

444

Abstract—The virtualization technology allows several

(sometimes critical) applications running on a single machine,

but all isolated into virtual operating system images that do not

interfere with each other. Such a working manner proves to be

a revolutionary tool in computer science, especially when

advanced studies on operating systems behavior are performed

in order to reveal the hidden interactions in heterogeneous

computing environments.

I. INTRODUCTION

LTHOUGH the virtual machine monitors (VMMs)

theoretical principles were established about 40 years

ago, focusing that time some stiff computing problems

running on mainframes, at present they have a fresh and

promising impact on computer technology, their application

ranging from high-end servers to standard/entry-level

platforms endowment.

Virtualization is the technique allowing multiple operating

system instances running all at once by making use of only

one hardware platform. Novel architectures and applications

can be designed in order to benefit from such a modern

approach in computing – especially when original, safe and

reliable solutions have to be developed – and the

perspectives are in a continuous spotlight.

In our previous works [1] and [2] the focus is put on how to

practically build-up a platform based on virtualization

techniques, designed as the main tool for studies on

interactions between independent operating systems

instances and a homogeneous hardware environment, when

heterogeneous software platforms are involved. Since then,

interesting results in this area were obtained, a brief selection

being here presented.

II. A SHORT OVERVIEW ON THE

VIRTUALIZATION-BASED PLATFORM

A. Virtualization Principles

A VMM offers an abstract representation of one or more

virtual machines (VM) by de-multiplexing the resources of a

real hardware platform [3]. Such a VM may run a standard

operating system (OS) together with its own native

Manuscript received May 5, 2010.

Gabriel Rădulescu is with the Petroleum-Gas University of Ploiesti,

Automatic Control, Applied Informatics and Computers Department,

100680 Ploiești, Romania (e-mail: gabriel.radulescu@upg-ploiesti.ro).

Nicolae Paraschiv is also with the Petroleum-Gas University of Ploiesti,

Automatic Control, Applied Informatics and Computers Department,

100680 Ploiești, Romania (e-mail: nparaschiv@upg-ploiesti.ro).

applications. Fig. 1 shows the classical architecture used by

modern virtualization platforms (i.e. VMware, VirtualBox

and VirtualPC solutions).

The software executed inside a VM is identified as guest

(guest operating systems, guest applications), whereas the

software running outside the virtual machine – typically the

host platform operating system – represents the so-called

host software.

The guest OS and its corresponding applications run in

user mode, with hardly-limited control over the real

hardware, but the VMM runs in the most privileged level

(kernel mode), as the host OS in Fig. 1 is used to provide the

basic access to physical devices for VMM and VMs [4]. The

guest software uses the emulated hardware that is offered by

VMM in the same transparent manner as it would do with

real hardware. All complex interactions between guest

software and the abstract hardware platform are trapped by

the VMM and consequently emulated in software, allowing

the guest OS to run in its standard way, also maintaining the

strict control over the system at the VMM layer [1]. As

previously shown in [2], by virtualization a perfect illusion

of multiple, distinct virtual computers can be created, with

separate operating systems and applications. For safely

keeping the working environment, the VMM isolates each

virtual computer and its emulated hardware through an

adjustable redirection mechanism. The most easy-to-

understand examples are, for instance, mapping a number of

virtual disks to different zones of a physical disk or virtual

memory mapping onto different pages in the real machine

memory system.

The virtualization environments can be used not only for

simply multiplexing the host resources, but also to add

supplementary services to an existing system, including here

special debuggers for new OSs, live machines migration [5],

Using a Virtualization Techniques – Based Platform

for Advanced Studies on Operating Systems

Gabriel Rădulescu, Nicolae Paraschiv

A

Fig. 1. The typical structure for VMM in the context of a host OS,

providing the hardware abstraction layer for multiple VMs [2].

445

intrusion detection and prevention [6] as well as code

integrity test [7]. It is also very important to mention that

some of these services are implemented outside the guest

machines and, as consequence, they do not affect at all the

guest environment.

In this context, the virtual machine introspection (VMI) is

represented by all technologies used to interpret and modify

the inner states and events within the guest [8], [9]. By using

VMI methods, the variables and guest memory addresses are

translated (after reading the guest OS and applications

symbols/pages tables) into real references for the host OS.

More, through hardware and software breakpoints, a specific

VM service is allowed to gain full control at a specific

instruction address. Finally, by this technique, such a service

may invoke the guest operating system or application code in

order to make use of general functions (for instance reading

a file from the guest OS file system). It is also very important

to emphasize that all virtual machine services can be

protected by disabling external I/O procedures. In the same

time, VMs assure the guest data integrity by introducing the

snapshots (restore points), which points to a frozen guest

image where the system can be rolled back (after a crash, for

example).

A special VMM application which deals with concurrent

OS interactions is the so-called virtual machine based rootkit

(VMBR), which monitors the VMs activity. The target

(supervised) VM practically sees no difference in its memory

space, disk availability or execution (depending on the

virtualization quality) [1], [2]. There is a complete isolation

between the event-generating host OSs and the targeted

systems, so the software in the target system cannot see or

modify the interacting software from the other system [8].

Also, apart from monitoring the target states and events, the

VMBR can quietly read and modify them (without being

observed from inside of the running VMs), as it fully

controls the virtual hardware presented to the guests [1].

B. The Platform Architecture

As previously presented in [2], the authors have designed

and implemented a robust, flexible and multi-client oriented

platform at the “Petroleum-Gas” University of Ploiești

(Computers and Networks Laboratory) which is a valuable

environment for studying the OS complex behavior. This

section outlines its main hardware and software

characteristics.

1) The hardware architecture

As shown in Fig. 2, the system is distributed over a high

speed Local Area Network (LAN) and consists in one main

server and the associated workstation-clients.

The central node is a HP Proliant ML310 server with

RAID storage system and backup facility in order to prevent

any loss of the user data. As mention, the server has proved

an extraordinary robustness, with almost inexistent downtime

up to now (in the case, no time required for service as no

failure occurred during operating sessions for over 3 years).

The system’s clients are located on independent

workstations connected to the Proliant server through a high-

speed managed Ethernet switch. While at the beginning all

workstations had the same configuration, later we have used

to run our experiments by targeting other hardware

configurations (in order to extend the research results, if

possible). The quality of service (QOS) inside the LAN was

highly improved by configuring a dedicated virtual LAN

(VLAN), which isolates the distributed system from the

corporate network (at the University level) [2].

2) The software configuration

At first, in order to improve the compatibility between

clients and server, the uniform OS installation was adopted

(a very stable Linux SuSE distribution, both on server and

client machines). But as the last research is focused on

heterogeneous host OSs study, other Linux distributions (i.e.

Fedora, Ubuntu) and Windows-class OSs are currently tested

on workstations.

As suggested by Fig. 3, a uniform user account

management was adopted too, by locating the users’

database and home directories on the Proliant server, all

clients being authenticated via NIS (Network Information

Service), whereas the storage resources are exported via NFS

(Networking File System). Except the root, any other user

has a mobile profile, with a homogeneous way of accessing

the system and server resources. Apart being completely

transparent for the users, this solution offers an increased

data safety, as any crash at the workstations level only

interrupts the communication with the server, without

affecting the data last saved here over the network. The good

protection against malicious code (spywares, backdoors,

viruses) is easily implemented because, by locating the user

files only on server side, the central management of any

security/integrity solution is natively allowed [1], [2].

As virtualization platform, VMware proved to be the most

flexible/reliable solution, with a high level of the hardware

abstracting, as well as an almost perfect compatibility with

all guest OSs we have included in the test sessions

(Windows-based systems, different Linux distributions, even

the native MS DOS 6.22). On this infrastructure we currently

run software compatibility and endurance tests with VMware

Workstation, with versions ranging from 4.5.x to 7.0.x.

Fig. 2. A schematic representation for the system’s hardware

architecture [2].

446

3) Advantages

The major advantages when using such a multi-client

virtualization platform were extensively presented in [2], so

in this general outline only a few of them are emphasized:

--The possibility to pack and distribute software pieces in

virtual machines with considerable less effort.

--The facility of virtual machines replication on all

workstations (“instantaneous” software update).

--The "undo" at shutdown feature, for all changes inside

virtual machine instances.

--Reduced time for technical interventions, network tuning

and maintenance activities.

But the most important advantage is the open system

architecture, from many different points of view. For

instance, all network clients can be considered as identical,

so adding a new workstation in the system is trivially easy.

On the other side, at logical level, all VMs on every

workstation have the same attributes, no matter the installed

guest OS, being seen by the local VMM as part of a

homogeneous environment. At last, any system upgrade may

be performed, as time as the architecture and its functionality

are preserved [2].

III. CASE-STUDY: OS REGULAR ACTIVITY MONITORING

In order to have a complete image over the platform

utility, here are presented some significant results when

monitoring different OSs running a usual processor-test (a

hard-encoded MPEG video file playback) This short case-

study is taken from a more complex research (which

includes, for instance, a performance improving analysis),

but this will be subject of a future work..

A. The Test Configuration

Such a procedure may not give interesting results when the

hardware resources are generous (because the processing

power is enough to handle without problems the software

decoding process), this being the reason why the authors

performed all tests on simulated limited-power architectures.

As host machine the authors used a medium-performance

platform based on Intel Celeron D352 processor, with 1GB

RAM and SATA2 HDD, with dual boot feature (SuSE Linux

and Windows XP Pro), integrated as client for the previously

described network.

The software solution adopted for VMM was VMware

Workstation 6.0 (running both under Linux and Windows

host machines) coupled with Veeam Monitor analyzing tool.

This configuration allows a perfect integration with the

VMware virtualization layer, so the platform can read and

present a wide range of operating parameters related to VMs

– kernel errors/traps, CPU, memory, disk, network and

pagefile usage statistics. In this hosting context, three

identical virtual machines were created (each emulating an

Intel Celeron platform with 256MB RAM and IDE HDD

storage) and configured with typical installations of SuSE

Linux 8.2, Ubuntu 7.2 and Windows XP Professional. In

order to have a complete functional environment, all VMs

include VMware Tools platform. All OS images were stored

on the Proliant server and NFS exported over the network.

B. The Testing Scenario and Results

In the context of normal computer use, dealing with

multimedia applications is also a regular task. But when the

file to be played is hard-encoded (i.e. high bitrates/video

resolutions), the CPU usage may become problematic if the

processor performances are below a specific limit, so it is of

high interest to know how an OS acts in order to keep the

entire system in acceptable working state.

The tests performed by authors consisted in playing a local

MPEG4 video file encoded with high bitrate (approx. 10

Mbps) by using the same version (1.0) of the famous

MPlayer installed under SuSE Linux, Ubuntu and Windows

XP VMs. There were two main scenarios, involving both

separate tests (consecutively performed) and simultaneous

(on all VMs in the same time), the results being presented

and briefly commented here.

1) The 3 minutes testing session results (separate run)

Fig. 4 shows a comparison between CPU usage percent

for the above mentioned OSs. By analyzing these graphs it is

to mention that, although at the beginning in SuSE OS the

CPU is used not more than 50%, after a few seconds the

percent raises to a maximum of 85%. The Ubuntu machine

acts totally different, with an initial peak of 92% processor

usage but followed by a moderate behavior on long term

(with lots of inverse peaks to 50%). The best response is

obtained when using Windows XP, which acts between

maximum 82% and minimum 31% CPU usage. In fact, this

behavior is in total agreement with expectations, as time as

high activity means lots of system calls (and for Linux OSs

the rendering modules were compiled and integrated in

kernel, unlike in Windows case).

The HDD usage during the playback process is depicted in

Fig. 5. The SuSE Linux VM shows a uniform-time disc

access, with long periods of inactivity (approx. 30 s) and

high peaks between 8 and 22 Mbytes/s (read/write access).

The same uniform behavior can be observed for Ubuntu, at

shorter intervals (about 6 s), through moderate peaks (810 to

9216 Kbytes/s). Windows XP is non-predictable, having an

almost continuous HDD access with maximum peaks of

Fig. 3. The simplified software architecture [2].

447

4608 Kbytes/s (which may be not an optimal behavior).

As remark, the diagrams in Fig. 5 (and also in the

following figures) are differently scaled for better details

readability.

The authors further investigated this case and found that

such an effect is induced by a different pagefile management

(disc cache) style for the three OSs above mentioned.

SuSE Linux has an intense but shorter action on its swap

partition (which keeps the pages ready to send into memory,

respectively the dumped-to-file memory content) than

Windows XP, although both have the same maximum access

peak (2560 Kbytes/s), as seen in Fig. 6. During the last

minute, for about 40 s, SuSE does not even use its disc

cache, whereas Windows still keeps accessing the pagefile

until the MPEG file playback finishes. Such a policy of take

it as needed may be convenient when the hardware resources

are continuously available during the working session, but

may put serious problems when the limits are touched.

Regarding Ubuntu, it has an almost inexistent swapping

effect (maximum 512 Kbytes/s transfer speed) because it

frequently access the HDD when reading small parts of the

MPEG file and they seem to always fit into the free memory,

with no need to swap memory pages.

2) The 3 minutes testing session results (concurrent run)

As shown above, the second scenario was based on

simultaneously performing the video playback in all VMs, in

order to reveal if the VMM has a good policy when trying to

honestly allocate resources for the managed virtual

computers.

In order to distinguish the stabilizing time at start, the

MPlayer sessions were launched with short delays between

them (approx. 3 s), first under Windows XP, Ubuntu and

finally in the SuSE Linux VM, as Fig. 7 depicts.

It can be observed that, for all OS instances, after a short

transient time the CPU usage practically follows the same

average envelope, meaning that VMM (VMware) succeeds

to fairly implement the resources allocation. It is also to

remark the different profile shapes in comparison with the

ones from Fig. 4. A careful look at Fig. 7 shows that, when –

for instance – the Ubuntu machine CPU usage lowers, the

remaining computing power is re-allocated to SuSE and

Windows VMs, this way the overall efficiency being

increased. There is no surprise when analyzing the HDD

usage in this new context. Indeed, the main characteristics

observed when performing the first scenario are preserved,

excepting the maximum peak value which lowers to 9216

Kbytes/s (instead of 22 Mbytes/s) for the SuSE virtual

Fig. 4. CPU usage profiles for SuSE Linux (top), Ubuntu (middle)

and Windows XP (bottom) – scenario 1.

Fig. 5. Disk usage profiles for SuSE Linux (top), Ubuntu (middle)

and Windows XP (bottom) – scenario 1.

448

machine. In a similar way, the memory swapping (pagefile

access) seems to differ only by the highest peak value (512

Kbytes/s instead of 2560 Kbytes/s – as for the first scenario).

IV. CONCLUSION

The complex hardware/software virtualization technology

allows new and revolutionary approaches in computer

science, especially in the field of operating systems practical

studies. In this context, the present paper presented some

selected results over the complex interactions between

multiple operating systems (SuSE Linux, Ubuntu, Windows

XP) and a homogeneous virtualized hardware platform. The

studies were performed by using the non-invasive monitoring

technique of VMBR. The behavioral characteristics of the

three mentioned OSs are also outlined.

From the authors’ point of view, extending such a research

approach has a true practical relevance, as time as it may be

used to reach a perfect fit between user’s needs and the

software environment particularities.

REFERENCES

[1] G. Rădulescu, N. Paraschiv, “Virtualization techniques in computer

science – a practical point of view”, Proc. of the UNIVERSITARIA

SIMPRO 2006 (Petroşani) Symposium, pp. 41-44, 2006.

[2] G. Rădulescu, N. Paraschiv, “Developing a virtualization techniques –

based platform for advanced studies on operating systems”, The

Petroleum-Gas Univ. of Ploieşti Bulletin, Vol. LIX, Technical Series,

No. 3, pp. 1-6, 2007.

[3] 5. R. P. Goldberg, “Survey of virtual machine research”, IEEE

Computer, pp. 34–45, June 1974.

[4] 9. J. Sugerman, J., G. Venkitachalam , B. H. Lim, “Virtualizing I/O

devices on VMware Workstation’s hosted virtual machine monitor”,

Proc. of the 2001 USENIX Technical Conference, June 2001.

[5] 8. C. P. Sapuntzakis et al., “Optimizing the migration of virtual

computers”, Proc. of the 2002 Symposium on Operating Systems

Design and Implementation, December 2002.

[6] 1. K. G. Anagnostakis et al., “Detecting targeted attacks using

shadow honeypots”. Proc. of the 2004 USENIX Security Symposium,

August 2005.

[7] O. Agensen, D. Detlefs, “Mixed-mode bytecode execution”,

Technical Report SMLI TR-200-87, Sun Microsystems, Inc., 2000.

[8] S. T. King, G. W. Dunlap, P. M. Chen, “Debugging operating systems

with time-traveling virtual machines”, Proceedings of the USENIX

Annual Technical Conference (USENIX'05), pp. 1-15, April 2005.

[9] A. Whitaker, R. S. Cox, S. D. Gribble, “Configuration debugging as

search: finding the needle in the haystack”, Proc. of the 2004 OSDI

Symposium, December 2004.

Fig. 6. Swap/pagefile usage profiles for SuSE Linux (top), Ubuntu

(middle) and Windows XP (bottom) – scenario 1.

Fig. 7. CPU (top), HDD (middle) and swap/pagefile (bottom) usage

profiles for SuSE Linux, Ubuntu and Windows XP VMs running

simultaneously (scenario 2).

