectively

k ≤ 1, k+m≤ 2
p

2, k+m+ n≤ 3
p

3,

which yield

ka+mb+ nc = k(a− b) + (k+m)(b− c) + (k+m+ nz)c

≤ a− b+ 2
p

2 (b− c) + 3
p

3 c

= a+ (2
p

2− 1)b+ (3
p

3− 2
p

2)c.

Therefore, if the following inequality holds
�p

a+
p

b+
p

c
�p

a+ b+ c ≥ a+ (2
p

2− 1)b+ (3
p

3− 2
p

2)c,

then
k = 1, m= 2

p
2− 1, n= 3

p
3− 2

p
2

are the best real k, m, n. Since

�p
a+

p

b+
p

c
�2
= a+

�

2
p

ab+ b
�

+
�

2
p

ac + 2
p

bc + c
�

≥ a+ 3b+ 5c,

it suffices to show that

(a+ 3b+ 5c)(a+ b+ c)≥ [a+ (2
p

2− 1)b+ (3
p

3− 2
p

2)c]2,

which is equivalent to the obvious inequality

(3− 2
p

2)b(a− b) + (3+ 2
p

2− 3
p

3)c(a− b) + 3(5− 2
p

6)c(b− c)≥ 0.

If k = 1, m = 2
p

2− 1, n = 3
p

3− 2
p

2, then the equality holds for a = b = c, for
a = b and c = 0, and for b = c = 0.

P 2.90. Let a, b ∈ (0,1] , a ≤ b.

(a) If a ≤
1
e

, then

2aa ≥ ab + ba;

(b) If b ≥
1
e

, then

2bb ≥ ab + ba.

(Vasile C., 2012)
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Solution. (a) We need to show that f (a)≥ f (b), where

f (x) = ax + x a, x ∈ [a, b].

This is true if f (x) is decreasing; that is, if f ′(x)≤ 0 on [a, b]. Since the derivative

f ′(x) = a(x a−1 + ax−1 ln a)≤ a(x a−1 − ax−1),

it suffices to show that
x a−1 ≤ ax−1

for 0 < a ≤ x ≤ 1. Consider the non-trivial case 0 < a ≤ x < 1, and write the
inequality as g(x)≥ g(a), where

g(x) =
ln x

1− x
.

It suffices to show that g ′(x)≥ 0 for 0< x < 1. We have

g ′(x) =
h(x)
(1− x)2

, h(x) =
1
x
− 1+ ln x .

Since
h′(x) =

x − 1
x2

< 0,

h(x) is strictly decreasing, h(x) > h(1) = 0, g ′(x) > 0. This completes the proof.
The equality holds for a = b.

(b) We need to show that f (b)≥ f (a), where

f (x) = x b + bx , x ∈ [a, b].

This is true if f (x) is increasing; that is, if f ′(x)≥ 0 on [a, b]. Since the derivative

f ′(x) = b(x b−1 + bx−1 ln b)≥ b(x b−1 − bx−1),

it suffices to show that
x b−1 ≥ bx−1

for 0 < x ≤ b ≤ 1. As we shown at (a), this inequality is true. The equality holds
for a = b.

P 2.91. If 0≤ a ≤ b and b ≥
1
2

, then

2b2b ≥ a2b + b2a.

(Vasile C., 2012)
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Solution. We need to show that f (a)≤ f (b), where

f (x) = x2b + b2x , x ∈ [0, b].

From the derivative

f ′′(x) = 2b
�

2b2x−1 ln2 b+ (2b− 1)x2b−2
�

> 0, x ∈ (0, b],

it follows that f (x) is convex on [0, b]. Therefore, we have

f (a)≤max{ f (0), f (b)}.

From this, it follows that f (a) ≤ f (b) if f (0) ≤ f (b). To prove that f (0) ≤ f (b),
we apply Bernoulli’s inequality as follows:

f (b)− f (0) = 2b2b − 1= 2[1+ (b− 1)]2b − 1

≥ 2[1+ 2b(b− 1)]− 1= (2b− 1)2 ≥ 0.

The equality holds for a = b ≥
1
2

, and also for a = 0 and b =
1
2

.

P 2.92. If a ≥ b ≥ 0, then

(a) ab−a ≤ 1+
a− b
p

a
;

(b) aa−b ≥ 1−
3(a− b)

4
p

a
.

(Vasile C., 2010)

Solution. (a) Write the inequality as

(a− b) ln a+ ln
�

1+
a− b
p

a

�

≥ 0,

which follows by adding the inequalities

ln
�

1+
a− b
p

a

�

−
a− b
p

a
+
(a− b)2

2a
≥ 0,

(a− b) ln a+
a− b
p

a
−
(a− b)2

2a
≥ 0.

Denoting

x =
a− b
p

a
,
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we can write the first inequality as f (x)≥ 0 for x ≥ 0, where

f (x) = ln(1+ x)− x +
x2

2
.

From the derivative

f ′(x) =
x2

1+ x
≥ 0,

it follows that f is increasing, hence f (x)≥ f (0) = 0.
The second inequality is true if

ln a+
1
p

a
−

a− b
2a

≥ 0.

It suffices to prove that g(a)≥ 0, where

g(a) = ln a+
1
p

a
−

1
2

.

From

g ′(a) =
2
p

a− 1
2a
p

a
,

it follows that g is decreasing on (0, 1/4] and increasing on [1/4,∞); therefore,

g(a)≥ g
�

1
4

�

=
3
2
− ln 4> 0.

The equality holds for a = b.

(b) Consider the non-trivial case 1−
3(a− b)

4
p

a
> 0, write the inequality as

(a− b) ln a ≥ ln
�

1−
3a− 3b

4
p

a

�

,

and prove it by adding the inequalities

0≥ ln
�

1−
3a− 3b

4
p

a

�

+
3(a− b)

4
p

a
,

(a− b) ln a+
3(a− b)

4
p

a
≥ 0.

Denoting

x =
3(a− b)

4
p

a
, 0≤ x < 1,

we can write the first inequality as f (x)≤ 0, where

f (x) = ln(1− x) + x .
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From the derivative
f ′(x) =

−x
1− x

≤ 0,

it follows that f is decreasing, hence f (x)≤ f (0) = 0.
The second inequality is true if g(a)≥ 0, where

g(a) = ln a+
3

4
p

a
.

From the derivative

g ′(a) =
8
p

a− 3
8a
p

a
,

it follows that

g(a)≥ g
�

9
64

�

= 2 ln
3e
8
> 0.

The equality holds for a = b.

P 2.93. If a, b, c are positive real numbers such that

a ≥ b ≥ c, ab2c3 ≥ 1,

then
a+ 2b+ 3c ≥

1
a
+

2
b
+

3
c

.

(Vasile C., 2018)

Solution. It suffices to prove the homogeneous inequality

a+ 2b+ 3c ≥
3
p

ab2c3

�

1
a
+

2
b
+

3
c

�

.

Replacing a, b, c with a3, b3, c3, the inequality becomes as follows:

a3 + 2b3 + 3c3 ≥
b2c3

a2
+

2ac3

b
+ 3ab2,

a3 + 2b3 − 3ab2 ≥
c3

a2 b
(2a3 − 3a2 b+ b3),

(a− b)2(a+ 2b)≥
c3

a2 b
(a− b)2(2a+ b).

Thus, we need to show that

a2 b(a+ 2b)≥ c3(2a+ b)

for a ≥ b ≥ c. Since c3 ≤ ab2, we have

a2 b(a+ 2b)− c3(2a+ b)≥ a2 b(a+ 2b)− ab2(2a+ b) = ab(a2 − b2)≥ 0.

The equality occurs for a = b = 1/c ≥ 1.
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P 2.94. If a, b, c are positive real numbers such that

a+ b+ c = 3, a ≤ b ≤ c,

then
1
a
+

2
b
≥ a2 + b2 + c2.

(Vasile C., 2020)

Solution. Let
f (a, b, c) =

1
a
+

2
b
− a2 − b2 − c2.

We will show that
f (a, b, c)≥ f (a, x , x)≥ 0,

where

x =
b+ c

2
=

3− a
2

.

Since
f (a, b, c)− f (a, x , x) =

2
b
−

2
x
− (b2 + c2 − 2x2)

=
2(c − b)
b(b+ c)

−
(c − b)2

2
=
(c − b)(b3 − bc2 + 4)

2b(b+ c)
,

we need to show that
b3 − bc2 + 4≥ 0.

Since b+ c < 3, we have

b3 − bc2 + 4> b3 − b(3− b)2 + 4= 6b2 + 4− 9b ≥ (4
p

6− 9)b > 0.

Also, since a ≤ 1, we have

f (a, x , x) =
1
a
+

2
x
− a2 − 2x2 =

1
a
+

4
3− a

− a2 −
1
2
(3− a)2

=
a4 − 5a3 + 9a2 − 7a+ 2

a(3− a)
=
(1− a)3(2− a)

a(3− a)
≥ 0.

The equality occurs for a = b = c = 1.

P 2.95. If a, b, c are positive real numbers such that

a+ b+ c = 3, a ≤ b ≤ c,

then
2
a
+

3
b
+

1
c
≥ 2(a2 + b2 + c2).

(Vasile C., 2020)
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Solution. From
a ≤ b = 3− a− c,

we get

a ≤
3− c

2
.

For fixed b, write the inequality as f (a)≥ 0, where

f (a) =
2
a
+

3
b
+

1
c
− 2(a2 + b2 + c2), c = 3− a− b.

We have

f ′(a) = −
2
a2
+

1
c2
− 4(a− c) =

1
c2
+ 4c − 2g(a), g(a) = 2a+

1
a2

.

Since
g ′(a) = 2−

2
a3
≤ 0,

g(a) is decreasing, hence

g(a)≥ g
�

3− c
2

�

and

f ′(a)≤
1
c2
+ 4c − 2g

�

3− c
2

�

= 6(c − 1)−
7c2 + 6c − 9
c2(3− c)2

≤ 6(c − 1)−
16
81
(7c2 + 6c − 9) =

−2
81
(56c2 + 171− 195c)

≤
−2
27
(4
p

266− 65)c < 0.

Therefore, f (a) is decreasing. On the other hand, from a ≤ b and b ≤ c = 3−a−b,
we get

a ≤ b, a ≤ 3− 2b.

There are two cases to consider: b ∈ (0,1] and b ∈ [1,3/2).

Case 1: b ∈ (0, 1]. Since a ≤ b, we have

f (a)≥ f (b) =
5
b
+

1
c
− 2(2b2 + c2), c = 3− 2b,

hence
f (a)≥

5
b
+

1
3− 2b

− 4b2 − 2(3− 2b)2

=
3(5− 3b)
b(3− 2b)

− 3(4b2 − 8b+ 6)

=
3(8b4 − 28b3 + 36b2 − 21b+ 5)

b(3− 2b)
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≥
3(8b4 − 27b3 + 35b2 − 21b+ 5)

b(3− 2b)

=
3(b− 1)2(8b2 − 11b+ 5)

b(3− 2b)
≥ 0.

Case 2: b ∈ [1,3/2). Since a ≤ 3− b, we have

f (a)≥ f (3− b) =
2

3− 2b
+

3
b
+

1
c
− 2(3− 2b)2 − 2(b2 + c2), c = b,

hence

f (a)≥ f (3− b) =
2

3− 2b
+

4
b
− 2(3− 2b)2 − 4b2

=
6(2− b)
b(3− 2b)

− 6(2b2 − 4b+ 3)

=
12(2b4 − 7b3 + 9b2 − 5b+ 1)

b(3− 2b)

=
12(b− 1)3(2b− 1)

b(3− 2b)
≥ 0.

The equality occurs for a = b = c = 1.

Remark. Since
2
a
+

3
b
+

1
c
≤ 2

�

1
a
+

2
b

�

,

the inequality is stronger than the one of P 2.94.

P 2.96. If a, b, c are positive real numbers such that

a+ b+ c = 3, a ≤ b ≤ c,

then
31
a
+

25
b
+

25
c
≥ 27(a2 + b2 + c2).

(Vasile C., 2020)

Solution. From
a ≤ b = 3− a− c,

we get

a ≤
3− c

2
.
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For fixed c ∈ [1, 3),write the inequality as f (a)≥ 0, where a ≤
3− c

2
and

f (a) =
31
a
+

25
b
+

25
c
− 27(a2 + b2 + c2), b = 3− a− c.

We will show that

f (a)≥ f
�

3− c
2

�

≥ 0.

Since a+ b ≤ 2, we have
a+ b
a2 b2

≥
16

(a+ b)3
≥ 2,

therefore

f ′a) = −
31
a2
+

25
b2
− 27(2a− 2b)< −

27
a2
+

27
b2
− 54(a− b)

= 27(a− b)
�

a+ b
a2 b2

− 2
�

≤ 0,

f (a) is decreasing, hence f (a) is minimal for a =
3− c

2
, when

b = 3− a− c =
3− c

2
= a.

So, we have

f
�

3− c
2

�

=
56
a
+

25
c
− 27(2a2 + c2)

=
112
3− c

+
25
c
−

27(3− c)2

2
− 27c2

=
3(27c4 − 135c3 + 243c2 − 185c + 50)

2c(3− c)

=
3(c − 1)(3c − 2)(3c − 5)2

2c(3− c)
≥ 0.

The equality occurs for a = b = c = 1, and also for a = b =
2
3

and c =
5
3

.

Remark. Actually, the following stronger inequalities are true:

29
a
+

27
b
+

25
c
≥ 27(a2 + b2 + c2),

28
a
+

28
b
+

25
c
≥ 27(a2 + b2 + c2). (*)

For (*), we have

f (a) =
28
a
+

28
b
+

25
c
− 27(a2 + b2 + c2), b = 3− a− c,
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f ′a) = −
28
a2
+

28
b2
− 27(2a− 2b)≤ −

27
a2
+

27
b2
− 54(a− b)

= 27(a− b)
�

a+ b
a2 b2

− 2
�

≤ 0

and

f
�

3− c
2

�

=
56
a
+

25
c
− 27(2a2 + c2)

=
3(c − 1)(3c − 2)(3c − 5)2

2c(3− c)
≥ 0.

On the other hand, we can prove the inequality (*) by showing that

f (a, b, c)≥ f (x , x , c)≥ 0,

where

f (a, b, c) =
28
a
+

28
b
+

25
c
− 27(a2 + b2 + c2), x =

a+ b
2
=

3− c
2

.

We have

f (a, b, c)− f (x , x , c) = 28
�

1
a
+

1
b
−

2
x

�

− 27(a2 + b2 − 2x2)

=
1
2
(a− b)2

�

56
ab(a+ b)

− 27
�

≥
27
2
(a− b)2

�

2
ab(a+ b)

− 1
�

≥ 0

and

f (x , x , c) =
56
x
+

25
c
− 27(2x2 + c2) =

3(c − 1)(3c − 2)(3c − 5)2

2c(3− c)
≥ 0.

P 2.97. If a, b, c are the lengths of the sides of a triangle, then

a3(b+ c) + bc(b2 + c2)≥ a(b3 + c3).

(Vasile C., 2010)

First Solution. Because the inequality is symmetric in b and c, we may assume
that b ≥ c. Consider the following two cases.

Case 1: a ≥ b. It suffices to show that

a3(b+ c)≥ a(b3 + c3).

We have

a3(b+ c)− a(b3 + c3)≥ ab2(b+ c)− a(b3 + c3) = ac(b2 − c2)≥ 0.
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Case 2: a ≤ b. Write the inequality as

c(a3 + b3)− c3(a− b) + ab(a2 − b2)≥ 0.

It suffices to show that

c(a3 + b3) + ab(a2 − b2)≥ 0.

We have

c(a3 + b3) + ab(a2 − b2)≥ c(a3 + b3)− abc(a+ b) = c(a+ b)(a− b)2 ≥ 0.

The equality holds for a degenerate triangle with a = b and c = 0, or a = c and
b = 0.

Second Solution. Consider two cases.

Case 1: b2 + c2 ≥ a(b+ c). Write the inequality as

bc(b2 + c2)≥ a(b+ c)(b2 + c2 − bc − a2).

It suffices to show that
bc ≥ b2 + c2 − bc − a2,

which is equivalent to the obvious inequality

a2 ≥ (b− c)2.

Case 2: a(b+ c)≥ b2 + c2. Write the inequality as

a(b+ c)(a2 + bc)≥ (b2 + c2)(ab+ ac − bc).

It suffices to show that
a2 + bc ≥ ab+ ac − bc,

which is equivalent to the obvious inequality

bc ≥ (a− c)(b− a).

P 2.98. If a, b, c are the lengths of the sides of a triangle, then

(a+ b)2

2ab+ c2
+
(a+ c)2

2ac + b2
≥
(b+ c)2

2bc + a2
.

(Vasile C., 2010)
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Solution. By the Cauchy-Schwarz inequality, we have

(a+ b)2

2ab+ c2
+
(a+ c)2

2ac + b2
≥

(2a+ b+ c)2

2a(b+ c) + b2 + c2
.

Therefore, it suffices to show that

(2a+ b+ c)2

2a(b+ c) + b2 + c2
≥
(b+ c)2

2bc + a2
.

We will show that
(2a+ b+ c)2

2a(b+ c) + b2 + c2
≥ 2≥

(b+ c)2

2bc + a2
.

The left inequality reduces to 4a2 ≥ (b − c)2, and the right inequality reduces to
2a2 ≥ (b − c)2. These are true because a2 ≥ (b − c)2. The equality holds for a
degenerate triangle with a = 0 and b = c.

P 2.99. If a, b, c are the lengths of the sides of a triangle, then

a+ b
ab+ c2

+
a+ c

ac + b2
≥

b+ c
bc + a2

.

(Vasile C., 2010)

Solution. Without loss of generality, assume that b ≥ c. Since a+ b ≥ a+ c and

ab+ c2 − (ac + b2) = (b− c)(a− b− c)≤ 0,

by Chebyshev’s inequality, we have

a+ b
ab+ c2

+
a+ c

ac + b2
≥

1
2
[(a+ b) + (a+ c)]

�

1
ab+ c2

+
1

ac + b2

�

≥
2(2a+ b+ c)2

a(b+ c) + b2 + c2
.

On the other hand,

b+ c
bc + a2

≤
b+ c

1
2
(b− c)2 + bc

=
2(b+ c)
b2 + c2

.

Therefore, it suffices to show that

2(2a+ b+ c)
a(b+ c) + b2 + c2

≥
2(b+ c)
b2 + c2

,

which is equivalent to a(b − c)2 ≥ 0. The equality holds for a degenerate triangle
with a = 0 and b = c.



492 Vasile Cîrtoaje

P 2.100. If a, b, c are the lengths of the sides of a triangle, then

b(a+ c)
ac + b2

+
c(a+ b)
ab+ c2

≥
a(b+ c)
bc + a2

.

(Vo Quoc Ba Can, 2010)

Solution. Without loss of generality, assume that b ≥ c. Since

ab+ c2 − (ac + b2) = (b− c)(a− b− c)≤ 0,

it suffices to prove that

b(a+ c)
ac + b2

+
c(a+ b)
ac + b2

≥
a(b+ c)
bc + a2

,

which is equivalent to
2bc + a(b+ c)

ac + b2
≥

a(b+ c)
bc + a2

,

2bc
ac + b2

≥ a(b+ c)
�

1
bc + a2

−
1

ac + b2

�

,

2bc(bc + a2)≥ a(b+ c)(b− a)(a+ b− c).

Consider the nontrivial case b ≥ a. Since c ≥ b− a, it suffices to show that

2b(bc + a2)≥ a(b+ c)(a+ b− c).

We have

2b(bc + a2)− a(b+ c)(a+ b− c) = ab(a− b) + c(2b2 − a2 + ac)

≥ −abc + c(2b2 − a2 + ac) = ac(b+ c − a) + 2bc(b− a)≥ 0.

The equality holds for a degenerate triangle with a = b and c = 0, or a = c and
b = 0.

P 2.101. If a, b, c, d are positive real numbers such that

a ≥ b ≥ c ≥ d, ab2c3d6 ≥ 1,

then

a+ 2b+ 3c + 6d ≥
1
a
+

2
b
+

3
c
+

6
d

.

(Vasile C., 2018)
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Solution. It suffices to prove the homogeneous inequality

a+ 2b+ 3c + 6d ≥
6
p

ab2c3d6

�

1
a
+

2
b
+

3
c
+

6
d

�

.

Replacing a, b, c, d with a6, b6, c6, d6, we need to show that

a6 + 2b6 + 3c6 ≥
�

b2c3

a5
+

2ac3

b4
+

3ab2

c3
− 6

�

d6 + 6ab2c3

for a ≥ b ≥ c ≥ d. By the AM-GM inequality, we have

b2c3

a5
+

2ac3

b4
+

3ab2

c3
− 6≥ 6

6

√

√

√ b2c3

a5
·
�

ac3

b4
·
�2�ab2

c3

�3

− 6= 0.

Since d6 ≤ ab2c3, it suffices to show that

a6 + 2b6 + 3c6 ≥
�

b2c3

a5
+

2ac3

b4
+

3ab2

c3
− 6

�

ab2c3 + 6ab2c3,

which is equivalent to

a6 + 2b6 + 3c6 ≥
b4c6

a4
+

2a2c6

b2
+ 3a2 b4,

a6 + 2b6 − 3a2 b4 ≥
�

b4

a4
+

2a2

b2
− 3

�

c6,

(a2 − b2)2(a2 + 2b2)≥
(a2 − b2)2(2a2 + b2)c6

a4 b2
.

We need to show that

a4 b2(a2 + 2b2)≥ (2a2 + b2)c6.

Since c6 ≤ a2 b4, we have

a4 b2(a2+2b2)−(2a2+b2)c6 ≥ a4 b2(a2+2b2)−(2a2+b2)a2 b4 = a2 b2(a4−b4)≥ 0.

The equality occurs for a = b = c = d = 1.

Remark. By induction method, we can prove the following generalization.

• If a1, a2, . . . , an (n≥ 3) are positive real numbers such that

a1 ≥ a2 ≥ · · · ≥ an, a1a2
2a3

3a6
4 · · · a

kn
n ≥ 1, kn = 3 · 2n−3,

then

a1 + 2a2 + 3a3 + 6a4 + · · ·+ knan ≥
1
a1
+

2
a2
+

3
a3
+

6
a4
+ · · ·+

kn

an
,

with equality for a1 = a2 = · · ·= an.

For n= 3 and n= 4, we get the inequalities in P 2.93 and P 2.101.
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P 2.102. If a, b, c, d are positive real numbers such that

a ≥ b ≥ c ≥ d, abc2d4 ≥ 1,

then
a+ b+ 2c + 4d ≥

1
a
+

1
b
+

2
c
+

4
d

.

(Vasile C., 2018)

Solution. It suffices to prove the homogeneous inequality

a+ b+ 2c + 4d ≥
4
p

abc2d4

�

1
a
+

1
b
+

2
c
+

4
d

�

.

Replacing a, b, c, d with a4, b4, c4, d4, we need to show that

a4 + b4 + 2c4 ≥
�

bc2

a3
+

ac2

b3
+

2ab
c2
− 4

�

d4 + 4abc2

for a ≥ b ≥ c ≥ d. By the AM-GM inequality, we have

bc2

a3
+

ac2

b3
+

2ab
c2
− 4≥ 4

4

√

√

√ bc2

a3
·

ac2

b3
·
�

ab
c2

�2

− 4= 0.

Since d4 ≤ abc2, it suffices to show that

a4 + b4 + 2c4 ≥
�

bc2

a3
+

ac2

b3
+

2ab
c2
− 4

�

abc2 + 4abc2

which is equivalent to

a4 + b4 + 2c4 ≥
b2c4

a2
+

a2c4

b2
+ 2a2 b2,

(a2 − b2)2 ≥
(a2 − b2)2c4

a2 b2
,

(a2 − b2)2
�

1−
c4

a2 b2

�

≥ 0.

The equality occurs for a = b = c = d = 1.

Remark. By induction method, we can prove the following generalization.

• If a1, a2, . . . , an (n≥ 3) are positive real numbers such that

a1 ≥ a2 ≥ · · · ≥ an, a1a2a2
3a4

4 · · · a
2n−2

n ≥ 1,

then

a1 + a2 + 2a3 + 4a4 + · · ·+ 2n−2an ≥
1
a1
+

1
a2
+

2
a3
+

4
a4
+ · · ·+

2n−2

an
,

with equality for a1 = a2 = · · ·= an.

For n= 4, we get the inequalities in P 2.102.



Noncyclic Inequalities 495

P 2.103. If a, b, c, d are positive real numbers such that

abcd ≥ 1, a ≥ b ≥ c ≥ d, ad ≥ bc,

then

a+ b+ c + d ≥
1
a
+

1
b
+

1
c
+

1
d

.

(Vasile C., 2018)

Solution. It suffices to prove the homogeneous inequality

a+ b+ c + d ≥
p

abcd
�

1
a
+

1
b
+

1
c
+

1
d

�

.

Replacing a, b, c, d with a2, b2, c2, d2, we need to show that

a2 + b2 + c2 + d2 ≥
bc
ad
(a2 + d2) +

ad
bc
(b2 + c2)

for a ≥ b ≥ c ≥ d and ad ≥ bc. Write the inequality as follows:

(a2 + d2)
�

1−
bc
ad

�

+ (b2 + c2)
�

1−
ad
bc

�

≥ 0,

(ad − bc)
�

a
d
+

d
a
−

b
c
−

c
b

�

≥ 0,

(ad − bc)
�

ac − bd
cd

+
bd − ac

ab

�

≥ 0.

(ad − bc)(ac − bd)(ab− cd)
abcd

≥ 0.

Clearly, the last inequality is true. The equality occurs for ad = bc = 1.

Remark. The following extension is valid.

• If a, b, c, d, e are positive real numbers such that

abcde ≥ 1, a ≥ b ≥ c ≥ d ≥ e, ae ≥ bd ≥ c2,

then

a+ b+ c + d + e ≥
1
a
+

1
b
+

1
c
+

1
d
+

1
e

,

with equality for a f = c2 = cd = 1
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P 2.104. If a, b, c, d, e, f are positive real numbers such that

abcde f ≥ 1, a ≥ b ≥ c ≥ d ≥ e ≥ f , a f ≥ be ≥ cd,

then
a+ b+ c + d + e+ f ≥

1
a
+

1
b
+

1
c
+

1
d
+

1
e
+

1
f

.

(Vasile C., 2018)

Solution. Write the inequality as

(a+ f )
�

1−
1

a f

�

+ (b+ e)
�

1−
1
be

�

+ (c + d)
�

1−
1
cd

�

≥ 0.

For
a f = k = constant,

we claim that the sum a+ f is minimum for a =
k
e
≥ b and f = e. Indeed, we have

a+ f −
k
e
− e = a+ f −

a f
e
− e = a− e−

�a
e
− 1

�

f =
(a− e)(e− f )

e
≥ 0.

In addition, for
cd = k = constant,

we claim that the sum c+d is maximum for c =
k
e
≤ b and d = e. Indeed, we have

c + d −
k
e
− e = c + d −

cd
e
− e = c − e−

� c
e
− 1

�

d =
−(c − e)(d − e)

e
≤ 0.

Thus, it suffices to prove the inequality for f = e and d = e, that is for d = e = f .
So, we need to show that

a+ b+ c + 3d ≥
1
a
+

1
b
+

1
c
+

3
d

for
a ≥ b ≥ c ≥ d, abcd3 ≥ 1.

It suffices to prove the homogeneous inequality

a+ b+ c + 3d ≥
3
p

abcd3

�

1
a
+

1
b
+

1
c
+

3
d

�

.

Replacing a, b, c, d with a3, b3, c3, d3, we need to show that

a3 + b3 + c3 ≥
�

bc
a2
+

ca
b2
+

ab
c2
− 3

�

d3 + 3abc
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for a ≥ b ≥ c ≥ d. By the AM-GM inequality, we have

bc
a2
+

ca
b2
+

ab
c2
− 3≥ 0.

Since d3 ≤ c3, it suffices to show that

a3 + b3 + c3 ≥
�

bc
a2
+

ca
b2
+

ab
c2
− 3

�

c3 + 3abc,

which can be written as follows:

a3 + b3 + 4c3 ≥
bc4

a2
+

ac4

c2
+ 4abc,

(a3 + b3)
�

1−
c4

a2 b2

�

− 4c(ab− c2)≥ 0,

(ab− c2)[(a3 + b3)(ab+ c2)− 4a2 b2c]≥ 0.

It is true since

(a3+b3)(ab+c2)−4a2 b2c ≥ 2ab
p

ab
�

ab+ c2
�

−4a2 b2c = 2ab
p

ab
�p

ab− c
�2
≥ 0.

The equality occurs for a f = be = cd = 1.

P 2.105. Let a, b, c, d be nonnegative real numbers such that

a2 − ab+ b2 = c2 − cd + d2.

Prove that
(a+ b)(c + d)≥ 2(ab+ cd).

(Vasile C., 2000)

Solution. Let
x = a2 − ab+ b2 = c2 − cd + d2.

Without loss of generality, assume that ab ≥ cd. Then,

x ≥ ab ≥ cd, (a+ b)2 = x + 3ab, (c + d)2 = x + 3cd.

By squaring, the desired inequality can be restated as

(x + 3ab)(x + 3cd)≥ 4(ab+ cd)2.

It is true since

(x + 3ab)(x + 3cd)− 4(ab+ cd)2 ≥ (ab+ 3ab)(ab+ 3cd)− 4(ab+ cd)2

= 4cd(ab− cd)≥ 0.

The equality occurs for a = b = c = d, and also for a = b = c and d = 0 (or any
cyclic permutation).



498 Vasile Cîrtoaje

P 2.106. Let a, b, c, d be nonnegative real numbers such that

a2 − ab+ b2 = c2 − cd + d2.

Prove that
1

a2 + b2
+

1
c2 + d2

≤
8

(a+ b)2 + (c + d)2
.

(Vasile C. and Relic-93, 2021)

Solution. Let
x = a2 − ab+ b2 = c2 − cd + d2.

Without loss of generality, assume that ab ≥ cd. Then, x ≥ ab ≥ cd and

a2 + b2 = x + ab, c2 + d2 = x + cd, (a+ b)2 = x + 3ab, (c + d)2 = x + 3cd.

The required inequality can be rewritten as

1
x + ab

+
1

x + cd
≤

8
2x + 3(ab+ cd)

,

3(a2 b2 + c2d2)≤ 4x2 + 2abcd.

It is true if
3(a2 b2 + c2d2)≤ 4a2 b2 + 2abcd,

which is equivalent to
(ab− cd)(ab+ 3cd)≥ 0.

The equality occurs for a = b = c = d.

P 2.107. Let a, b, c, d be nonnegative real numbers such that

a2 − ab+ b2 = c2 − cd + d2.

Prove that
1

a2 + ab+ b2
+

1
c2 + cd + d2

≤
8

3(a+ b)(c + d)
.

(Anhduy98, 2021)

Solution. Without loss of generality, assume that ab ≥ cd. Let

x = a2 − ab+ b2 = c2 − cd + d2, y = ab, z = cd.

Then, x ≥ y ≥ z and

a2+ab+ b2 = x+2y, c2+cd+d2 = x+2z, (a+ b)2 = x+3y, (c+d)2 = x+3z.
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The required inequality can be rewritten as F(x , y, z)≤ 0, where

F(x , y, z) =
1

x + 2y
+

1
x + 2z

−
8

3
p

(x + 3y)(x + 3z)
.

We will show that
F(x , y, z)≤ F(x , x , z)≤ 0.

The left inequality is equivalent to

4
p

x + 3z

�

1
p

x + 3y
−

1
2
p

x

�

≥
x − y

x(x + 2y)
,

6(x − y)
p

x(x + 3y)(x + 3z)
�

2
p

x +
p

x + 3z
� ≥

x − y
x(x + 2y)

.

It is true if

6
p

(x + 3y)(x + 3z)
�

2
p

x +
p

x + 3z
� ≥

1
(x + 2y)

p
x

.

Since x ≥ y ≥ z, we only need to show that

6

(x + 3y)
�

2
p

x +
p

4x
� ≥

1
(x + 2y)

p
x

,

which is clearly true.
The right inequality F(x , x , z)≤ 0 is equivalent to

1
3x
+

1
x + 2z

≤
4

3
p

x(x + 3z)
,

(2x + z)2(x + 3z)≤ 4x(x + 2z)2.

It is true because

4x(x + 2z)2 − (2x + z)2(x + 3z) = 3(x − z)z2 ≥ 0.

The equality occurs for a = b = c = d, and also for a = b = c and d = 0 (or any
cyclic permutation).

P 2.108. Let a, b, c, d be nonnegative real numbers such that

a2 − ab+ b2 = c2 − cd + d2.

Prove that
1

(ac + bd)4
+

1
(ad + bc)4

≤
2

(ab+ cd)4
.

(Vasile C., 2021)
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Solution. Due to homogeneity, we may set

a2 − ab+ b2 = c2 − cd + d2 = 1.

Let
x = ab, y = cd, s = x + y, p = x y.

From 1 = a2 − ab + b2 ≥ ab, we get x ≤ 1. Similarly, y ≤ 1, hence p ≤ 1. In
addition, from

(1− x)1− y)≥ 0,

we get
s ≤ 1+ p.

Since

(ac + bd)(ad + bc) = ab(c2 + d2) + cd(a2 + b2) = x(1+ y) + y(1+ x) = s+ 2p,

(ac+bd)2+(ad+bc)2 = (a2+b2)(c2+d2)+4abcd = (1+x)(1+ y)+4x y = 1+s+5p,

(ac + bd)4 + (ad + bc)4 =
�

(ac + bd)2 + (ad + bc)2
�2
− 2(ac + bd)2(ad + bc)2

= (1+ s+ 5p)2 − 2(s+ 2p)2 ,

we need to show that

(1+ s+ 5p)2 − 2(s+ 2p)2

(s+ 2p)4
≤

2
s4

,

that is equivalent to f (s, p)≥ g(s, p), where

f (s, p) = 2
�

1+
2p
s

�4

, g(s, p) = (1+ s+ 5p)2 − 2(s+ 2p)2 .

Since
f (s, p)≥ f (1+ p, p)

and

g(s, p)−g(1+p, p) = (s−1−p)(3+s+11p)−2(s−1−p)(1+s+5p) = −(s−1−p)2 ≤ 0,

it is enough to show that

f (1+ p, p)≥ g(1+ p, p),

that is
2(1+ 3p)4

(1+ p)4
≥ 2(1+ 3p)2,

p(1− p)(1+ 3p)2(2+ 5p+ p2)≥ 0.

The equality occurs for a = b = c = d, and also for a = b = c and d = 0 (or any
cyclic permutation).
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P 2.109. Let a, b, c, d be nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c + d = 13, a2 + b2 + c2 + d2 = 43.

Prove that
ab ≥ cd + 3.

(PMO, 2021)

Solution (by Doxuantrong). From

43− a2 = b2 + c2 + d2 ≥
1
3
(b+ c + d)2 =

1
3
(13− a)2,

we get
(a− 4)(2a− 5)≤ 0,

hence
5
2
≤ a, b, c, d ≤ 4. On the other hand, we write the required inequality as

follows:
2ab ≥ 2cd + 6,

(a+ b)2 − (a2 + b2)≥ (c + d)2 − (c2 + d2) + 6,

(13− c − d)2 − (43− c2 − d2)≥ (c + d)2 − (c2 + d2) + 6,

c2 + d2 + 60≥ 13(c + d),

(c − d)2 + (c + d)2 + 120≥ 26(c + d),

(c − d)2 ≥ (c + d − 6)(20− c − d).

Thus, it suffices to show that c + d ≤ 6, that is equivalent to a + b ≥ 7. If a = 4,
then

a+ b ≥ a+
b+ c + d

3
= a+

13− a
3

= 7.

Consider further that a < 4. From

(b− c)(b− d)≥ 0,

we get
b2 − (c + d)b+ cd ≥ 0,

that is equivalent to

2b2 − 2(c + d)b+ (c + d)2 − (c2 + d2)≥ 0,

b2 + (b− c − d)2 − (c2 + d2)≥ 0,

b2 + (a+ 2b− 13)2 − (43− a2 − b2)≥ 0,

3b2 − 2(13− a)b+ a2 − 13a+ 63≥ 0,

3b ≥ 13− a+
Æ

(4− a)(2a− 5).
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Note that we cannot have 3b ≤ 13− a−
p

(4− a)(2a− 5) because this involves a
contradiction:

13− a = b+ c + d ≤ 3b ≤ 13− a−
Æ

(4− a)(2a− 5)< 13− a.

From
3a ≥ 3b ≥ 13− a+

Æ

(4− a)(2a− 5),

we get

4a− 13≥
Æ

(4− a)(2a− 5),

(2a− 7)(a− 3)≥ 0,

hence a ≥ 7/2. As a consequence, we have

3(a+ b− 7) = 3(a− 7) + 3b ≥ 3(a− 7) + 13− a+
Æ

(4− a)(2a− 5)

=
p

4− a
�p

2a− 5− 2
p

4− a
�

=
3
p

4− a (2a− 7)
p

2a− 5+ 2
p

4− a
≥ 0.

The equality occurs for a = 4 and b = c = d = 3.

Second solution (by KaiRain) To show that a+ b ≥ 7, the key is

a2+b2+c2+d2+6 (ab+ cd) = (a+ b+ c + d)2+2 (a− c) (b− d)+2 (a− d) (b− c)

≥ (a+ b+ c + d)2 ,

which gives
ab+ cd ≥ 21,

(a+ b)2 + (c + d)2 ≥ a2 + b2 + c2 + d2 + 42,

(a+ b)2 + (13− a− b)2 ≥ 85,

(a+ b− 6)(a+ b− 7)≥ 0,

a+ b ≥ 7.

Hence,

ab− cd ≥ ab−
c2 + d2

2
= ab+

a2 + b2 − 43
2

=
(a+ b)2 − 43

2
≥ 3.
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P 2.110. Let a, b, c, d be nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c + d = 13, a2 + b2 + c2 + d2 = 43.

Prove that
ab− cd ≥

7
2

(a) for a ≤
39
10

;

(b) for d ≤
31
11

.

(Vasile C., 2021)

Solution. (a) As shown at the preceding P 2.109, we have

7
2
≤ a ≤ 4

and

b ≥ B, B =
13− a+

p

(4− a)(2a− 5)
3

.

Write the required inequality as follows:

2ab ≥ 2cd + 7,

(a+ b)2 − (a2 + b2)≥ (c + d)2 − (c2 + d2) + 7,

(a+ b)2 − (a2 + b2)≥ (13− a− b)2 − (43− a2 − b2) + 7,

13a− a2 + 13b− b2 ≥
133

2
.

Since
13b− b2 − (13B − B2) = (b− B)(13− b− B)≥ 0,

it suffices to show that

13a− a2 + 13B − B2 ≥
133
2

,

which is equivalent to

2(2a+ 13)
Æ

(4− a)(2a− 5)≥ 16a2 − 182a+ 481. (*)

Write this inequality in the form

2(2a+ 13)(4− a)(2a− 5)≥ (16a2 − 182a+ 481)
Æ

(4− a)(2a− 5) .

Since

2
Æ

(4− a)(2a− 5) = 2

√

√

2(4− a) ·
2a− 5

2
≤ 2(4− a) +

2a− 5
2

=
11− 2a

2
,
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it suffices to show that

4(2a+ 13)(4− a)(2a− 5)≥ (16a2 − 182a+ 481)(11− 2a),

which is equivalent to the obvious inequality

(2a− 7)(39− 10a)≥ 0.

The equality occurs for a = b = c =
7
2

and d =
5
2

.

Remark 1. Actually, the inequality is true for a ≤ k, where

k ≈ 3.980572

is a root of the equation

16k3 − 256k2 + 1742k− 3887= 0.

Indeed, by squaring, the equation (*) becomes

(2a− 7)(16a3 − 256a2 + 1742a− 3887)≤ 0.

It is easy to show that his inequality holds for

a ≤
613
154
≈ 3.980519.

Indeed, we have

16a3 − 256a2 + 1742a− 3887= 16(a− 4)3 − 64(a− 4)2 + 3(154a− 613)

< 3(154a− 613)< 0.

(b) As shown at the preceding P 2.109, we have

d ≥
5
2

.

Write the required inequality as follows:

2ab ≥ 2cd + 7,

(a+ b)2 − (a2 + b2)≥ (c + d)2 − (c2 + d2) + 7,

(13− c − d)2 − (43− c2 − d2)≥ (c + d)2 − (c2 + d2) + 7,

2c2 − 26c + 2d2 − 26d + 119≥ 0.

If d =
5
2

, then

c ≤
a+ b+ c

3
=

13− d
3

=
7
2

,
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hence

2c2 − 26c + 2d2 − 26d + 119=
(7− 2c)(19− 2c)

2
≥ 0.

Consider further that d >
5
2

. From

(c − a)(c − b)≥ 0,

we get
c2 − (a+ b)c + ab ≥ 0,

that is equivalent to
c2 + (a+ b− c)2 − a2 − b2 ≥ 0,

c2 + (13− 2c − d)2 + c2 + d2 − 43≥ 0,

3c2 − 2(13− d)c + d2 − 13d + 63≥ 0,

c ≤ C , C =
13− d −

p

(4− d)(2d − 5)
3

.

Note that we cannot have 3c ≥ 13− d +
p

(4− d)(2d − 5) because this involves a
contradiction:

13− d = a+ b+ c ≥ 3c ≥ 13− d +
Æ

(4− d)(2d − 5)> 13− d.

From d ≤ c ≤ C , we get

Æ

(4− d)(2d − 5)≤ 13− 4d,

(7− 2d)(d − 3)≤ 0,

hence
d ≤ 3.

Since
2c2 − 26c − (2C2 − 26C) = 2(c − C)(c + C − 26)≥ 0,

it suffices to show that

2C2 − 26C + 2d2 − 26d + 119≥ 0,

which is equivalent to

2(2d + 13)
Æ

(4− d)(2d − 5)≥ (2d − 5)(71− 8d) .

This is true if

2(2d + 13)≥ (71− 8d)

√

√2d − 5
4− d

. (**)



506 Vasile Cîrtoaje

Since

2

√

√2d − 5
4− d

≤
2d − 5
4− d

+ 1=
d − 1
4− d

,

it is enough to show that

4(2d + 13)(4− d)≥ (71− 8d)(d − 1),

which is equivalent to the obvious inequality

31− 11d ≥ 0.

The equality occurs for a = b = c =
7
2

and d =
5
2

.

Remark 2. The inequality is true for d ≤ k, where

k ≈ 2.84647

is a root of the equation

16k3 − 272k2 + 1734k− 3101= 0.

Indeed, by squaring, the equation (**) becomes

16d3 − 272d2 + 1734d − 3101≤ 0.

It is easy to show that his inequality holds for

d ≤
1517
534

≈ 2.84082.

Indeed, we have

16d3 − 272d2 + 1734d − 3101= 16(d − 3)3 − 128(d − 3)2 + 534d − 1517

< 534d − 1517< 0.

P 2.111. Let a, b, c, d be nonnegative real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c + d = 13, a2 + b2 + c2 + d2 = 43.

Prove that
83
4
≤ ac + bd ≤

169
8

.

(Vasile C., 2021)
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Solution. As shown at P 2.109, we have

5
2
≤ a, b, c, d ≤ 4.

Since

2(ac+ bd) = (a+ c)2+(b+ d)2− (a2+ b2+ c2+ d2) = (a+ c)2+(13− a− c)2−43

= 2(a+ c)2 − 26(a+ c) + 126,

the left required inequality is equivalent to

�

a+ c −
13
2

�2

≥ 0 ,

and the right required inequality is equivalent to

8(a+ c)2 − 104(a+ c) + 335≥ 0.

Since

a+ c ≥
a+ b+ c + d

2
=

13
2

,

we only need yo show that

a+ c ≤
26+

p
6

4
.

From
(c − b)(c − d)≤ 0,

we get
c2 − (b+ d)b+ bd ≤ 0,

that is equivalent to
c2 + (b+ d − c)2 − b2 − d2 ≤ 0 ,

c2 + (13− a− 2c)2 + a2 + c2 − 43≤ 0 ,

3c2 − 2(13− a)c + a2 − 13a+ 63≤ 0 ,

c ≤ C , C =
13− a+

p

(4− a)(2a− 5)
3

.

So, it suffices to show that

a+ C ≤
26+

p
6

4
,

which is equivalent to

26+ 3
p

6− 8a ≥ 4
Æ

(4− a)(2a− 5),

(
p

6+ 2)(4− a) +
p

6− 2
2
(2a− 5)≥ 4

Æ

(4− a)(2a− 5) .



508 Vasile Cîrtoaje

Clearly, the last inequality is true (by the AM-GM inequality).

The left inequality is an equality for a+ c = b+ d =
13
2

and ac+ bc =
83
4

, while

the right inequality is an equality for a =
13+

p
6

4
, b = c =

13
4

and d =
13−

p
6

4
.

P 2.112. If a, b, c, d are positive real numbers such that

a+ b+ c + d = 4, a ≤ b ≤ 1≤ c ≤ d,

then

9
�

1
a
+

1
b
+

1
c
+

1
d

�

≥ 4+ 8(a2 + b2 + c2 + d2).

(Vasile C., 2021)

Solution. For fixed b and d, write the required inequality as f (c)≥ 0, where

f (c) = 9
�

1
a
+

1
b
+

1
c
+

1
d

�

− 4− 8(a2 + b2 + c2 + d2), a = 4− b− c − d.

We will show that
f (c)≥ f (1)≥ 0.

Since

a+ c ≤
a+ b

2
+

c + d
2
= 2,

a+ c
a2c2

≥
16

(a+ c)3
≥ 2,

we have

f ′c) =
9
a2
−

9
c2
+ 16(a− c) = 9(c − a)

�

a+ c
a2c2

−
16
9

�

≥ 9(c − a)
�a+ c

a2c2
− 2

�

≥ 0,

f (c) is increasing, hence f (c)≥ f (1). The inequality f (1)≥ 0 has the form

9
�

1
a
+

1
b
+

1
d

�

− 3− 8(a2 + b2 + d2)≥ 0,

where
a = 3− b− d.

We may write this inequality as g(a, b)≥ 0, where

g(a, b) = 9
�

1
a
+

1
b
+

1
d

�

− 3− 8(a2 + b2 + d2), d = 3− a− b.
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We will show that
g(a, b)≥ g(x , x)≥ 0,

where

x =
a+ b

2
, 0< x ≤ 1.

We have

g(a, b)− g(x , x) = 9
�

1
a
+

1
b
−

2
x

�

− 8(a2 + b2 − 2x2)

=
9(a− b)2

2abx
− 4(a− b)2 =

(a− b)2(9− 8abx)
2abx

≥ 0

and

g(x , x) = 9
�

2
x
+

1
d

�

− 3− 8(2x2 + d2), d = 3− 2x ,

g(x , x) = 9
�

2
x
+

1
3− 2x

�

− 3− 16x2 − 8(3− 2x)2

=
6(16x4 − 56x3 + 73x2 − 42x + 9)

x(3− 2x)
,

=
6(x − 1)2(4x − 3)2

x(3− 2x)
≥ 0.

The equality holds for a = b = c = d = 1, and also for a = b =
3
4

, c = 1, d =
3
2

.

P 2.113. If a, b, c, d are positive real numbers such that

a2 + b2 + c2 + d2 = 4, a ≤ b ≤ c ≤ d,

then
1
a
+ a+ b+ c + d ≥ 5.

(Vasile C., 2021)

Solution. Write the inequality in the homogeneous form

a2 + b2 + c2 + d2

4
+ a(a+ b+ c + d)≥ 5a

√

√a2 + b2 + c2 + d2

4
.

For fixed a, b, d, we need to prove that f (c)≥ 0, where

f (c) = 5a2 + b2 + c2 + d2 + 4a(b+ c + d)− 10a
p

a2 + b2 + c2 + d2, c ∈ [b, d].



510 Vasile Cîrtoaje

From

f ′(c) = 2c + 4a−
10ac

p
a2 + b2 + c2 + d2

≥ 4a+ 2c −
10ac

p

2(a2 + c2)

≥ 4
p

2ac − 5
p

ac = (4
p

2− 5)
p

ac > 0,

it follows that f (c) is increasing, hence f (c) ≥ f (b). The inequality f (b) ≥ 0 is
equivalent to

5a2 + 2b2 + d2 + 4a(2b+ d)− 10a
p

a2 + 2b2 + d2 ≥ 0.

For fixed a and d, we need to show that g(b)≥ 0, where

g(b) = 5a2 + 2b2 + d2 + 4a(2b+ d)− 10a
p

a2 + 2b2 + d2, b ∈ [a, d].

From

g ′(b) = 4b+ 8a−
20ab

p
a2 + 2b2 + d2

≥ 4b+ 8a−
20ab

p
a2 + 3b2

≥ 8
p

2ab−
20
p

ab
p

2
p

3
= 4

�

2
p

2−
5

p

2
p

3

�

p

ab > 0,

it follows that g(b) is increasing, hence g(b)≥ g(a), that is

g(b)≥ 15a2 + 4ad + d2 − 10a
p

3a2 + d2.

Thus, we only need to show that

15a2 + 4ad + d2 ≥ 10a
p

3a2 + d2.

Due to homogeneity, we may set a = 1, hence d ≥ 1. We need to show that

(15+ 4d + d2)2 ≥ 100(3+ d2),

which is equivalent to

d4 + 8d3 − 54d2 + 120d − 75≥ 0,

(d − 1)(d3 + 9d2 − 45d + 75)≥ 0.

This is true because

d3 + 9d2 − 45d + 75> 9d2 − 45d + 63= 9(d2 − 5d + 7)> 0.

The equality holds for a = b = c = d = 1.

Remark. Similarly, we can prove the following stronger inequality

3
4a
+ a+ b+ c + d ≥

19
4

.



Noncyclic Inequalities 511

P 2.114. If a, b, c, d are real numbers, then

6(a2 + b2 + c2 + d2) + (a+ b+ c + d)2 ≥ 12(ab+ bc + cd).

(Vasile C., 2005)

Solution. Let

E(a, b, c, d) = 6(a2 + b2 + c2 + d2) + (a+ b+ c + d)2 − 12(ab+ bc + cd).

First Solution. We have

E(x + a, x + b, x + c, x + d) =

= 4x2+4(2a− b−c+2d)x+7(a2+ b2+c2+d2)+2(ac+ad+ bd)−10(ab+ bc+cd)

= (2x+2a− b−c+2d)2+3(a2+2b2+2c2+d2−2ab+2ac−2ad−4bc+2bd−2cd)

= (2x + 2a− b− c + 2d)2 + 3(b− c)2 + 3(a− b+ c − d)2.

For x = 0, we get

E(a, b, c, d) = (2a− b− c + 2d)2 + 3(b− c)2 + 3(a− b+ c − d)2 ≥ 0.

The equality holds for 2a = b = c = 2d.

Second Solution. Let
x = a− b, y = c − d.

We have

E = 6[(a− b)2 + (c − d)2] + (a+ b+ c + d)2 − 12bc

= 6(x2 + y2) + [x + y + 2(b+ c)]2 − 12bc

= 3(x − y)2 + 3(x + y)2 + [x + y + 2(b+ c)]2 − 12bc

= 3(x − y)2 + 4(x + y)2 + 4(x + y)(b+ c) + (b+ c)2 + 3(b− c)2

= 3(x − y)2 + (2x + 2y + b+ c)2 + 3(b− c)2 ≥ 0.

P 2.115. If a, b, c, d are positive real numbers, then

1
a2 + ab

+
1

b2 + bc
+

1
c2 + cd

+
1

d2 + da
≥

4
ac + bd

.



512 Vasile Cîrtoaje

Solution. Write the inequality as follows:

∑

�

ac + bd
a2 + ab

+ 1
�

≥ 8,

∑ a(c + a) + b(d + a)
a(a+ b)

≥ 8,

∑ c + a
a+ b

+
∑ b(d + a)

a(a+ b)
≥ 8.

By the AM-GM inequality, we have

∑ b(d + a)
a(a+ b)

≥ 4 4

√

√
∏ b(d + a)

a(a+ b)
= 4.

Therefore, it suffices to prove the inequality
∑ c + a

a+ b
≥ 4,

which is equivalent to

(a+ c)
�

1
a+ b

+
1

c + d

�

+ (b+ d)
�

1
b+ c

+
1

d + a

�

≥ 4.

This inequality follows immediately from

1
a+ b

+
1

c + d
≥

4
(a+ b) + (c + d)

and
1

b+ c
+

1
d + a

≥
4

(b+ c) + (d + a)
.

The equality occurs for a = b = c = d.

P 2.116. If a, b, c, d are positive real numbers, then

1
a(1+ b)

+
1

b(1+ a)
+

1
c(1+ d)

+
1

d(1+ c)
≥

16

1+ 8
p

abcd
.

(Vasile C., 2007)

Solution. Let
x =

p

ab, y =
p

cd.

Write the inequality as

a+ b+ 2ab
ab(1+ a)(1+ b)

+
c + d + 2cd

cd(1+ c)(1+ d)
≥

16

1+ 8
p

abcd
.
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We claim that

x ≥ 1 =⇒
a+ b+ 2ab

ab(1+ a)(1+ b)
≥

1
ab

,

and

x ≤ 1 =⇒
a+ b+ 2ab

ab(1+ a)(1+ b)
≥

2
p

ab+ ab
.

The first inequality is equivalent to ab ≥ 1, while the second inequality is equivalent
to

�

1−
p

ab
��p

a−
p

b
�2
≥ 0.

Similarly, we have

y ≥ 1 =⇒
c + d + 2cd

cd(1+ d)(1+ d)
≥

1
cd

and

y ≤ 1 =⇒
c + d + 2cd

cd(1+ d)(1+ d)
≥

2
p

cd + cd
.

There are four cases to consider.

Case 1: x ≥ 1, y ≥ 1. It suffices to show that

1
x2
+

1
y2
≥

16
1+ 8x y

.

Indeed, we have
1
x2
+

1
y2
≥

2
x y
>

16
1+ 8x y

.

Case 2: x ≤ 1, y ≤ 1. It suffices to show that

2
x + x2

+
2

y + y2
≥

16
1+ 8x y

.

Putting s = x + y and p =px y , this inequality becomes

s2 + s− 2p2

p2(s+ p2 + 1)
≥

8
1+ 8p2

,

(1+ 8p2)s2 + s− 24p4 − 10p2 ≥ 0.

Since s ≥ 2p, we get

(1+ 8p2)s2 + s− 24p4 − 10p2 ≥ 4(1+ 8p2)p2 + 2p− 24p4 − 10p2

= 2p(p+ 1)(2p− 1)2 ≥ 0.

Case 3: x ≥ 1, y ≤ 1. It suffices to show that

1
x2
+

2
y + y2

≥
16

1+ 8x y
.
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This inequality is equivalent in succession to

(1+ 8x y)(2x2 + y2 + y)≥ 16x2 y(1+ y),

(1+ 8x y)(x − y)2 + 8x3 y + 8x y2 − 16x2 y + 2x y + x2 + y ≥ 0,

(1+ 8x y)(x − y)2 + 8x y(x − 1)2 + 8x y2 + x2 + y ≥ 6x y.

The last inequality is true since the AM-GM inequality yields

8x y2 + x2 + y ≥ 3 3
p

8x y2 · x2 · y = 3 3
p

8x3 y3 = 6x y.

Case 4: x ≤ 1, y ≥ 1. It suffices to show that

2
x + x2

+
1
y2
≥

16
1+ 8x y

,

which is equivalent to

(1+ 8x y)(x − y)2 + 8x y(y − 1)2 + 8x2 y + y2 + x ≥ 6x y.

As in the case 3, we have

8x2 y + y2 + x ≥ 3 3
p

8x2 y · y2 · x = 3 3
p

8x3 y3 = 6x y.

The proof is completed. The equality holds for a = b = c = d =
1
2

.

P 2.117. If a, b, c, d are positive real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c + d = 4,

then
ac + bd ≤ 2.

(Vasile C., 2019)

Solution. Write the inequality in the homogeneous form

(a+ b+ c + d)2 ≥ 8(ac + bd).

We have

(a+ b+ c + d)2 − 8(ac + bd) = a2 + 2(b+ d − 3c)a+ (b+ c + d)2 − 8bd

= (a+ b+ d − 3c)2 − (b+ d − 3c)2 + (b+ d + c)2 − 8bd

= (a+ b+ d − 3c)2 + 8(b− c)(c − d)≥ 0.

The equality holds for b = c = 1 and a+ d = 2.
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P 2.118. If a, b, c, d are positive real numbers such that a ≥ b ≥ c ≥ d and

a+ b+ c + d = 4,

then

2
�

1
b
+

1
d

�

≥ a2 + b2 + c2 + d2.

(Vasile C., 2019)

Solution. Write the inequality in the homogeneous form

(a+ b+ c + d)3
�

1
b
+

1
d

�

− 32(a2 + b2 + c2 + d2)≥ 0.

For fixed b, c, d, the inequality becomes f (a)≥ 0, with

f ′(a) = 3(a+ b+ c + d)2
�

1
b
+

1
d

�

− 64a.

For a+ b+ c + d = 4, when a = 4− b− c − d ≤ 4− b− 2d, we have

1
16

f ′(a)≥ 3
�

1
b
+

1
d

�

− 4(4− b− 2d)

=
�

3
b
+ 4b

�

+
�

3
d
+ 8d

�

− 16≥ 4(
p

3+
Æ

(6)− 4)> 0.

Therefore, f (a) is increasing, hence f (a) ≥ f (b). Similarly, for fixed a, b, d, the
inequality becomes g(c)≥ 0, with

g ′(c) = 3(a+ b+ c + d)2
�

1
b
+

1
d

�

− 64c ≥ f ′(a)> 0.

Therefore, g(c) is increasing, hence g(c) ≥ g(d). As a consequence, it suffices to
prove the original inequality for a = b and c = d. So, we only need to show that
b+ d = 2 involves

1
b
+

1
d
≥ b2 + d2,

which is equivalent to
(bd − 1)2 ≥ 0.

The equality holds for a = b = c = d = 1.

P 2.119. Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d and

ab+ bc + cd + da = 3.

Prove that
a3 bcd < 4.

(Vasile C., 2012)
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Solution. Write the desired inequality as

4(ab+ bc + cd + da)3 > 27a3 bcd,

4
�

b+ d +
bc + cd

a

�3

> 27bcd.

It suffices to show that
4(b+ d)3 ≥ 27bcd.

Indeed, by the AM-GM inequality, we have

(b+ d)3 =
�

b
2
+

b
2
+ d

�3

≥ 27
�

b
2

�2

d ≥
27bcd

4
.

P 2.120. Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d and

ab+ bc + cd + da = 6.

Prove that
acd ≤ 2.

(Vasile C., 2012)

Solution. Write the desired inequality in the homogeneous form

(a+ c)3(b+ d)3 ≥ 54a2c2d2.

Since b ≥ c, we only need to show that

(a+ c)3(c + d)3 ≥ 54a2c2d2.

By the AM-GM inequality, we have

(a+ c)3 =
�a

2
+

a
2
+ c
�3
≥ 27

�a
2

��a
2

�

c =
27
4

a2c.

Thus, it suffices to show that

(c + d)3 ≥ 8cd2.

Indeed,
(c + d)3 − 8cd2 = (c − d)(c2 + 4cd − d2)≥ 0.

The equality holds for a = 2 and b = c = d = 1.
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P 2.121. Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d and

ab+ bc + cd + da = 9.

Prove that
abd ≤ 4.

(Vasile C., 2012)

Solution. Write the desired inequality in the homogeneous form

(a+ c)3(b+ d)3 ≥
729
16

a2 b2d2.

Since c ≥ d, we only need to show that

(a+ d)3(b+ d)3 ≥
729
16

a2 b2d2.

By the AM-GM inequality, we have

(a+ d)3 =
�a

2
+

a
2
+ d

�3
≥ 27

�a
2

��a
2

�

d =
27
4

a2d

and, similarly,

(b+ d)3 ≥
27
4

b2d

Multiplying these inequalities, the desired inequality holds. The equality occurs for
a = b = 2 and c = d = 1.

P 2.122. Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d and

a2 + b2 + c2 + d2 = 10.

Prove that
2b+ 4d ≤ 3c + 5.

(Vasile C., 2012)

Solution. Write the desired inequality in the homogeneous form

2b− 3c + 4d ≤

√

√5
2
(a2 + b2 + c2 + d2).

It is true if
5(a2 + b2 + c2 + d2)≥ 2(2b− 3c + 4d)2.
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Since a ≥ b, it remains to show that

5(2b2 + c2 + d2)≥ 2(2b− 3c + 4d)2,

which is equivalent to

2b2 + 24bc + 48cd ≥ 13c2 + 27d2 + 32bd.

Since d2 ≤ cd, it suffices to prove that

2b2 + 24bc + 48cd ≥ 13c2 + 27cd + 32bd,

which is equivalent to

2b2 + 24bc ≥ 13c2 + (32b− 21c)d.

Since 32b− 21c > 0 and c ≥ d, it is enough to show that

2b2 + 24bc ≥ 13c2 + (32b− 21c)c.

This reduces to the obvious inequality

2(b− 2c)2 ≥ 0.

The equality holds for a = b = 2 and c = d = 1.

P 2.123. Let a, b, c, d be positive real numbers such that a ≤ b ≤ c ≤ d and

abcd = 1.

Prove that

4+
a
b
+

b
c
+

c
d
+

d
a
≥ 2(a+ b)(c + d).

Solution. Since
b
c
+

d
a
−

b
a
−

d
c
=
(d − b)(c − a)

ca
≥ 0,

we only need to prove that

4+
a
b
+

b
a
+

c
d
+

d
c
≥ 2(a+ b)(c + d),

which is equivalent to

(a+ b)2

ab
+
(c + d)2

cd
≥ 2(a+ b)(c + d),

�

a+ b
p

ab
−

c + d
p

cd

�2

≥ 0.

The proof is completed. The equality holds for a = b = c = d = 1.
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P 2.124. Let a, b, c, d be positive real numbers such that a ≥ b ≥ c ≥ d and

3(a2 + b2 + c2 + d2) = (a+ b+ c + d)2.

Prove that

(a)
a+ d
b+ c

≤ 2;

(b)
a+ c
b+ d

≤
7+ 2

p
6

5
;

(c)
a+ c
c + d

≤
3+
p

5
2

.

(Vasile C., 2010)

Solution. (a) Since

(a+ d)(b+ c)− 2(ad + bc) = (a− b)(c − d) + (a− c)(b− d)≥ 0,

we have

a2 + b2 + c2 + d2 = (a+ d)2 + (b+ c)2 − 2(ad + bc)

≥ (a+ d)2 + (b+ c)2 − (a+ d)(b+ c),

hence
1
3
(a+ b+ c + d)2 ≥ (a+ d)2 + (b+ c)2 − (a+ d)(b+ c),

�

a+ d
b+ c

− 2
��

a+ d
b+ c

−
1
2

�

≤ 0,

from where the desired result follows. The equality holds for a/3= b = c = d.

(b) From (a− d)(b− c)≥ 0 and the AM-GM inequality, we have

2(ac + bc)≤ (a+ d)(b+ c)≤
(a+ b+ c + d)2

4
,

hence

a2 + b2 + c2 + d2 = (a+ c)2 + (b+ d)2 − 2(ac + bd)

≥ (a+ c)2 + (b+ d)2 −
(a+ b+ c + d)2

4
,

1
3
(a+ b+ c + d)2 ≥ (a+ c)2 + (b+ d)2 −

(a+ b+ c + d)2

4
,

�

a+ c
b+ d

−
7+ 2

p
6

2

��

a+ c
b+ d

−
7− 2

p
6

2

�

≤ 0,
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from where the desired result follows. The equality holds for

(3−
p

6)a = b = c = (3+
p

6)d.

(c) Writing the hypothesis 3(a2 + b2 + c2 + d2) = (a+ b+ c + d)2 as

b2 − (a+ c + d)b+ a2 + c2 + d2 − ac − cd − da = 0,

(2b− a− c − d)2 = 3(2ac + 2cd + 2da− a2 − c2 − d2),

it follows that
2ac + 2cd + 2da ≥ a2 + c2 + d2,

a2 − 2(c + d)a+ (c − d)2 ≤ 0,

a ≤ c + d + 2
p

cd.

Thus, it suffices to prove that

2c + d + 2
p

cd
c + d

≤
3+
p

5
2

,

which is equivalent to

(
p

5− 1)c + (
p

5+ 1)d ≥ 4
p

cd.

This inequality follows immediately from the AM-GM inequality. The equality holds
for

a

3+
p

5
=

b
4
=

c
2
=

d

3−
p

5
.

P 2.125. Let a, b, c, d be nonnegative real numbers such that a ≥ b ≥ c ≥ d and

2(a2 + b2 + c2 + d2) = (a+ b+ c + d)2.

Prove that
a ≥ b+ 3c + (2

p
3− 1)d.

(Vasile C., 2010)

First Solution. For c = d = 0, the desired inequality is an equality. Assume further
that c > 0. From the hypothesis 2(a2 + b2 + c2 + d2) = (a+ b+ c + d)2, we get

a = b+ c + d ± 2
p

bc + cd + d b.

It is not possible to have

a = b+ c + d − 2
p

bc + cd + d b,
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because this equality and a ≥ b involve

c + d ≥ 2
p

bc + cd + d b,

(c − d)2 ≥ 4b(c + d),

(c − d)2 ≥ 4c(c + d),

d2 ≥ 3c(c + 2d),

which is not true. Thus, we have

a = b+ c + d + 2
p

bc + cd + d b.

Using this equality, we can rewrite the desired inequality as

b+ c + d − 2
p

bc + cd + d b ≥ b+ 3c + (2
p

3− 1)d,
Æ

b(c + d) + cd ≥ c + (
p

3− 1)d.

Since b ≥ c, it suffices to show that
Æ

c(c + d) + cd ≥ c + (
p

3− 1)d.

By squaring, we get the obvious inequality d(c − d) ≥ 0. The equality holds for

a = b and c = d = 0, for
a
4
= b = c and d = 0, and for

a

3+ 2
p

3
= b = c = d.

Second Solution (by Vo Quoc Ba Can). Write the hypothesis 2(a2+ b2+ c2+ d2) =
(a+ b+ c + d)2 as

(a− b)2 + (c − d)2 ≥ 2(a+ b)(c + d).

Since
a+ b ≥ (a− b) + 2c,

we get
(a− b)2 + (c − d)2 ≥ 2[(a− b) + 2c](c + d),

which is equivalent to

(a− b)2 − 2(c + d)(a− b)− 3c2 − 6cd + d2 ≥ 0.

From this, we get
a− b ≥ c + d + 2

p

c2 + 2cd.

Thus, the desired inequality

a− b ≥ 3c + (2
p

3− 1)d

is true if
c + d + 2

p

c2 + 2cd ≥ 3c + (2
p

3− 1)d,

that is,
p

c2 + 2cd ≥ c + (
p

3− 1)d.

By squaring, we get the obvious inequality d(c − d)≥ 0.
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P 2.126. If a ≥ b ≥ c ≥ d ≥ 0, then

(a) a+ b+ c + d − 4
4pabcd ≥

3
2

�p
b− 2

p
c +
p

d
�2

;

(b) a+ b+ c + d − 4
4pabcd ≥

2
9

�

3
p

b− 2
p

c −
p

d
�2

;

(c) a+ b+ c + d − 4
4pabcd ≥

4
19

�

3
p

b−
p

c − 2
p

d
�2

;

(d) a+ b+ c + d − 4
4pabcd ≥

3
8

�p
b− 3

p
c + 2

p
d
�2

;

(e) a+ b+ c + d − 4
4pabcd ≥

1
2

�

2
p

b− 3
p

c +
p

d
�2

;

(f) a+ b+ c + d − 4
4pabcd ≥

1
6

�

2
p

b+
p

c − 3
p

d
�2

.

(Vasile C., 2010)

Solution. First, we show that

a− 4
4
p

abcd ≥ b− 4
4
p

b2cd.

Write this inequality as

a− b ≥ 4
4
p

bcd
�

4pa−
4
p

b
�

,

and prove then the following sharper inequality

a− b ≥ 4
4
p

b3
�

4pa−
4
p

b
�

.

Indeed,

a− b− 4
4
p

b3
�

4pa−
4
p

b
�

=
�

4pa−
4
p

b
��

4
p

a3 +
4
p

a2 b+
4
p

ab2 − 3
4
p

b3
�

≥ 0.

Thus, we have

a+ b+ c + d − 4
4
p

abcd ≥ 2b+ c + d − 4
4
p

b2cd,

which is equivalent to

a+ b+ c + d − 4
4
p

abcd ≥ 2
�p

b−
4
p

cd
�2
+
�p

c −
p

d
�2

.

Since
p

b−
4
p

cd ≥
p

b−
p

c +
p

d
2

≥ 0,

we have

a+ b+ c + d − 4
4
p

abcd ≥
1
2

�

2
p

b−
p

c −
p

d
�2
+
�p

c −
p

d
�2

.
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Using the substitution

x =
p

b−
p

c, y =
p

c −
p

d, x , y ≥ 0,

we get

a+ b+ c + d − 4
4
p

abcd ≥
1
2
(2x + y)2 + y2,

that is
a+ b+ c + d − 4

4
p

abcd ≥
1
2
(4x2 + 4x y + 3y2). (*)

The inequality (*) is an equality for a = b and c = d.

(a) According to (*), it suffices to show that

4x2 + 4x y + 3y2 ≥ 3(x − y)2,

which is equivalent to
x(x + 10y)≥ 0.

The equality holds for a = b = c = d.

(b) According to (*), it suffices to show that

9(4x2 + 4x y + 3y2)≥ 4(3x + y)2,

which is equivalent to
y(12x + 23y)≥ 0.

The equality holds for a = b and c = d.

(c) According to (*), it suffices to show that

19(4x2 + 4x y + 3y2)≥ 8(3x + 2y)2,

which is equivalent to
(2x − 5y)2 ≥ 0.

The equality holds for a = b = c = d.

(d) According to (*), it suffices to show that

4(4x2 + 4x y + 3y2)≥ 3(x − 2y)2,

which is equivalent to
x(13x + 28y)≥ 0.

The equality holds for a = b = c = d.

(e) According to (*), it suffices to show that

4x2 + 4x y + 3y2 ≥ (2x − y)2,
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which is equivalent to
y(4x + y)≥ 0.

The equality holds for a = b and c = d.

(f) According to (*), it suffices to show that

3(4x2 + 4x y + 3y2)≥ (2x + 3y)2,

which is equivalent to
x2 ≥ 0.

The equality holds for a = b = c = d.

P 2.127. If a ≥ b ≥ c ≥ d ≥ 0, then

(a) a+ b+ c + d − 4
4pabcd ≥

�p
a−
p

d
�2

;

(b) a+ b+ c + d − 4
4pabcd ≥ 2

�p
b−
p

c
�2

;

(c) a+ b+ c + d − 4
4pabcd ≥

4
3

�p
b−
p

d
�2

;

(d) a+ b+ c + d − 4
4pabcd ≥

3
2

�p
c −
p

d
�2

.

(Vasile C., 2010)

Solution. (a) Write the inequality as

b+ c + 2
p

ad ≥ 4
4
p

abcd,

which follows immediately from the AM-GM inequality. The equality holds for

b = c =
p

ad.

(b) First Solution. Since

a+ b+ c + d − 4
4
p

abcd ≥ 2
p

ab+ 2
p

cd − 4
4
p

abcd = 2
�

4
p

ab−
4
p

cd
�2

,

we only need to show that

4
p

ab−
4
p

cd ≥
p

b−
p

c,

which is equivalent to the obvious inequality

4
p

b
�

4pa−
4
p

b
�

+ 4pc
�

4pc −
4
p

d
�

≥ 0.
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The equality holds for a = b and c = d.

Second Solution. According to the inequality (*) from the proof of the preceding
P 2.126, it suffices to show that

4x2 + 4x y + 3y2 ≥ 4x2,

which is obvious.

(c) According to the inequality (*) from the proof of the preceding P 2.126, it
suffices to show that

3(4x2 + 4x y + 3y2)≥ 8(x + y)2,

which is equivalent to
(2x − y)2 ≥ 0.

The equality holds for a = b = c = d.

(d) According to the inequality (*) from the proof of the preceding P 2.126, it
suffices to show that

4x2 + 4x y + 3y2 ≥ 3y2,

which is obvious. The equality holds for a = b = c = d.

P 2.128. If a ≥ b ≥ c ≥ d ≥ e ≥ 0, then

a+ b+ c + d + e− 5
5
p

abcde ≥ 2
�p

b−
p

d
�2

.

(Vasile C., 2010)

Solution. From the AM-GM inequality, we have

c + 4
4
p

abde ≥ 5
5
p

abcde,

which can be rewritten as

c − 5
5
p

abcde ≥ −4
4
p

abde.

Thus, it suffices to show that

a+ b+ d + e− 4
4
p

abde ≥ 2
�p

b−
p

d
�2

.

Since

a+ b+ d + e− 4
4
p

abde ≥ 2
p

ab+ 2
p

de− 4
4
p

abde = 2
�

4
p

ab−
4
p

de
�2

,
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we only need to prove that

4
p

ab−
4
p

de ≥
p

b−
p

d,

which is equivalent to the obvious inequality

4
p

b
�

4pa−
4
p

b
�

+
4
p

d
�

4
p

d − 4pe
�

≥ 0.

The equality holds for
a = b, d = e, c2 = ad.

P 2.129. If a, b, c, d, e are real numbers, then

ab+ bc + cd + de
a2 + b2 + c2 + d2 + e2

≤
p

3
2

.

Solution. Using the AM-GM inequality, we have

a2 + b2 + c2 + d2 + e2 =
�

a2 +
1
3

b2
�

+
�

2
3

b2 +
1
2

c2
�

+
�

1
2

c2 +
2
3

d2
�

+
�

1
3

d2 + e2
�

≥ 2

√

√

a2 ·
1
3

b2 + 2

√

√2
3

b2 ·
1
2

c2 + 2

√

√1
2

c2 ·
2
3

d2 + 2

√

√1
3

d2 · e2

≥
2
p

3
(ab+ bc + cd + da).

The equality holds for

a =
b
p

3
=

c
2
=

d
p

3
= e.

Remark. The following more general inequality holds

a1a2 + a2a3 + · · ·+ an−1an

a2
1 + a2

2 + · · ·+ a2
n

≤ cos
π

n+ 1
,

with equality for
a1

sin π
n+1

=
a2

sin 2π
n+1

= · · ·=
an

sin nπ
n+1

.

Denoting

ci =
sin (i+1)π

n+1

2 sin iπ
n+1

, i = 1, 2, · · · , n− 1,



Noncyclic Inequalities 527

we have

c1 = cos
π

n+ 1
, 4cn−1 =

1
cos π

n+1

,

1
4ci
+ ci+1 = cos

π

n+ 1
, i = 1,2, · · · , n− 2,

hence
(a2

1 + a2
2 + · · ·+ a2

n) cos
π

n+ 1
=

= c1a2
1 +

�

1
4c1
+ c2

�

a2
2 + · · ·+

�

1
4cn−2

+ cn−1

�

a2
n−1 +

1
4cn−1

a2
n

=
�

c1a2
1 +

1
4c1

a2
2

�

+
�

c2a2
2 +

1
4c2

a2
3

�

+ · · ·+
�

cn−1a2
n−1 +

1
4cn−1

a2
n

�

≥ 2

√

√

c1a2
1 ·

1
4c1

a2
2 + 2

√

√

c2a2
2 ·

1
4c2

a2
3 + · · ·+ 2

√

√

cn−1a2
n−1 ·

1
4cn−1

a2
n

≥ a1a2 + a2a3 + · · ·+ an−1an.

P 2.130. If a, b, c, d, e are positive real numbers, then

a2 b2

bd + ce
+

b2c2

cd + ae
+

c2a2

ad + be
≥

3abc
d + e

.

Solution. Using the Cauchy-Schwarz inequality

a2 b2

bd + ce
+

b2c2

cd + ae
+

c2a2

ad + be
≥

(ab+ bc + ca)2

(bd + ce) + (cd + ae) + (ad + be)
,

it suffices to show that

(ab+ bc + ca)2

(bd + ce) + (cd + ae) + (ad + be)
≥

3abc
d + e

,

which is equivalent to
(ab+ bc + ca)2

a+ b+ c
≥ 3abc,

a2(b− c)2 + b2(c − a)2 + c2(a− b)2 ≥ 0.

The equality holds for a = b = c.
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P 2.131. If a, b, c, d, e, f are nonnegative real numbers such that

a ≥ b ≥ c ≥ d ≥ e ≥ f ,

then
(a+ b+ c + d + e+ f )2 ≥ 8(ac + bd + ce+ d f ).

(Vasile C., 2005)

First Solution. Let us denote

x = b+ c + d + e+ f ,

and write the inequality as follows:

(a+ x)2 − 8(ac + bd + ce+ d f )≥ 0,

(a+ x − 4c)2 + 8(a+ x)c − 16c2 − 8(ac + bd + ce+ d f )≥ 0,

(a+ x − 4c)2 − 8[c2 − (b+ d + f )c + d(b+ f )]≥ 0,

(a+ x − 4c)2 − 8(c − d)(c − b− f )≥ 0,

(a+ x − 4c)2 + 8(c − d)(b− c + f )≥ 0.

The last inequality is clearly true. The equality holds for c = d = (a+ b+ e+ f )/2,
and for c = b+ f = (a+ d + e)/2; that is, for

a = b = c = d, e = f = 0,

and for

a ≥ d + e, b = c =
a+ d + e

2
, f = 0.

P 2.132. If a ≥ b ≥ c ≥ d ≥ e ≥ f ≥ 0, then

a+ b+ c + d + e+ f − 6 6
p

abcde f ≥ 2
�p

b−
p

e
�2

.

(Vasile C., 2010)

Solution. Since

a+ b ≥ 2
p

ab, c + d ≥ 2
p

cd, e+ f ≥ 2
p

e f ,

it suffices to show that
p

ab+
p

cd +
p

e f − 3 6
p

abcde f ≥
�p

b−
p

e
�2

.
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By the AM-GM inequality, we have

p

cd + 2 4
p

abe f ≥ 3 6
p

abcde f ,

which can be rewritten as
p

cd − 3 6
p

abcde f ≥ −2 4
p

abe f .

Thus, it suffices to show that

p

ab+
p

e f − 2 4
p

abe f ≥
�p

b−
p

e
�2

.

Since
p

ab+
p

e f − 2 4
p

abe f =
�

4
p

ab− 4
p

e f
�2

,

we only need to prove that

4
p

ab− 4
p

e f ≥
p

b−
p

e,

which is equivalent to the obvious inequality

4
p

b
�

4pa−
4
p

b
�

+ 4pe
�

4pe− 4
p

f
�

≥ 0.

The equality holds for

a = b, c = d, e = f , c2 = ae.

P 2.133. Let a, b, c and x , y, z be positive real numbers such that

x + y + z = a+ b+ c.

Prove that
ax2 + b y2 + cz2 + x yz ≥ 4abc.

(Vasile C., 1989)

First Solution. Write the inequality as E ≥ 0, where

E = ax2 + b y2 + cz2 + x yz − 4abc.

Among the numbers

a−
y + z

2
, b−

z + x
2

, c −
x + y

2
,
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there are two of them with the same sign; let

pq ≥ 0,

where
p = b−

z + x
2

, q = c −
x + y

2
.

We have

b = p+
x + z

2
, c = q+

x + y
2

, a = x + y + z − b− c =
y + z

2
− p− q.

Then,

E =
� y + z

2
− p− q

�

x2 +
�

p+
x + z

2

�

y2 +
�

q+
x + y

2

�

z2

+ x yz − 4
� y + z

2
− p− q

��

p+
x + z

2

��

q+
x + y

2

�

=4pq(p+ q) + 2p2(x + y) + 2q2(x + z) + 4pqx

=4q2
�

p+
x + z

2

�

+ 4p2
�

q+
x + y

2

�

+ 4pqx

=4(q2 b+ p2c + pqx)≥ 0.

The equality holds for a =
y + z

2
, b =

z + x
2

, c =
x + y

2
.

Second Solution. Consider the following two cases.

Case 1: x2 ≥ 4bc. We have

ax2 + b y2 + cz2 + x yz − 4abc > ax2 − 4abc ≥ 0.

Case 2: x2 ≤ 4bc. Let
u= x + y + z = a+ b+ c.

Substituting
z = u− x − y, a = u− b− c,

the inequality can be restated as

Au2 + Bu+ C ≥ 0,

where
A= c,

B = (x2 − 4bc)− 2c(x + y) + x y,

C = −(b+ c)(x2 − 4bc) + b y2 + c(x + y)2 − x y(x + y).

Since the quadratic function Au2 + Bu+ C has the discriminant

D = (x2 − 4bc)(2c − x − y)2 ≤ 0,

the conclusion follows.
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P 2.134. Let a, b, c and x , y, z be positive real numbers such that

x + y + z = a+ b+ c.

Prove that
x(3x + a)

bc
+

y(3y + b)
ca

+
z(3z + c)

ab
≥ 12.

(Vasile C., 1990)

Solution. Write the inequality as

ax2 + b y2 + cz2 +
1
3
(a2 x + b2 y + c2z)≥ 4abc.

Applying the Cauchy-Schwarz inequality, we have

a2 x + b2 y + c2z ≥
(a+ b+ c)2

1
x
+

1
y
+

1
z

=
x yz(x + y + z)2

x y + yz + zx
≥ 3x yz.

Therefore, it suffices to show that

ax2 + b y2 + cz2 + x yz ≥ 4abc,

which is just the inequality in the preceding P 2.133. The equality holds for

x = y = z = a = b = c.

P 2.135. Let a, b, c be given positive numbers. Find the minimum value F(a, b, c) of

E(x , y, z) =
ax

y + z
+

b y
z + x

+
cz

x + y
,

where x , y, z are nonnegative real numbers, no two of which are zero.

(Vasile C., 2006)

Solution. Assume that
a =max{a, b, c}.

There are two cases to consider.

Case 1:
p

a <
p

b+
p

c. Using the Cauchy-Schwarz inequality, we get

E =
∑ a(x + y + z)− a(y + z)

y + z
= (x + y + z)

∑ a
y + z

−
∑

a

≥ (x + y + z)

�∑p
a
�2

∑

(y + z)
−
∑

a =
p

ab+
p

bc +
p

ca−
a+ b+ c

2
.
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The equality holds for
y + z
p

a
=

z + x
p

b
=

x + y
p

c
;

that is, for
x

p
b+
p

c −
p

a
=

y
p

c +
p

a−
p

b
=

z
p

a+
p

b−
p

c
.

Case 2:
p

a ≥
p

b+
p

c. Let us denote

A= (
p

b+
p

c)2,

X =
y + z

2
, Y =

z + x
2

, Z =
x + y

2
,

hence
x = Y + Z − X , y = Z + X − Y, z = X + Y − Z .

We have

E ≥
Ax

y + z
+

b y
z + x

+
cz

x + y

=
A(Y + Z − X )

2X
+

b(Z + X − Y )
2Y

+
c(X + Y − Z)

2Z

=
1
2

�

A
Y
X
+ b

X
Y

�

+
1
2

�

b
Z
Y
+ c

Y
Z

�

+
1
2

�

c
X
Z
+ A

Z
X

�

− b− c −
p

bc

≥
p

Ab+
p

bc +
p

cA− b− c −
p

bc = 2
p

bc.

The equality holds for x = 0 and
y
z
=
s

c
b

. Therefore, for a = max{a, b, c}, we

have

F(a, b, c) =











p
ab+

p
bc +

p
ca−

a+ b+ c
2

,
p

a <
p

b+
p

c

2
p

bc,
p

a ≥
p

b+
p

c
.

P 2.136. Let a, b, c and x , y, z be real numbers.

(a) If ab+ bc + ca > 0, then

[(b+ c)x + (c + a)y + (a+ b)z]2 ≥ 4(ab+ bc + ca)(x y + yz + zx);

(b) If a, b, c ≥ 0, then

[(b+ c)x + (c + a)y + (a+ b)z]2 ≥ 4(a+ b+ c)(a yz + bzx + cx y).

(Vasile C., 1995)



Noncyclic Inequalities 533

Solution. (a) First Solution. The condition ab + bc + ca > 0 yields b + c 6= 0.
Indeed, if b + c = 0, then ab + bc + ca = −b2 ≤ 0, which is false. The desired
inequality is equivalent to D ≥ 0, where D is the discriminant of the quadratic
function

f (t) = (at − x)(bt − y) + (bt − y)(c t − z) + (c t − z)(at − x).

For the sake of contradiction, assume that D < 0 for some real numbers a, b, c and
x , y, z. Since the coefficient of t2 is positive, we have f (t) > 0 for all real t. This
is not true, because for

(bt − y) + (c t − z) = 0,

we get

t =
y + z
b+ c

and

f
� y + z

b+ c

�

= −
�

bz − c y
b+ c

�2

≤ 0.

For pqr 6= 0, the equality holds when

x
a
=

y
b
=

z
c

.

Second Solution. If x y + yz + zx ≤ 0, then the inequality is obviously true. Oth-
erwise, due to homogeneity in x , y, z, we may assume that

x + y + z = a+ b+ c.

Then, by the AM-GM inequality, we have

2
Æ

(ab+ bc + ca)(x y + yz + zx)≤ (ab+ bc + ca) + (x y + yz + zx)

=
(a+ b+ c)2 − a2 − b2 − c2

2
+
(x + y + z)2 − x2 − y2 − z2

2

= (a+ b+ c)(x + y + z)−
a2 + x2

2
−

b2 + y2

2
−

c2 + z2

2

≤ (a+ b+ c)(x + y + z)− ax − b y − cz = (b+ c)x + (c + a)y + (a+ b)z.

(b) Assume that x is between y and z, that is,

(x − y)(x − z)≤ 0.

Consider the non-trivial case
a+ b+ c > 0.
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The desired inequality is equivalent to D ≥ 0, where D is the discriminant of the
quadratic function

f (t) = a(t − y)(t − z) + b(t − z)(t − x) + c(t − x)(t − y).

For the sake of contradiction, assume that D < 0 for some a, b, c ≥ 0 and real
numbers x , y, z. Since the coefficient of t2 is positive, we have f (t)> 0 for all real
t. This is false, because

f (x) = a(x − y)(x − z)≤ 0.

The equality holds for x = y = z, and also for a = 0 and x =
c y + bz

c + b
, or b = 0

and y =
az + cx

a+ c
, or c = 0 and z =

bx + a y
b+ a

.

Remark 1. For x = b, y = c, z = a, from the inequality in (b), we get the following
cyclic inequality:

(a2 + b2 + c2 + ab+ bc + ca)2 ≥ 4(a+ b+ c)(ab2 + bc2 + ca2),

where a, b, c ≥ 0. The equality holds for a = b = c, and also for a = 0 and
b
c
=
p

5− 1
2

(or any cyclic permutation). Notice that this inequality is equivalent
to

a4 + b4 + c4 − a2 b2 − b2c2 − c2a2 ≥ 2(ab3 + bc3 + ca3 − a3 b− b3c − c3a),

which is the inequality in P 3.95 from Volume 1.

Remark 2. For x = 1/c, y = 1/a, z = 1/b, from the inequality in (b), we get the
following cyclic inequality:

�

a
b
+

b
c
+

c
a
+ 3

�2

≥ 4(a+ b+ c)
�

1
a
+

1
b
+

1
c

�

,

which is the inequality in P 1.49-(c).

Remark 3. For a = x(x − y + z), b = y(y − z+ x), c = z(z− x + y), the inequality
in (b) turns into

(x2 y + y2z + z2 x)2 ≥ x yz(x + y + z)(x2 + y2 + z2).

where x , y, z are the lengths of the sides of a triangle (see P 1.187).
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P 2.137. Let a, b, c and x , y, z be positive real numbers such that

a
yz
+

b
zx
+

c
x y
= 1.

Prove that

(a) x + y + z ≥
Æ

4(a+ b+ c +
p

ab+
p

bc +
p

ca ) + 3
3pabc;

(b) x + y + z >
p

a+ b+
p

b+ c +
p

c + a.

Solution. (a) Write the desired inequality in the form
�

a
yz
+

b
zx
+

c
x y

�

(x + y + z)2 ≥ 4
�

a+ b+ c +
p

ab+
p

bc +
p

ca
�

+ 3
3
p

abc.

We have
�

a
yz
+

b
zx
+

c
x y

�

(x2 + y2 + z2) =
∑ ax2

yz
+
∑ a(y2 + z2)

yz
.

In addition, by the AM-GM inequality, we get
∑ ax2

yz
≥ 3

3
p

abc,

∑ a(y2 + z2)
yz

≥ 2(a+ b+ c).

Therefore,
�

a
yz
+

b
zx
+

c
x y

�

(x2 + y2 + z2)≥ 3
3
p

abc + 2(a+ b+ c).

Adding this inequality to the Cauchy-Schwarz inequality

2
�

a
yz
+

b
zx
+

c
x y

�

(yz + zx + x y)≥ 2
�p

a+
p

a+
p

c
�2

yields the desired inequality. The equality holds for

x = y = z =
p

3a =
p

3b =
p

3c.

(b) According to the inequality in (a), it suffices to show that

4
�

a+ b+ c +
p

ab+
p

bc +
p

ca
�

≥
�p

a+ b+
p

b+ c +
p

c + a
�2

.

This inequality is equivalent to
�p

a+
p

b+
p

c
�2
≥
Æ

(a+ b)(b+ c) +
Æ

(b+ c)(c + a) +
Æ

(c + a)(a+ b) ,

which follows immediately from the inequality P 2.24 in Volume 2.
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P 2.138. If a, b, c and x , y, z are nonnegative real numbers, then

2
(b+ c)(y + z)

+
2

(c + a)(z + x)
+

2
(a+ b)(x + y)

≥
9

(b+ c)x + (c + a)y + (a+ b)z
.

(Ji Chen and Vasile Cîrtoaje, 2010)

Solution. Since

(b+ c)x + (c + a)y + (a+ b)z = a(y + z) + (b+ c)x + bz + c y,

we can write the inequality as

∑ 2a(y + z) + 2(b+ c)x + 2(bz + c y)
(b+ c)(y + z)

≥ 9,

∑ 2a
b+ c

+
∑ 2x

y + z
≥ 9−

∑ 2(bz + c y)
(b+ c)(y + z)

,

∑ 2a
b+ c

+
∑ 2x

y + z
≥ 6+

∑

�

1−
2(bz + c y)
(b+ c)(y + z)

�

,

∑ 2a
b+ c

+
∑ 2x

y + z
≥ 6+

∑ (b− c)(y − z)
(b+ c)(y + z)

.

Since
∑ (b− c)(y − z)
(b+ c)(y + z)

≤
1
2

∑

�

b− c
b+ c

�2

+
1
2

∑

�

y − z
y + z

�2

,

it suffices to show that

∑ 2a
b+ c

+
∑ 2x

y + z
≥ 6+

1
2

∑

�

b− c
b+ c

�2

+
1
2

∑

�

y − z
y + z

�2

,

which is equivalent to

∑ 2a
b+ c

+
∑ 2x

y + z
≥ 9−

∑ 2bc
(b+ c)2

−
∑ 2yz
(y + z)2

,

∑

�

2a
b+ c

+
2bc
(b+ c)2

�

+
∑

�

2x
y + z

+
2yz
(y + z)2

�

≥ 9,

2(ab+ bc + ca)
∑ 1
(b+ c)2

+ 2(x y + yz + zx)
∑ 1
(y + z)2

≥ 9.

This inequality can be obtained by summing the known inequalities (see P 1.72 in
Volume 2, case k = 2)

4(ab+ bc + ca)
∑ 1
(b+ c)2

≥ 9,

4(x y + yz + zx)
∑ 1
(y + z)2

≥ 9.
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The equality holds for a = b = c and x = y = z, and also for a = x = 0, b = c and
y = z (or any cyclic permutation).

Remark. For x = a, y = b and z = c, we get the known inequality (Iran 1996):

1
(a+ b)2

+
1

(a+ c)2
+

1
(b+ c)2

≥
9

4(ab+ bc + ca)
.

P 2.139. Let a, b, c be the lengths of the sides of a triangle. If x , y, z are real numbers,
then

(ya2 + zb2 + xc2)(za2 + x b2 + yc2)≥ (x y + yz + zx)(a2 b2 + b2c2 + c2a2).

(Vasile C., 2001)

First Solution. Write the inequality as follows:

x2 b2c2 + y2c2a2 + z2a2 b2 ≥
∑

yza2(b2 + c2 − a2),

x2 b2c2 + y2c2a2 + z2a2 b2 ≥ 2abc
∑

yza cos A,

x2

a2
+

y2

b2
+

z2

c2
≥

2yz cos A
bc

+
2zx cos B

ca
+

2x y cos C
ab

,

� x
a
−

y
b

cos C −
z
c

cos B
�2
+
� y

b
sin C −

z
c

sin B
�2
≥ 0.

The equality holds for
x
a2
=

y
b2
=

z
c2

.

Second Solution. Write the inequality as

b2c2 x2 − Bx + C ≥ 0,

where
B = c2(a2 + b2 − c2)y + b2(a2 − b2 + c2)z,

C = a2[c2 y2 − (b2 + c2 − a2)yz + b2z2].

It suffices to show that
B2 − 4b2c2C ≤ 0,

which is equivalent to
A(c2 y − b2z)2 ≥ 0,

where
A= 2a2 b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4.
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This inequality is true since

A= (a+ b+ c)(a+ b− c)(b+ c − a)(c + a− b)≥ 0.

Remark 1. For x = 1/b, y = 1/c and z = 1/a, we get the well-known inequality
from P 1.189-(a):

a3 b+ b3c + c3a ≥ a2 b2 + b2c2 + c2a2.

Remark 2. For x = 1/c2, y = 1/a2 and z = 1/b2, we get the elegant cyclic inequal-
ity of Walker:

3
�

a2

b2
+

b2

c2
+

c2

a2

�

≥ (a2 + b2 + c2)
�

1
a2
+

1
b2
+

1
c2

�

.

P 2.140. If a1 ≥ a2 ≥ · · · ≥ a8 ≥ 0, then

a1 + a2 + · · ·+ a8 − 8 8
p

a1a2 · · · a8 ≥ 3
�
p

a6 −
p

a7

�2
.

Solution. Let us denote

x = 6
p

a1a2 · · · a6, y =
p

a7a8, x ≥ a6 ≥ a7 ≥ y.

By the AM-GM inequality, we have

a1 + a2 + · · ·+ a6 ≥ 6x , a7 + a8 ≥ 2y.

Also, we have
p

a6 −
p

a7 ≤
p

x −py .

Thus, it suffices to show that

6x + 2y − 8 8
Æ

x6 y2 ≥ 3(
p

x −py)2.

For the nontrivial case y 6= 0, we can set y = 1 (due to homogeneity) and x = t4,
t ≥ 1. The inequality can be restated as

6t4 + 2− 8t3 ≥ 3(t2 − 1)2,

which is equivalent to
(t − 1)3(3t + 1)≥ 0.

The equality holds for a1 = a2 = · · ·= a8.
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P 2.141. Let a1, a2, . . . , an and b1, b2, . . . , bn be real numbers. Prove that

a1 b1+ · · ·+ an bn+
q

(a2
1 + · · ·+ a2

n)(b
2
1 + · · ·+ b2

n)≥
2
n
(a1+ · · ·+ an)(b1+ · · ·+ bn).

(Vasile C., 1989)

First Solution. Write the inequality as

q

(a2
1 + · · ·+ a2

n)(b
2
1 + · · ·+ b2

n)≥ a1(2b− b1) + · · ·+ an(2b− bn),

where

b =
1
n
(b1 + · · ·+ bn).

Using the substitution
x i = 2b− bi, i = 1,2, . . . , n,

we have
n
∑

i=1

x i = 2nb−
n
∑

i=1

bi = 2nb− nb = nb,

n
∑

i=1

b2
i =

n
∑

i=1

(2b− x i)
2 = 4nb2 − 4b

n
∑

i=1

x i +
n
∑

i=1

x2
i =

n
∑

i=1

x2
i .

Therefore, the desired inequality can be restated as

q

(a2
1 + · · ·+ a2

n)(x
2
1 + · · ·+ x2

n)≥ a1 x1 + · · ·+ an xn,

which is just the Cauchy-Schwarz inequality. If a1a2 · · · an 6= 0, then the equality
holds for

2b− b1

a1
=

2b− b2

a2
= · · ·=

2b− bn

an
≥ 0.

Second Solution. Consider the nontrivial case where a2
1 + · · ·+ a2

n 6= 0 and b2
1 +

· · ·+ b2
n 6= 0, denote

p =

√

√

√
b2

1 + · · ·+ b2
n

a2
1 + · · ·+ a2

n

,

and use the substitution
bi = px i, i = 1, 2, . . . , n

to have
a2

1 + · · ·+ a2
n = x2

1 + · · ·+ x2
n.

The desired inequality becomes

(a1 x1 + · · ·+ an xn) + (a
2
1 + · · ·+ a2

n)≥
2
n
(a1 + · · ·+ an)(x1 + · · ·+ xn),
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(a1 + x1)
2 + · · ·+ (an + xn)

2 ≥
4
n
(a1 + · · ·+ an)(x1 + · · ·+ xn).

Since

4(a1 + · · ·+ an)(x1 + · · ·+ xn)≤ [(a1 + · · ·+ an) + (x1 + · · ·+ xn)]
2,

it suffices to show that

(a1 + x1)
2 + · · ·+ (an + xn)

2 ≥
1
n
[(a1 + x1) + · · ·+ (an + xn)]

2.

This follows immediately from the Cauchy-Schwarz inequality.

Remark. Substituting bi = 1/ai for all i, we get the following inequality

n2 + n

√

√

√

(a2
1 + · · ·+ a2

n)

�

1
a2

1

+ · · ·+
1
a2

n

�

≥ 2(a1 + · · ·+ an)
�

1
a1
+ · · ·+

1
an

�

.

If a1 ≤ a2 ≤ · · · ≤ an and n is even, n= 2k, then the equality holds for

a1 = a2 = · · ·= ak, ak+1 = ak+2 = · · ·= a2k.

If n is odd, then the equality holds only if a1 = a2 = · · ·= an.

Conjecture. If a1, a2, . . . , an are positive real numbers and n is odd, then

n2 + 1+

√

√

√

(n2 − 1)(a2
1 + · · ·+ a2

n)

�

1
a2

1

+ · · ·+
1
a2

n

�

− n2 + 1≥

≥ 2(a1 + · · ·+ an)
�

1
a1
+ · · ·+

1
an

�

.

If a1 ≤ a2 ≤ · · · ≤ an and n is odd, n= 2k+ 1, then the equality holds for

a1 = a2 = · · ·= ak, ak+1 = ak+2 = · · ·= a2k+1,

and for
a1 = a2 = · · ·= ak+1, ak+2 = ak+3 = · · ·= a2k+1.

P 2.142. Let a1, a2, . . . , an be positive real numbers such that a1 ≥ 2a2. Prove that

(5n− 1)(a2
1 + a2

2 + · · ·+ a2
n)≥ 5(a1 + a2 + · · ·+ an)

2.

(Vasile C., 2009)
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Solution. Let
a1 = ka2, k ≥ 2.

By the Cauchy-Schwarz inequality, we have

a2
1 + a2

2 + · · ·+ a2
n = (k

2 + 1)a2
2 + a2

3 + · · ·+ a2
n

≥
[(k+ 1)a2 + a3 + · · ·+ an]

2

(k+ 1)2

k2 + 1
+ n− 2

=
(a1 + a2 + · · ·+ an)

2

2k
k2 + 1

+ n− 1
.

Therefore, it suffices to show that

5n− 1
5
≥

2k
k2 + 1

+ n− 1,

which is equivalent to the obvious inequality

(k− 2)(2k− 1)≥ 0.

The equality holds if and only if k = 2 and

5a2
2 + a2

3 + · · ·+ a2
n =
(3a2 + a3 + · · ·+ an)2

9
5 + n− 2

;

that is, if and only if
5a1

6
=

5a2

3
= a3 = · · ·= an.

P 2.143. If a1, a2, . . . , an are positive real numbers such that a1 ≥ 4a2, then

(a1 + a2 + · · ·+ an)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

≥
�

n+
1
2

�2

.

Solution. Setting
a1 = ka2, k ≥ 4,

the inequality becomes

[(1+ k)a2 + a3 + · · ·+ an]
�

1+ k
ka2

+
1
a3
+ · · ·+

1
an

�

≥
�

n+
1
2

�2

.

By the Cauchy-Schwarz inequality, we have

[(1+ k)a2 + a3 + · · ·+ an]
�

1+ k
ka2

+
1
a3
+ · · ·+

1
an

�

≥
�

1+ k
p

k
+ n− 2

�2

.



542 Vasile Cîrtoaje

Thus, we only need to show that

1+ k
p

k
+ n− 2≥ n+

1
2

,

which reduces to
�p

k− 2
��

2
p

k− 1
�

≥ 0.

The equality holds if and only if k = 4 and

a1

2
= 2a2 = a3 = · · ·= an.

P 2.144. If a1 ≥ a2 ≥ · · · ≥ an > 0 such that a1 + a2 + · · ·+ an = n, then

1
a1
+

1
a2
+ · · ·+

1
an
− n≥

4(n− 1)2

n3
(a1 − a2)

2.

(Vasile C., 2009)

Solution. Since

1
a2
+

1
a3
+ · · ·+

1
an
≥

(n− 1)2

a2 + a3 + · · ·+ an
=
(n− 1)2

n− a1

and

a1 − a2 ≤ a1 −
a2 + a3 + · · ·+ an

n− 1
= a1 −

n− a1

n− 1
=

n(a1 − 1)
n− 1

,

it suffices to show that

1
a1
+
(n− 1)2

n− a1
− n≥

4
n
(a1 − 1)2.

This is equivalent to the obvious inequality

(a1 − 1)2(2a1 − n)2 ≥ 0.

The equality holds for
a1 = a2 = · · ·= an = 1,

and also for
a1 =

n
2

, a2 = a3 = · · ·= an =
n

2(n− 1)
.
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P 2.145. If a1, a2, . . . , an (n≥ 3) are real numbers such that

a1 ≤ a2 ≤ · · · ≤ an, a1 + a2 + · · ·+ an = 0,

then
a2

1 + a2
2 + · · ·+ a2

n + na1an ≤ 0.

(Vasile C., 2009)

Solution. For the nontrivial case a2
1+a2

2+· · ·+a2
n 6= 0, let a1 = a < 0 and an = b > 0

be fixed. We claim that for

a ≤ a2 ≤ · · · ≤ an−1 ≤ b, a2 + · · ·+ an−1 = −a− b,

the sum S = a2
2 + · · · + a2

n−1 is maximum when at least n − 3 of the numbers
a2, . . . , an−1 are equal to a or b. In the contrary case, if a < ai ≤ a j < b, then

a2
i + a2

j < c2
i + c2

j

for all ci and c j such that

a ≤ ci < ai ≤ a j < c j ≤ b, ci + c j = ai + a j;

indeed,

a2
i +a2

j − c2
i − c2

j = (ai− ci)(ai+ ci)+(a j− c j)(a j+ c j) = (ai− ci)(ai+ ci−a j− c j)< 0.

This result confirms our claim. Therefore, it suffices to consider the case where at
least n− 3 of the numbers a2, . . . , an−1 are equal to a or b. More precisely, assume
that k of a2, . . . , an−1 are equal to a and m of a2, . . . , an−1 are equal to b, where

k+m= n− 3, k, m≥ 0.

Therefore, it suffices to show that

(k+ 1)a2 + c2 + (m+ 1)b2 + (k+m+ 3)ab ≤ 0,

where
a ≤ c ≤ b, (k+ 1)a+ c + (m+ 1)b = 0.

We have

(k+ 1)a2 + c2 + (m+ 1)b2 + (k+m+ 3)ab = c2 + (a+ b)[(k+ 1)a+ (m+ 1)b] + ab

= c2 − (a+ b)c + ab = (c − a)(c − b)≤ 0.

The equality holds if and only if

a1, a2, . . . , an ∈ {a1, an}, a1 + a2 + · · ·+ an = 0.
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P 2.146. Let a1, a2, . . . , an (n≥ 4) be nonnegative real numbers such that

a1 ≥ a2 ≥ · · · ≥ an

and
(a1 + a2 + · · ·+ an)

2 = 4(a2
1 + a2

2 + · · ·+ a2
n).

Prove that

1≤
a1 + a2

a3 + a4 + · · ·+ an
≤ 1+

√

√2n− 8
n− 2

.

(Vasile C., 2007)

Solution. Denote
A= a1 + a2, B = a3 + a4 + · · ·+ an.

Since
2(a2

1 + a2
2)≥ A2, (n− 2)(a2

3 + a2
4 + · · ·+ a2

n)≥ B2,

from the hypothesis

(a1 + a2 + · · ·+ an)
2 = 4(a2

1 + a2
2) + 4(a2

3 + · · ·+ a2
n),

we get

(A+ B)2 ≥ 2A2 +
4

n− 2
B2,

A≤

�

1+

√

√2n− 8
n− 2

�

B.

The right inequality is an equality for

a1 = a2 = ka3 = · · ·= kan, k =
n− 2+

p

2(n− 2)(n− 4)
2

.

To prove the left inequality, let

a1 ≥ a2 ≥ x ≥ a3 ≥ · · · ≥ an.

From
A

a1a2
=

1
a1
+

1
a2
≤

1
x
+

1
x
=

2
x

,

we get
2a1a2 ≥ Ax ,

hence
a2

1 + a2
2 = A2 − 2a1a2 ≤ A2 − Ax .

In addition,
a2

3 + · · ·+ a2
n ≤ a3 x + · · ·+ an x = Bx .
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Therefore, from the hypothesis

(a1 + a2 + · · ·+ an)
2 = 4(a2

1 + a2
2) + 4(a2

3 + · · ·+ a2
n),

we get
(A+ B)2 ≤ 4(A2 − Ax) + 4Bx ,

4(A− B)x − 3A2 + 2AB + B2 ≤ 0,

(A− B)(3A+ B − 4x)≥ 0.

Since
3A+ B − 4x ≥ 3A− 4x ≥ 6x − 4x ≥ 0,

it follows that A− B ≥ 0. The left inequality is an equality only for n = 4 and
a1 = a2 = a3 = a4.

P 2.147. If a1 ≥ a2 ≥ · · · ≥ an ≥ 0, then

(a) a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an ≥
1
3

�p
a1 +

p
a2 − 2

p
an

�2
;

(b) a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an ≥
1
4

�

2
p

a1 −
p

an−1 −
p

an

�2
.

(Vasile C., 2010)

Solution. (a) For n= 2, the inequality is equivalent to
�p

a1 −
p

a2

�2
≥ 0. Consider

further n≥ 3. By the AM-GM inequality, we have

a3 + · · ·+ an−1 + 3 3
p

a1a2an ≥ n n
p

a1a2 · · · an.

Therefore, it suffices to prove that

a1 + a2 + an − 3 3
p

a1a2an ≥
1
3

�
p

a1 +
p

a2 − 2
p

an

�2
.

Setting

x =
�pa1 +

p
a2

2

�2

, x ≥ an,

since a1 + a2 ≥ 2x and a1a2 ≤ x2, it suffices to show that

2x + an − 3 3
Æ

x2an ≥
4
3

�p
x −

p

an

�2
.

For the nontrivial case an 6= 0, we may consider an = 1 (due to homogeneity). In
addition, substituting x = y6, y ≥ 1, the inequality can be restated as

2y6 + 1− 3y4 ≥
4
3
(y3 − 1)2,
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(y − 1)2[3(y + 1)2(2y2 + 1)− 4(y2 + y + 1)2]≥ 0.

This inequality is true if

(y + 1)
Æ

3(2y2 + 1)≥ 2(y2 + y + 1).

Since
Æ

3(2y2 + 1)≥ 2y + 1,

we have

(y +1)
Æ

3(2y2 + 1)−2(y2+ y +1)≥ (y +1)(2y +1)−2(y2+ y +1) = y −1≥ 0.

This completes the proof. The equality holds for a1 = a2 = · · ·= an.

(b) For n = 2, the inequality is equivalent to
�p

a1 −
p

a2

�2
≥ 0. Consider

further n≥ 3. By the AM-GM inequality, we have

a2 + a3 + · · ·+ an−2 + 3 3
p

a1an−1an ≥ n n
p

a1a2 · · · an.

Therefore, it suffices to prove that

a1 + an−1 + an − 3 3
p

a1an−1an ≥
1
4

�

2
p

a1 −
p

an−1 −
p

an

�2
.

Setting
x =

p

an−1an, x ≤ a1,

since an−1 + an ≥ 2x and
p

an−1 +
p

an ≥ 2
p

x , it suffices to show that

a1 + 2x − 3 3
Æ

a1 x2 ≥
�
p

a1 −
p

x
�2

.

Due to homogeneity, we may consider a1 = 1. In addition, substituting x = y6,
y ≤ 1, the inequality becomes

1+ 2y6 − 3y4 ≥ (1− y3)2,

which is equivalent to the obvious inequality

y3(y − 1)2(y + 2)≥ 0.

The equality holds for a1 = a2 = · · ·= an. If n≥ 3, then the equality holds also for
a2 = · · ·= an = 0.

P 2.148. If a1 ≥ a2 ≥ · · · ≥ an ≥ 0, n≥ 3, then

a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an ≥
n− 1
2n

�
p

an−2 +
p

an−1 − 2
p

an

�2
.

(Vasile C., 2010)
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Solution. Let us denote

x =
a1 + a2 + · · ·+ an−1

n− 1
, x ≥ an.

By the AM-GM inequality, we have

a1a2 · · · an−1 ≤ xn−1.

Also,

p
an−2 +

p
an−1

2
≤

√

√an−2 + an−1

2
≤

√

√a1 + a2 + · · ·+ an−1

n− 1
=
p

x .

Then, it suffices to show that

(n− 1)x + an − n n
Æ

xn−1an ≥
2(n− 1)

n

�p
x −

p

an

�2
.

For the nontrivial case an 6= 0, we may consider an = 1 (due to homogeneity). In
addition, substituting x = t2n, t ≥ 1, the inequality becomes g(t)≥ 0, where

g(t) = (n− 1)t2n + 1− nt2n−2 −
2(n− 1)

n
(tn − 1)2.

We have
g ′(t) = 2(n− 1)tn−1h(t),

where
h(t) = n(tn − tn−2)− 2(tn − 1).

Since
h′(t) = n(n− 2)tn−3(t2 − 1)≥ 0,

h(t) is increasing, h(t) ≥ h(1) = 0, g ′(t) ≥ 0, g(t) is increasing, hence g(t) ≥
g(1) = 0. This completes the proof. The equality holds for a1 = a2 = · · ·= an.

P 2.149. Let a1 ≥ a2 ≥ · · · ≥ an ≥ 0. If

n
2
≤ k ≤ n− 1,

then

a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an ≥
2k(n− k)

n

�p
ak −

p

ak+1

�2
.

(Vasile C., 2010)
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Solution. Let us denote

x = k
p

a1a2 · · · ak, y = n−k
p

ak+1ak+2 · · · an, x ≥ ak ≥ ak+1 ≥ y.

By the AM-GM inequality, we have

a1 + a2 + · · ·+ ak ≥ kx , ak+1 + ak+2 + · · ·+ an ≥ (n− k)y.

Also, we have p
ak −

p

ak+1 ≤
p

x −py .

Thus, it suffices to show that

kx + (n− k)y − n n
Æ

x k yn−k ≥
2k(n− k)

n
(
p

x −py)2.

For the nontrivial case y > 0, we can set y = 1 (due to homogeneity). In addition,
setting x = t2n, t ≥ 1, the inequality becomes f (t)≥ 0, where

f (t) = kt2n + n− k− nt2k −
2k(n− k)

n
(tn − 1)2.

We have the derivative
f ′(t) = 2ktn−1h(t),

where
h(t) = n(tn − t2k−n)− 2(n− k)(tn − 1).

Since
h′(t) = n(2k− n)(tn−1 − t2k−n−1)≥ 0,

h(t) is increasing for t ≥ 1, h(t) ≥ h(1) = 0, f ′(t) ≥ 0, f (t) is increasing, f (t) ≥
f (1) = 0. This completes the proof. The equality holds for a1 = a2 = · · · = an. If
n is even and 2k = n, then the equality holds for a1 = a2 = · · · = ak and ak+1 =
ak+2 = · · ·= an.

P 2.150. Let a1 ≥ a2 ≥ · · · ≥ an ≥ 0. If

1≤ k < j ≤ n, k+ j ≥ n+ 1,

then

a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an ≥
2k(n− j + 1)
n+ k− j + 1

�p
ak −

p

a j

�2
.

(Vasile C., 2010)
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Solution. Let us denote

P =
k(n− j + 1)
n+ k− j + 1

and
x = k

p

a1a2 · · · ak, y = n− j+1
p

a ja j+1 · · · an, x ≥ ak ≥ a j ≥ y.

By the AM-GM inequality, we have

a1 + a2 + · · ·+ ak ≥ kx , a j + a j+1 + · · ·+ an ≥ (n− j + 1)y

and
ak+1 + · · ·+ a j−1 ≥ ( j − k− 1) j−k−1

p

ak+1 · · · a j−1.

Also, we have p
ak −

p

a j ≤
p

x −py .

Thus, it suffices to show that

kx + (n− j + 1)y + ( j − k− 1) j−k−1
p

ak+1 · · · a j−1 − n n
p

a1a2 · · · an ≥ 2P(
p

x −py)2.

By the AM-GM inequality, we have

( j−k−1) j−k−1
p

ak+1 · · · a j−1+(n− j+k+1) n− j+k+1
q

(a1 · · · ak)(a j · · · an)≥ n n
p

a1a2 · · · an,

which is equivalent to

( j − k− 1) j−k−1
p

ak+1 · · · a j−1 − n n
p

a1a2 · · · an ≥ −(n− j + k+ 1) n− j+k+1
q

(a1 · · · ak)(a j · · · an)

= −(n− j + k+ 1)x
k

n− j+k+1 y
n− j+1

n− j+k+1 .

Therefore, we only need to show that

kx + (n− j + 1)y − (n− j + k+ 1)x
k

n− j+k+1 y
n− j+1

n− j+k+1 ≥ 2P
�p

x −py
�2

.

For the nontrivial case y 6= 0, we can set y = 1 (due to homogeneity). Thus, we
need to prove that f (x)≥ 0 for x ≥ 1, where

f (x) = kx + n− j + 1− (n− j + k+ 1)x
k

n− j+k+1 − 2P
�p

x − 1
�2

.

We have the derivatives

f ′(x) = k− kx
k

n− j+k+1−1 + 2P
�

1
p

x
− 1

�

,

f ′′(x) = P
�

x
k

n− j+k+1−2 − x
−3
2

�

.

Since f ′′(x) ≥ 0 for x ≥ 1, f ′ is increasing, f ′(x) ≥ f ′(1) = 0, f is increasing,
f (x) ≥ f (1) = 0. This completes the proof. The equality holds for a1 = a2 = · · · =
an. If n is even, k = n/2 and j = k+1, then the equality holds for a1 = a2 = · · ·= ak

and ak+1 = ak+2 = · · ·= an.

Remark. For j = k+ 1, we get the inequality in P 2.149.
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P 2.151. If a1 ≥ a2 ≥ · · · ≥ an ≥ 0, n≥ 4, then

(a) a1+ a2+ · · ·+ an− n n
p

a1a2 · · · an ≥
1
2

�

1−
1
n

�

�p
an−2 − 3

p
an−1 + 2

p
an

�2
;

(b) a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an ≥
�

1−
2
n

�

�

2
p

an−2 − 3
p

an−1 +
p

an

�2
.

(Vasile C., 2010)

Solution. Let

x =
p

an−2 −
p

an−1 ≥ 0, y =
p

an−1 −
p

an ≥ 0.

For k = n− 2 and k = n− 1, the inequality in P 2.149 becomes respectively

a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an ≥
4(n− 2)x2

n

and

a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an ≥
2(n− 1)y2

n
.

Therefore,

a1 + a2 + · · ·+ an − n n
p

a1a2 · · · an ≥
2
n

max{2(n− 2)x2, (n− 1)y2}.

(a) It suffices to show that

max{8(n− 2)x2, 4(n− 1)y2} ≥ (n− 1)(x − 2y)2.

This is true since

8(n− 2)x2 ≥ (n− 1)x2 ≥ (n− 1)(x − 2y)2

for x − 2y ≥ 0, and
4(n− 1)y2 ≥ (n− 1)(2y − x)2

for 2y − x ≥ 0. The equality holds for a1 = a2 = · · ·= an.

(b) First Solution. It suffices to show that

max{4(n− 2)x2, 2(n− 1)y2} ≥ (n− 2)(2x − y)2.

This is true since
4(n− 2)x2 ≥ (n− 2)(2x − y)2

for 2x − y ≥ 0, and

2(n− 1)y2 ≥ (n− 2)y2 ≥ (n− 2)(y − 2x)2



Noncyclic Inequalities 551

for y−2x ≥ 0. The equality holds for a1 = a2 = · · ·= an. If n= 4, then the equality
holds for a1 = a2 and a3 = a4.

Second Solution. Let us denote

A= n−2
p

a1a2 · · · an−2 , B =
p

an−1an , A≥ an−2 ≥ B.

By the AM-GM inequality, we have

a1 + a2 + · · ·+ an−2 ≥ (n− 2)A,

an−1 + an ≥ 2B,

and
p

an−1 +
p

an ≥ 2
p

B.

Then, it suffices to show that

(n− 2)A+ 2B − n
n
p

An−2B2 ≥
4(n− 2)

n

�p
A−
p

B
�2

.

For the nontrivial case B 6= 0, we may consider B = 1 (due to homogeneity). In
addition, substituting A= t2n, t ≥ 1, the inequality becomes g(t)≥ 0, where

g(t) = (n− 2)t2n + 2− nt2n−4 −
4(n− 2)

n
(tn − 1)2.

We have
g ′(t) = 2(n− 2)tn−1h(t),

where
h(t) = (n− 4)tn − ntn−4 + 4.

Since
h′(t) = n(n− 4)tn−5(t4 − 1)≥ 0,

h(t) is increasing, h(t) ≥ h(1) = 0, g ′(t) ≥ 0, g(t) is increasing, hence g(t) ≥
g(1) = 0. This completes the proof.
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Appendix A

Glosar

1. AM-GM (ARITHMETIC MEAN-GEOMETRIC MEAN) INEQUALITY

If a1, a2, . . . , an are nonnegative real numbers, then

a1 + a2 + · · ·+ an ≥ n n
p

a1a2 · · · an,

with equality if and only if a1 = a2 = · · ·= an.

2. WEIGHTED AM-GM INEQUALITY

Let p1, p2, . . . , pn be positive real numbers satisfying

p1 + p2 + · · ·+ pn = 1.

If a1, a2, . . . , an are nonnegative real numbers, then

p1a1 + p2a2 + · · ·+ pnan ≥ ap1
1 ap2

2 · · · a
pn
n ,

with equality if and only if a1 = a2 = · · ·= an.

3. AM-HM (ARITHMETIC MEAN-HARMONIC MEAN) INEQUALITY

If a1, a2, . . . , an are positive real numbers, then

(a1 + a2 + · · ·+ an)
�

1
a1
+

1
a2
+ · · ·+

1
an

�

≥ n2,

with equality if and only if a1 = a2 = · · ·= an.

553
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4. POWER MEAN INEQUALITY

The power mean of order k of positive real numbers a1, a2, . . . , an,

Mk =











�

ak
1+ak

2+···+ak
n

n

�
1
k

, k 6= 0

n
p

a1a2 · · · an, k = 0
,

is an increasing function with respect to k ∈ R. For instant, M2 ≥ M1 ≥ M0 ≥ M−1

is equivalent to
√

√a2
1 + a2

2 + · · ·+ a2
n

n
≥

a1 + a2 + · · ·+ an

n
≥ n
p

a1a2 · · · an ≥
n

1
a1
+

1
a2
+ · · ·+

1
an

.

5. BERNOULLI’S INEQUALITY

For any real number x ≥ −1, we have
a) (1+ x)r ≥ 1+ r x for r ≥ 1 and r ≤ 0;
b) (1+ x)r ≤ 1+ r x for 0≤ r ≤ 1.

If a1, a2, . . . , an are real numbers such that either a1, a2, . . . , an ≥ 0 or

−1≤ a1, a2, . . . , an ≤ 0,

then
(1+ a1)(1+ a2) · · · (1+ an)≥ 1+ a1 + a2 + · · ·+ an.

6. SCHUR’S INEQUALITY

For any nonnegative real numbers a, b, c and any positive number k, the inequality
holds

ak(a− b)(a− c) + bk(b− c)(b− a) + ck(c − a)(c − b)≥ 0,

with equality for a = b = c, and for a = 0 and b = c (or any cyclic permutation).
For k = 1, we get the third degree Schur’s inequality, which can be rewritten as
follows

a3 + b3 + c3 + 3abc ≥ ab(a+ b) + bc(b+ c) + ca(c + a),

(a+ b+ c)3 + 9abc ≥ 4(a+ b+ c)(ab+ bc + ca),

a2 + b2 + c2 +
9abc

a+ b+ c
≥ 2(ab+ bc + ca),

(b− c)2(b+ c − a) + (c − a)2(c + a− b) + (a− b)2(a+ b− c)≥ 0.
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For k = 2, we get the fourth degree Schur’s inequality, which holds for any real
numbers a, b, c, and can be rewritten as follows

a4 + b4 + c4 + abc(a+ b+ c)≥ ab(a2 + b2) + bc(b2 + c2) + ca(c2 + a2),

a4 + b4 + c4 − a2 b2 − b2c2 − c2a2 ≥ (ab+ bc + ca)(a2 + b2 + c2 − ab− bc − ca),

(b− c)2(b+ c − a)2 + (c − a)2(c + a− b)2 + (a− b)2(a+ b− c)2 ≥ 0,

6abcp ≥ (p2 − q)(4q− p2), p = a+ b+ c, q = ab+ bc + ca.

A generalization of the fourth degree Schur’s inequality, which holds for any
real numbers a, b, c and any real number m, is the following (Vasile Cirtoaje, 2004)

∑

(a−mb)(a−mc)(a− b)(a− c)≥ 0,

where the equality holds for a = b = c, and for a/m = b = c (or any cyclic
permutation). This inequality is equivalent to

∑

a4 +m(m+ 2)
∑

a2 b2 + (1−m2)abc
∑

a ≥ (m+ 1)
∑

ab(a2 + b2),
∑

(b− c)2(b+ c − a−ma)2 ≥ 0.

A more general result is given by the following theorem (Vasile Cirtoaje, 2004).

Theorem. Let

f4(a, b, c) =
∑

a4 +α
∑

a2 b2 + βabc
∑

a− γ
∑

ab(a2 + b2),

where α,β ,γ are real constants such that 1+α+ β = 2γ. Then,

(a) f4(a, b, c)≥ 0 for all a, b, c ∈ R if and only if

1+α≥ γ2;

(b) f4(a, b, c)≥ 0 for all a, b, c ≥ 0 if and only if

α≥ (γ− 1)max{2,γ+ 1}.

7. CAUCHY-SCHWARZ INEQUALITY

If a1, a2, . . . , an and b1, b2, . . . , bn are real numbers, then

(a2
1 + a2

2 + · · ·+ a2
n)(b

2
1 + b2

2 + · · ·+ b2
n)≥ (a1 b1 + a2 b2 + · · ·+ an bn)

2,

with equality for
a1

b1
=

a2

b2
= · · ·=

an

bn
.

Notice that the equality conditions are also valid for ai = bi = 0, where 1≤ i ≤ n.
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8. HÖLDER’S INEQUALITY

If x i j (i = 1,2, · · · , m; j = 1, 2, · · ·n) are nonnegative real numbers, then

m
∏

i=1

�

n
∑

j=1

x i j

�

≥

 

n
∑

j=1

m

√

√

√

m
∏

i=1

x i j

!m

.

9. CHEBYSHEV’S INEQUALITY

Let a1 ≥ a2 ≥ · · · ≥ an be real numbers.

a) If b1 ≥ b2 ≥ · · · bn, then

n
n
∑

i=1

ai bi ≥

�

n
∑

i=1

ai

��

n
∑

i=1

bi

�

;

b) If b1 ≤ b2 ≤ · · · ≤ bn, then

n
n
∑

i=1

ai bi ≤

�

n
∑

i=1

ai

��

n
∑

i=1

bi

�

.

10. REARRANGEMENT INEQUALITY

(1) If (a1, a2, . . . , an) and (b1, b2, . . . , bn) are two increasing (or decreasing) real
sequences, and (i1, i2, · · · , in) is an arbitrary permutation of (1,2, · · · , n), then

a1 b1 + a2 b2 + · · ·+ an bn ≥ a1 bi1 + a2 bi2 + · · ·+ an bin

and

n(a1 b1 + a2 b2 + · · ·+ an bn)≥ (a1 + a2 + · · ·+ an)(b1 + b2 + · · ·+ bn).

(2) If (a1, a2, . . . , an) is decreasing and (b1, b2, . . . , bn) is increasing, then

a1 b1 + a2 b2 + · · ·+ an bn ≤ a1 bi1 + a2 bi2 + · · ·+ an bin

and

n(a1 b1 + a2 b2 + · · ·+ an bn)≤ (a1 + a2 + · · ·+ an)(b1 + b2 + · · ·+ bn).

(3) Let b1, b2, . . . , bn) and (c1, c2, . . . , cn) be two real sequences such that

b1 + · · ·+ bi ≥ c1 + · · ·+ ci, i = 1,2, · · · , n.

If a1 ≥ a2 ≥ · · · ≥ an ≥ 0, then

a1 b1 + a2 b2 + · · ·+ an bn ≥ a1c1 + a2c2 + · · ·+ ancn.
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Notice that all these inequalities follow immediately from the identity

n
∑

i=1

ai(bi − ci) =
n
∑

i=1

(ai − ai+1)

�

i
∑

j=1

b j −
i
∑

j=1

c j

�

, an+1 = 0.

11. CONVEX FUNCTIONS

A function f defined on a real interval I is said to be convex if

f (αx + β y)≤ α f (x) + β f (y)

for all x , y ∈ I and any α, β ≥ 0 with α+β = 1. If the inequality is reversed, then
f is said to be concave.
If f is differentiable on I, then f is (strictly) convex if and only if the derivative f ′

is (strictly) increasing. If f ′′ ≥ 0 on I, then f is convex on I. Also, if f ′′ ≥ 0 on (a,
b) and f is continuous on [a, b], then f is convex on [a, b].

Jensen’s inequality. Let p1, p2, . . . , pn be positive real numbers. If f is a convex
function on a real interval I, then for any a1, a2, . . . , an ∈ I, the inequality holds

p1 f (a1) + p2 f (a2) + · · ·+ pn f (an)
p1 + p2 + · · ·+ pn

≥ f
�

p1a1 + p2a2 + · · ·+ pnan

p1 + p2 + · · ·+ pn

�

.

For p1 = p2 = · · ·= pn, Jensen’s inequality becomes

f (a1) + f (a2) + · · ·+ f (an)≥ nf
�a1 + a2 + · · ·+ an

n

�

.

12. SQUARE PRODUCT INEQUALITY

Let a, b, c be real numbers, and let

p = a+ b+ c, q = ab+ bc + ca, r = abc,

s =
p

p2 − 3q =
p

a2 + b2 + c2 − ab− bc − ca.

From the identity

(a− b)2(b− c)2(c − a)2 = −27r2 + 2(9pq− 2p3)r + p2q2 − 4q3,

it follows that

−2p3 + 9pq− 2(p2 − 3q)
p

p2 − 3q
27

≤ r ≤
−2p3 + 9pq+ 2(p2 − 3q)

p

p2 − 3q
27

,

which is equivalent to

p3 − 3ps2 − 2s3

27
≤ r ≤

p3 − 3ps2 + 2s3

27
.
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Therefore, for constant p and q, the product r is minimal and maximal when two
of a, b, c are equal.

13. KARAMATA’S MAJORIZATION INEQUALITY

Let f be a convex function on a real interval I. If a decreasingly ordered sequence

A= (a1, a2, . . . , an), ai ∈ I,

majorizes a decreasingly ordered sequence

B = (b1, b2, . . . , bn), bi ∈ I,

then
f (a1) + f (a2) + · · ·+ f (an)≥ f (b1) + f (b2) + · · ·+ f (bn).

We say that a sequence A= (a1, a2, . . . , an) with a1 ≥ a2 ≥ · · · ≥ an majorizes a
sequence B = (b1, b2, . . . , bn) with b1 ≥ b2 ≥ · · · ≥ bn, and write it as

A� B,

if
a1 ≥ b1,

a1 + a2 ≥ b1 + b2,
· · · · · · · · · · · · · · · · · · · · ·

a1 + a2 + · · ·+ an−1 ≥ b1 + b2 + · · ·+ bn−1,
a1 + a2 + · · ·+ an = b1 + b2 + · · ·+ bn.

14. VASC’S EXPONENTIAL INEQUALITY

Let 0< k ≤ e.
(a) If a, b > 0, then (Vasile Cîrtoaje, 2006)

aka + bkb ≥ akb + bka;

(b) If a, b ∈ (0,1], then (Vasile Cîrtoaje, 2010)

2
p

aka bkb ≥ akb + bka.
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